

Longui	VU 1984	VU 2005	Web		Length	VU 1984	VU 2005	Web
1	1.79	1.38	6.67	1	16 KB	92.53	78.92	86.79
2	1.88	1.53	7.67	1	32 KB	97.21	85.87	91.65
4	2.01	1.65	8.33	1	64 KB	99.18	90.84	94.80
8	2.31	1.80	11.30	1	128 KB	99.84	93.73	96.93
16	3.32	2.15	11.46	1	256 KB	99.96	96.12	98.48
32	5.13	3.15	12.33	1	512 KB	100.00	97.73	98.99
64	8.71	4.98	26.10	1	1 MB	100.00	98.87	99.62
128	14.73	8.03	28.49	1	2 MB	100.00	99.44	99.80
256	23.09	13.29	32.10	1	4 MB	100.00	99.71	99.87
512	34.44	20.62	39.94	1	8 MB	100.00	99.86	99.94
1 KB	48.05	30.91	47.82	1	16 MB	100.00	99.94	99.97
2 KB	60.87	46.09	59.44	1	32 MB	100.00	99.97	99.99
4 KB	75.31	59.13	70.64	1	64 MB	100.00	99.99	99.99
8 KB	84.97	69.96	79.69	1	128 MB	100.00	99.99	100.00

Free Block Management (Linked List)

 Each block for free blocks list holding as many free disk block numbers as will fit.

- Ex)
 - With a 1 KB block size and a 32 bit disk block number.
 - A block can hold 8 × 2¹⁰ / 32 = 256 -1 = 255 free blocks numbers (1 slot for next free block pointer)!!!
 - 16 GB disk has 2³⁴/2¹⁰ = 2²⁴ blocks
 - Needs reserve $2^{24}/255 = 65794$ blocks to hold free block numbers

COSC450 Operating System, Fall 2024 Dr. Sang-Eon Park

Free Block Management (Bit Map)

Ex)Same example with Linked-List

- 16 GB disk
- Size of block = 1KB
- There are $2^{34}/2^{10} = 2^{24}$ blocks
- Need 2^{24} bit (for bit map) = $2^{24}/2^3$ Byte
- = $2^{11} \times 2^{10}$ Byte = 2^{11} KB = 2048 blocks for the bitmap.

COSC450 Operating System, Fall 2024 Dr. Sang-Eon Park 12

14

Free Block Management

Ex)Linked List vs. Bit map

Linked List

- With a 4 KB block size and a 64 bit disk block number. ■ A block can hold 8 × 4 × 2¹⁰ / 64 = 512 -1 = 511 free
- blocks numbers (1 slot for next free block pointer)!!!
- 2 TB disk has 2 × 2⁴⁰/ 4 × 2¹⁰ = 2⁴¹ / 2¹² = 2²⁹ blocks
- 2²⁹/511 = 1050628.007. Needs reserve 1050629 blocks to hold free block numbers

Bit map

- 2 TB disk has 2 × 2⁴⁰/ 4 × 2¹⁰ = 2⁴¹ / 2¹² = 2²⁹ blocks
- Size of bit map = 2^{29} bit = $2^{29} / 2^3 = 2^{26}$ byte = 2^{16} KB
- 2¹⁶ KB / 4 KB = 2¹⁴ = 16384 blocks

COSC450 Operating System, Fall 2024 Dr. Sang-Eon Park

13

15

17

Free Block Management

In the file system of an operating system, two methods are widely used to keep track of free blocks: a linked list and a bitmap. Let's say a block size is 8-KB and 32-bit disk block number in a file system.

How many maximum blocks are needed for keep track 128-GB disk with linked list?

- Size of Each block = 8 × 8 × 2¹⁰ bits = 2¹⁶ bits One block can keep = size of block/size of a block address = 2¹⁶ bits / 32 bits = 2¹⁶ / 2⁵ = 2¹¹ · 1 = 2047 block information Total # of blocks in the disk = size of disk / block size = 128GB / 8KB blocks = 128 × 2³⁰ / 8 × 2¹⁰ = $2^7 × 2^{20} / 2^7 × 2^{20} = 2^{27} / 2^{21} = 2^{24}$ block # of block sneed to keep track of free blocks = 2³⁴ blocks /2047 = 8196.002 :. 8197 blocks

- How many blocks are needed for keep track of 128-GB disk with bitmap?

OW finally brocks are increased and the set of the set

COSC450 Operating System, Fall 2024 Dr. Sang-Eon Park

Disk Quota

- The system administrator assigns each user a maximum allotment of files and blocks.
- The operating system makes sure that each user do not exceed their quotas
- When user opens a file, the attributes and disk addresses are located and put into an **open file table** in main memory.
- The quota table contains the quota record for every user with a currently open file.
- This record is an extract from a quota file on disk for the users whose files are currently open.
- □ When all the files are closed, the record is written back to the quota file

COSC450 Operating System, Fall 2024 Dr. Sang-Eon Park

File System Backup

File Backup System design issues

- Should the entire file system be backed up or only part of 1. it?
- 2. It is wasteful to back up files that have not changed since the last backup
- Since big amount of data are typically dumped, it may be з. desirable to compress the data before writing them to tape or disk.
- It is difficult to perform a backup on an active file system making rapid snapshots of the file system.
- Backup introduces many nontechnical problems into an organization security problem 5.

COSC450 Operating System, Fall 2024 Dr. Sang-Eon Park

File System Backup (Physical Dump)

There are two strategies for dumping a disk to tape or disk: Physical and Logical Dump

- Physical Dump start at block 0 of the disk (or SSD), writes all the disk blocks onto the <u>output</u> tape or disk in order, and stop when it has copied the last one.
 - How to handle skipping unused blocks? How to handle bad block?
- Advantage : Simplicity, speed
- Disadvantage: disable to skip selected directories, make incremental dumps and restore individual files.

COSC450 Operating System, Fall 2024 Dr. Sang-Fon Park

3

File System Backup File System Backup (Logical Dump: Unix) (Logical Dump: Unix) The dump algorithm maintains a bitmap indexed by i-node number with several bits per i-node The algorithm operates in four phases. (Phase 1 & 2 : prepare dump) Logical Dump – starts at one or more specified directories and recursively Phase 1 begins at the starting directory and examines all the entries in it. For each modified file, its i-node is marked in the bitmap. Each directory is also marked and recursively inspected. dumps all files and directories found there that have changed since some given base Phase 2 date unmarking any directories that have no modified files or directories in them or under them. Phase 3 all marked directory is dumped Phase 4 all marked files is dumped COSC450 Operating System, Fall 2024 Dr. Sang-Eon Park 19 COSC450 Operating System, Fall 2024 Dr. Sang-Eon Park 20

COSC450 Operating System, Fall 2024 Dr. Sang-Eon Park

