
10/17/2024

1

Review

 Shared File in multiuser system

◼ Save i-node index

◼ Symbolic link

 Log-Structured File System (extension of i-node + contiguous)

 Disk Space Management

 Free Block Management

◼ Linked List

◼ Bit Map

 Disk Quota

 File System Backup

◼ Physical Backup

◼ Logical Backup

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

1

Preview

 What is Deadlock?

 Resource Allocation Graph

◼ Deadlock example with Resources Allocation Graph

 Resource Types for a Process

 Sequence for Resource Use

 Implementation of Resource request, use and release

 Deadlock Condition

 Four Strategies for Dealing Deadlock

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

2

What is Deadlock

 In a multiprogramming environment, several processes (or
threads) may compete for a finite number of resources (racing).

 A process requests resources; if the resources are not available at
that time, the process enters a block state.

 Sometimes, a blocked process can never again change state,
because the resources it has requested are held by other blocked
processes. This situation is called a deadlock

 Deadlocks between processes can be occurred since limitation of
resources which must be shared.

 We cannot avoid deadlocks without proper managements by OS.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

3

Deadlocks

 Deadlock is a common problem in multiprocessing systems, parallel
computing and distributed systems, where software (semaphore or
mutex) and hardware (hardware instructions or hardware component to
block) locks are used to handle shared resources and implement process
synchronization.

 For example, in a transactional database, a deadlock happens when two
processes each within its own transaction updates two rows of
information but in the opposite order.
◼ Ex) ProcessA updates row1 then row2 in the exact timeframe that processB updates

row2 then row1.

◼ ProcessA can't finish updating row2 until ProcessB is finished, but ProcessB cannot finish
updating row 1 until ProcessA is finished.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

4

Deadlocks

Row 1

Row 2

Row 3

Row 4

Row 5

…

Hold by process A

Hold by process B

Database transaction

PA

PB
Row1

Row1

need

hold

hold

need

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

5 COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

6

/*deadlock.c: demonstrate phread_join() function */

#include <pthread.h>

#include <stdio.h>

void *thrd_f1(void *); /* for thread 1 */

void *thrd_f2(void *); /* for thread 2 */

void err_sys(char *, int); /* error function */

int main()

{

int rc;

pthread_t tid1, tid2;

void *tret1, *tret2;

pthread_mutex_t mutex1, mutex2;

pthread mutex init(&first mutex,NULL);

pthread mutex init(&second mutex,NULL);

/* create the first thread */

if ((rc=pthread_create(&tid1, NULL, thrd_f1, NULL)) != 0)

err_sys("ERROR; return code from pthread_create() is", rc);

/* create second thread */

if ((rc=pthread_create(&tid2, NULL, thrd_f2, NULL)) != 0)

err_sys("ERROR; return code from pthread_create() is", rc);

/* waiting for first thread finish */

if ((rc =pthread_join(tid1, NULL)) != 0)

err_sys("ERROR; return code from pthread_join() is", rc);

/*waiting for second thread finish */

if ((rc =pthread_join(tid2, NULL)) != 0)

err_sys("ERROR; return code from pthread_join() is", rc);

exit(0);

}

10/17/2024

2

Deadlocks

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

7

/* for thread 1 */

void *thrd_f1(void *arg)

{

pthread mutex lock(&mutex1);

pthread mutex lock(&mutex2);

/* Do some work */

pthread mutex unlock(&mutex2);

pthread mutex unlock(&mutex1);

pthread exit(0);

}

/* for thread 2 */

void * thrd_f2(void *arg)

{

pthread mutex lock(&mutex2);

pthread mutex lock(&mutex1);

/* Do some work */

pthread mutex unlock(&mutex1);

pthread mutex unlock(&mutex2);

pthread exit(0);}

void err_sys(char *str, int msg)

{

printf ("%s %d\n",str, msg);

exit (1);

}

Resource Allocation Graph

 This graph consists of a set of vertices V and a set of
edges E.

 The set of vertices V is partitioned into two types
◼ P = {P1, P2, …, Pn}= set of processes and

◼ R = {R1, R2, …, Rm} = set of resources

 Edge from a process to a resource
◼ P → R denote process P request resource R and currently waiting

 Edge from a resource to a process
◼ R → P denote resource R is currently held by process P

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

8

Resource-Allocation Graph

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

9

P1

R1 P2

R2
P1

P2

R1 R2

A process hold resource A process request resource

Deadlocks

 There are two processes P1, P2 working on their job and , and two
resource R1 and R2. Both P1 and P2 need R1 and R2 to finish their
job.

◼ T1: P1 request R1 and granted

◼ T1: P2 request R2 and granted

◼ T2: P1 request R2 without releasing R1. But, since R2 is hold by P2, P1

become waiting (block) state waiting for R2 which is granted to P2

◼ T3: P2 request R1 but it is not released by P1 yet, P2 go to blocked state. P1

and P2 will be blocked forever.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

10

Deadlocks

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

11

P1

R1 P2

R2 P1

R1 P2

R2 P1

R1 P2

R2

a) b) c)

Resource allocation graph

Deadlocks

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

12

Deadlock No Deadlock

10/17/2024

3

Resources for a Process

 Preemptive resources –

Resources that can be taken away from the process currently own
it without ill effect. Ex) Memory

 Non-preemptive resources –

Resources that cannot be taken away from the process currently
own it until the process finish using the resource and release it.
Ex) CD recorder, Printer

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

13

Sequence for Resource Use

 The sequence of events (steps) for using a resources

1. Request the resource

2. If available, hold and use the resource

3. Release the resource

 If a resource is not available when it is requested, the
requesting process might be

◼ Blocked and awakened when it is available

◼ Wait a little while and try again

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

14

Implementation of Resource request, use and release

 How to implement a request of resource is highly system
dependent.

 But usually, the request and release of resources are
system calls. (ex. request and release device, open and
close file, allocate and deallocate memory system calls).

 Request and release can be accomplished through down
and up operations on semaphores.

 If a resource is already allocated to a process, the
process request the resource is added to a queue of
waiting for this resource.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

15

Implementation of Resource request, use and release

semaphore R1;
void process_P()
{

down(&R1);
use_resource ();

up(&R1);
}

semaphore R1;
semaphore R2;
void process_P()
{

down(&R1);

down(&R2);
use_both_resource();
up(&R2);
up(&R1);

}

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

16

Associate a semaphore with each resource.

Implementation of Resource request, use and release

Ex)

 Lets there are two processes P1, P2 working on their job
and , and two resource R1 and R2.

 Both P1 and P2 need R1 and R2 to finish their job.

 Each resource is associated with a semaphore.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

17

Implementation of Resource request, use and release

Case 1)

semaphore R1;

semaphore R2;

void process_P1()

{

down(&R1);

down(&R2);

use_both_resource();

up(&R2);

up(&R1);

}

void process_P2()

{

down(&R1);

down(&R2);

use_both_resource();

up(&R2);

up(&R1);

}

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

18

10/17/2024

4

Implementation of Resource request, use and release

Case 2)

semaphore R1;

semaphore R2;

void process_P1()

{

down(&R1);

down(&R2);

use_both_resource();

up(&R2);

up(&R1);

}

void process_P2()

{

down(&R2);

down(&R1);

use_both_resource();

up(&R1);

up(&R2);

}

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

19

Deadlock Condition

 A deadlock situation can arise if and only if the following
four conditions hold simultaneously in a system.

1. Mutual exclusion

2. Hold and wait

3. No preemption

4. Circular wait

COSC450 Operating System, Fall 2024

Dr. Sang-Eon Park

20

Deadlock Example

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

21

A: need R and S
B: need S and T

C: need T and R

Deadlock Example

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

22

A: need R and S
B: need S and T

C: need T and R

Four Strategies for Dealing Deadlock

 Just ignore

 Detection and Recover

 Dynamic Avoidance by careful allocation

 Prevention – by negating one of the four conditions
necessary to cause deadlock

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

23

