
11/7/2024

1

Preview

 Solid State Driver

◼ Structure of Solid State Driver

◼ Architecture of a SSD

◼ Basic Operations in SSD (read, write erase)

◼ Flash Translation Layer (FTL)

◼ Garbage Collection

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

1

Structure of an SSD

 Solid-state drives (SSD) is a flash-memory based data storage
device. Bits are stored into cells, which are made of floating-gate
transistors. (HDD: magnetic storage)

 SSDs are made entirely of electronic components, there are no

mechanical parts like in hard disk drivers.

 Voltages are applied to the floating-gate transistors, which is how
bits are being read, written, and erased. Two solutions exist for
wiring transistors: the NOR flash memory, and the NAND flash
memory.

 An important property of NAND-flash modules is that their cells are
wearing off, and therefore have a limited lifespan.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

2

Structure of an SSD

 NAND Flash Memory

◼ Smaller Cell size

◼ Slow to read

◼ Faster to erase and write

◼ Less expensive

◼ Higher memory capacity

◼ Has lifespan

◼ Used in devices to which
large files are frequently
uploaded and replaced.

 NOR Flash Memory

◼ Larger Cell size

◼ Faster to read

◼ Slower to erase and write

◼ Much more expensive

◼ Need more power
consumption when power on

◼ Used in mobile phones,
scientific instruments and
medical devices.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

3

Structure of an SSD

 Each cell has a maximum number of P/E cycles (Program/Erase).

 NAND-flash memory wears off and has a limited lifespan. The
lifespan of SSDs could be tremendously increased.

 Types of cells

◼ Single level Cell - transistors can store only 1 bit but have a long lifespan

◼ Multiple level Cell -transistors can store 2 bits, at the cost of a higher latency
and reduced lifespan compared to SLC

◼ Triple level Cell –transistors can store 3 bits, but at an even higher latency
and reduced lifespan.

 Having more bits for the same amount of transistors reduces the manufacturing
costs. SLC-based SSDs are known to be more reliable and have a longer life
expectancy than MLC-based SSDs, but at a higher manufacturing cost.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

4

Structure of an SSD
(NAND- Flash pages and Blocks)

 Cells are grouped into a grid, called a block, and blocks are
grouped into planes.

 The smallest unit through which a block can be read or written is
a page.

 Pages cannot be erased individually, only whole blocks can be
erased.

 The size of a NAND-flash page size can vary, and most drive have
pages of size 2 KB, 4 KB, 8 KB or 16 KB.

 Most SSDs have blocks of 128 or 256 pages, which means that the

size of a block can vary between 256 KB and 4 MB.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

5

Architecture of a SSD

Host
Interface

Logic

RAM buffer

Processor

Buffer
manager

Flash
controller

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

6

Host Interface

Flash
Memory

Package #0

Flash
Memory

Package #1

Flash
Memory

Package #2

Flash
Memory

Package #3

SSD Controller

Solid State Drive Architecture

…

…

11/7/2024

2

Architecture of a SSD

 Commands (read/write) come from the user through the
host interface.

 The processor in the SSD controller takes the commands
and pass them to the flash controller.

 SSDs also have embedded RAM memory, generally for
caching purposes and to store mapping information
(mapping tables).

 The packages of NAND flash memory are organized in
gangs, over multiple channels.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

7

Basic Operations in SSD (read, write erase)

 Due to the organization of NAND-flash cells, it is not
possible to read or write single cells individually.

 Memory is grouped and is accessed with very specific
properties.

 Reads are aligned on page size

◼ It is not possible to read less than one page at once.

◼ One can request just one byte from the operating system, but a
full page will be retrieved in the SSD, forcing a lot more data to
be read than necessary(read amplification).

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

8

Basic Operations in SSD (read, write erase)

 Writes are aligned on page size
◼ When writing to an SSD, writes happen by increments of the page

size. So even if a write operation affects only one byte, a whole page
will be written anyway.

◼ Writing more data than necessary is known as write amplification.

 Pages cannot be overwritten
◼ A NAND-flash page can be written to only if it is in the “free” state.

◼ When data is changed, the content of the page is copied into an
internal register, the data is updated, and the new version is stored in
a “free” page, an operation called “read-modify-write”.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

9

Basic Operations in SSD (read, write erase)

 Erases are aligned on block size

◼ Pages cannot be overwritten, and once they become stale, the
only way to make them free again is to erase them.

◼ It is not possible to erase individual pages, and it is only possible
to erase whole blocks at once – one page modification in a block
need the entire block moving to a free block

◼ The erase command is triggered automatically by the garbage
collection process in the SSD controller when it needs to reclaim

stale pages to make free space.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

10

Basic Operations in SSD (read, write erase)

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

11

PPN data

0 x

1 y

2 z

3

Block #1000 with data

PPN data

0

1

2

3

Block #2000 : free

Block #2000 is free
Block #1000 is with data saved in PPN(physical

page number) 0, 1, 2 and one free page at PPN =3
in Block #1000

A page size could be 2KB, 4KB, 8KB or 16KB

Lets assume data in page 0 in Block #1000 is
modified. Since page cannot be overwritten,
updated data must write to free page in the
block. Then garbage collection process do the
followings.
1. The valid pages from the data block 1000

into the free block (2000).
2. Block 1000 is erased become free block

Blocks can only be erased a limited number of
times based on P/E cycle until they wear off.

Basic Operations in SSD (read, write erase)

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

12

PPN data

0 x

1 y

2 z

3 x’

Block #1000 with data

PPN data

0

1

2

3

Block #2000 : free

Page #0 become stale

Modified content are
saved in page 3

PPN data

0

1

2

3

Block #1000 become free

PPN data

0

1 y

2 z

3 x’

Block #2000 with data

Garbage collection process

11/7/2024

3

Basic Operations in SSD (read, write erase)
Write Amplification

 Because writes are aligned on the page size, any write operation
that is not both aligned on the page size and a multiple of the page
size will require more data to be written than necessary, a concept
called write amplification.

 Writing one byte will end up writing a page, which can amount up
to 16 KB for some models of SSD and be extremely inefficient.

 Writing data in an unaligned way causes the pages to be read into
cache before being modified and written back to the drive, which is
slower than directly writing pages to the disk. This operations is

known as read-modify-write

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

13

Basic Operations in SSD (read, write erase)
(Write Amplification)

 Never write less than a page

◼ Avoid writing chunks of data that are below the size of a NAND-
flash page to minimize write amplification and prevent read-

modify-write operations.

◼ To maximize throughput, whenever possible, keep small writes
into a buffer in RAM and when the buffer is full, perform a single
large write to batch all the small writes.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

14

Basic Operations in SSD (read, write erase)
(Wear Leveling)

 NAND-flash cells have a limited lifespan due to their limited
number of P/E cycles.

 What if data was always read and written from the same exact
block. This block would quickly exceed its P/E cycle limit, wear off,

and the SSD controller would mark it as being unusable.

 One of the main goals of an SSD controller is to implement wear
leveling by careful block selection for writing, which distributes P/E
cycle as evenly possible among the locks by selecting blocks
carefully when writing.

 Ideally, all blocks would reach their P/E cycle limits and wear off at
the same time.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

15

Flash Translation Layer (FTL)

 The main factor that made adoption of SSDs so easy is that they
use the same host interfaces as HDDs.

 Although presenting an array of Logical Block Addresses (LBA)
makes sense for HDDs as their sectors can be overwritten, it is not

fully suited to the way flash memory works.

 For this reason, an additional component is required to hide the
inner characteristics of NAND flash memory and expose only an
array of LBAs to the host.

 This component is called the Flash Translation Layer (FTL), and

resides in the SSD controller. The FTL is critical and has two main
purposes: logical block mapping and garbage collection.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

16

Flash Translation Layer (FTL)
(Logical Block Mapping)

 The logical block mapping translates logical block addresses (LBAs)
from the host space into physical block addresses (PBAs) in the
physical NAND-flash memory space.

 This mapping takes the form of a table, which for any LBA gives

the corresponding PBA.

 This mapping table is stored in the RAM of the SSD for speed of
access, and is persisted in flash memory in case of power failure.
When the SSD powers up, the table is read from the persisted
version and reconstructed into the RAM of the SSD.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

17

Flash Translation Layer (FTL)
(Logical Block Mapping)

Host
Interface

Logic

RAM buffer

Processor

Buffer
manager

Flash
controller

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

18

Host Interface

Flash
Memory

Package #0

Flash
Memory

Package #1

Flash
Memory

Package #2

Flash
Memory

Package #3

SSD Controller

Solid State Drive Architecture

…

…

11/7/2024

4

Flash Translation Layer (FTL)
(Logical Block Mapping)

 The naive approach is to use a page-level mapping to map any logical page

from the host to a physical page.

 This mapping policy offers a lot of flexibility, but the mapping table could be

extremely large, which increase the manufacturing costs (need larger RAM).

 A solution to that would be to map blocks instead of pages, using a block-level

mapping.

 An SSD drive has 256 pages per block with block-level mapping requires 256

times less memory than page-level mapping, which is a huge improvement for
space utilization.

 However, the mapping still needs to be persisted on disk in case of power failure,
and in case of workloads with a lot of small updates, full blocks of flash memory
will be written whereas pages would have been enough. This increases the write
amplification and makes block-level mapping widely inefficient

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

19

Flash Translation Layer (FTL)
(Logical Block Mapping: Log Block Mapping)

 The tradeoff between page-level mapping and block-level mapping
is the one of performance versus space.

 The log block mapping use hybrid approach between page-level
and block-level mapping which uses an approach similar to log-

structured file system.

 Incoming write operations are written sequentially to log blocks.
When a log block is full, it is merged with the data block associated
to the same logical block number (LBN) into a free block.

 Only a few log blocks need to be maintained, which allows to

maintain them with a page granularity

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

20

Flash Translation Layer (FTL)
(Logical Block Mapping)

 Figure shows a simplified representation of a hybrid log-block FTL, in which each
block only has four pages.

 Four write operations are handled by the FTL, all having the size of a full page.

 The logical page numbers (LPN) of 5 and 9 both resolve to LBN=1, which is
associated to the physical block #3000 (see Data Block Mapping Table).

 Initially, all the physical page offsets are null at the entry where LBN=1 is in the
log-block mapping table, and the log block #1000 is entirely empty as well.

 The first write, b’ at LPN=5, is resolving to LBN=1 by the log-block mapping
table, which is associated to PBN=1000 (log block #1000).

 The page b’ is therefore written at the physical offset 0 in block #1000.

 The metadata for the mapping now needs to be updated, and for this, the
physical offset associated to the logical offset of 1 (arbitrary value for this
example) is updated from null to 0.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

21

Flash Translation Layer (FTL)
(Logical Block Mapping)

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

22

LBN PBN Logical page
offset

Physical page
offset

1 1000

0

1

2

3

… … … …

7 2000 … …

Log-block page mapping table

PPN data

0

1

2

3

Block 1000(log)

PPN data

0

1

2

3

a

b

c

d

Block 3000(data)

PPN data

0

1

2

3

Block 9000(free)

LBN PBN

0

1

2

3

6000

3000

5000

4000

… …

7 8000

Data block mapping table

PBN

9000

7000

…

Free block mapping table

Flash Translation Layer (FTL)
(Logical Block Mapping)

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

23

LBN PBN Logical page
offset

Physical page
offset

1 1000

0

1

2

3

0

… … … …

7 2000 … …

Log-block page mapping table

PPN data

0

1

2

3

b’

Block 1000(log)

PPN data

0

1

2

3

a

b

c

d

Block 3000(data)

PPN data

0

1

2

3

Block 9000(free)

1. Write (5, b’) Sequence of four write operations.
The logical addresses 5 and 9 are both
translated into the LBN =1

LBN PBN

0

1

2

3

6000

3000

5000

4000

… …

7 8000

Data block mapping table

PBN

9000

7000

…

Free block mapping table

Flash Translation Layer (FTL)
(Logical Block Mapping)

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

24

LBN PBN Logical page
offset

Physical page
offset

1 1000

0

1

2

3

0

1

… … … …

7 2000 … …

Log-block page mapping table

PPN data

0

1

2

3

b’

d’

Block 1000(log)

PPN data

0

1

2

3

a

b

c

d

Block 3000(data)

PPN data

0

1

2

3

Block 9000(free)

1. Write (5, b’)
2. Write (9, d’)

Sequence of four write operations.
The logical addresses 5 and 9 are both
translated into the LBN =1

LBN PBN

0

1

2

3

6000

3000

5000

4000

… …

7 8000

Data block mapping table

PBN

9000

7000

…

Free block mapping table

11/7/2024

5

Flash Translation Layer (FTL)
(Logical Block Mapping)

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

25

LBN PBN Logical page
offset

Physical page
offset

1 1000

0

1

2

3

0

1 ->2

… … … …

7 2000 … …

Log-block page mapping table

PPN data

0

1

2

3

b’

d’

d”

Block 1000(log)

PPN data

0

1

2

3

a

b

c

d

Block 3000(data)

PPN data

0

1

2

3

Block 9000(free)

1. Write (5, b’)
2. Write (9, d’)

3. Write (9, d”)

Sequence of four write operations.
The logical addresses 5 and 9 are both
translated into the LBN =1

LBN PBN

0

1

2

3

6000

3000

5000

4000

… …

7 8000

Data block mapping table

PBN

9000

7000

…

Free block mapping table

Become stale

Flash Translation Layer (FTL)
(Logical Block Mapping)

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

26

LBN PBN Logical page
offset

Physical page
offset

1 1000

0

1

2

3

0 ->3

1 ->2

… … … …

7 2000 … …

Log-block page mapping table

PPN data

0

1

2

3

b’

d’

d”

b”

Block 1000(log)

PPN data

0

1

2

3

a

b

c

d

Block 3000(data)

PPN data

0

1

2

3

Block 9000(free)

1. Write (5, b’)
2. Write (9, d’)

3. Write (9, d”)
4. Write (5, b”)

Sequence of four write operations.
The logical addresses 5 and 9 are both
translated into the LBN =1

LBN PBN

0

1

2

3

6000

3000

5000

4000

… …

7 8000

Data block mapping table

PBN

9000

7000

…

Free block mapping table

Become stale

Become stale

Now log is full, need merge into free block

Flash Translation Layer (FTL)
(Logical Block Mapping)

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

27

LBN PBN Logical page
offset

Physical page
offset

1 1000

0

1

2

3

0 ->3

1 ->2

… … … …

7 2000 … …

Log-block page mapping table

PPN data

0

1

2

3

b’

d’

d”

b”

Block 1000(log)

PPN data

0

1

2

3

a

b

c

d

Block 3000(data)

PPN data

0

1

2

3

a

b”

c

d”

Block 9000(free)

Merge log block
and a data block
into a free block

1. Write (5, b’)
2. Write (9, d’)

3. Write (9, d”)
4. Write (5, b”)

Sequence of four write operations.
The logical addresses 5 and 9 are both
translated into the LBN =1

LBN PBN

0

1

2

3

6000

3000->9000

5000

4000

… …

7 8000

Data block mapping table

PBN

9000

7000

…

Free block mapping table

After merging, Block 1000 and
Block 3000 become free block

Become stale

Become stale

Flash Translation Layer (FTL)
(Logical Block Mapping)

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

28

LBN PBN Logical page
offset

Physical page
offset

1 1000

0

1

2

3

… … … …

7 2000 … …

Log-block page mapping table

PPN data

0

1

2

3

Block 1000(free)

PPN data

0

1

2

3

Block 3000(free)

PPN data

0

1

2

3

a

b”

c

d”

Block 9000(data)

1. Write (5, b’)
2. Write (9, d’)

3. Write (9, d”)
4. Write (5, b”)

Sequence of four write operations.
The logical addresses 5 and 9 are both
translated into the LBN =1

LBN PBN

0

1

2

3

6000

3000->9000

5000

4000

… …

7 8000

Data block mapping table

PBN

3000

7000

…

Free block mapping table

After merging, Block 1000 and
Block 3000 become free block

Now Block 1000 and 3000 become free by garbage collection

Flash Translation Layer (FTL)
(Logical Block Mapping)

 The write operations go on and the mapping metadata is updated accordingly.
When the log block #1000 is entirely filled, it is merged with the data block
associated to the same logical block, which is block #3000 in this case.

 This information can be retrieved from the data-block mapping table, which
maps logical block numbers to physical block numbers.

 The data resulting from the merge operation is written to a free block, #9000 in
this case. When this is done, both blocks #1000 and #3000 can be erased and
become free blocks, and block #9000 becomes a data block.

 The metadata for LBN=1 in the data-block mapping table is then updated from
the initial data block #3000 to the new data block #9000.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

29

Garbage Collection

 Since pages cannot be overwritten, if the data in a page has to be
updated, the new version is written to a free page, and the page
containing the previous version is marked as stale.

 When blocks contain stale pages, they need to be erased before

they can be written to.

 Because of the high latency required by the erase command
compared to the write command, this extra erase step incurs a
delay which makes the writes slower.

 Some controllers implement a background garbage collection

process, which takes advantage of idle time and runs regularly in
the background to reclaim stale pages and ensure that future
foreground.

COSC450 Operating System, Fall 2024
Dr. Sang-Eon Park

30

