
9/5/2024

1

Review

 Processes

 Process Model –real model, virtual model

 Process Creation

 Process Termination –voluntary, involuntary

 Process States – running, ready, block(wait)

 Process Table (Process Control Block)

 Process with Multiple-Threads

 Process Scheduling

◼ Scheduling Queues

◼ CPU Scheduling

◼ Context Switch

 Process Creation in Linux

 Process Termination in Linux

 Android Process Hierarchy

COSC450 Operating System, Fall 2014

Dr. Sang-Eon Park

1

Preview

 Interprocess Communication

◼ With Shared Memory (shared memory in Linux)

◼ With Message Passing (message Queue, socket in Linux)

 Direct Communication

 Indirect Communication

 Message Passing Synchronization

▪ Blocking

▪ Non-blocking

 Queueing

 Threads

◼ Overview of Threads

◼ Benefit of Threads

◼ Multicore Programming with Threads
COSC450 Operating System, Fall 2014

Dr. Sang-Eon Park

2

Interprocess Communication

 Processes executing concurrently in the operating system may be
either independent processes or cooperating processes.

 Cooperating processes require an interprocess communication
(IPC) mechanism that will allow them to exchange data.

 Reasons for providing an environment that allows process
cooperation:

◼ Information Sharing- several processes or threads can share information
(client-sever)

◼ Computation Speed up – jobs are divided and several process or threads run
on different part of job on different CPU core. Eventually create final result.
(rendering)

◼ Modularity – construct the system in a modular fashion, dividing the system
functions into separate processes or threads

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

3

Interprocess Communication

 There are two fundamental models of interprocess
communication:
◼ Shared Memory- a region of memory is shared by processes with read

/write operations. It is useful for exchanging smaller amount of data
since no conflicts need be avoided. OS only involved in creation but
not any synchronization or mutal exclusion!

◼ Message Passing - communication takes place by means of messages
exchanged between the cooperating processes (Message Queue,
Socket). It is also easier to implement in a distributed system than
shared memory. OS involved in creation and synchronization and
mutual exclusion!

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

4

Interprocess Communication

 Shared memory can be faster than message passing,
since message-passing systems are typically
implemented using system calls (shared memory are
located in user’s space).

 In shared-memory systems, system calls are required
only to establish shared memory regions.

 Once shared memory is established, all accesses are
treated as routine memory accesses, without kernel’s
assistance.

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

5

…
…

Interprocess Communication

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

6

Process A

Process B

Shared memory

kernel Kernel’s space

Process A

Process B

kernel

…
…

m0 mnm1 m2 …

Message queue in
kernels space

Kernel’s space

Communication Model

Shared memory Message Passing

9/5/2024

2

Interprocess Communication
(Shared Memory)

 A process can create a shared-memory segment in RAM for interprocess
communication.

 Other processes that wish to communicate using this shared-memory segment
must attach it to their address space by key values.

 Normally, the OS prevent one process from accessing another process’s memory
but OS remove this restriction for shared-memory since it is not belong to
kernel’s space. OS only involved in creation of shared memory. Then, several
process can exchange information by reading and writing data in the shared
areas.

 The form of the data and the location are determined by these processes and are
not under the operating system’s control.

 The processes are also responsible for mutual exclusion for writing to avoiding
race condition.

COSC450 Operating System, Fall 2014

Dr. Sang-Eon Park

7

Interprocess Communication
(Shared Memory)

 Before using the shared memory what we needs to be
done with the system calls,

◼ Create the shared memory segment or use an already created
shared memory segment (shmget())

◼ Attach the process to the already created shared memory
segment (shmat())

◼ Detach the process from the already attached shared memory
segment (shmdt()).

◼ Control operations on the shared memory segment (shmctl())

COSC450 Operating System, Fall 2014

Dr. Sang-Eon Park

8

Interprocess Communication
(Shared Memory)

producer consumer problem with shared memory

 To allow producer and consumer processes to run concurrently, we
must have available a buffer of items that can be filled by the

producer and emptied by the consumer.

 This buffer will reside in a region of memory that is shared by the
producer and consumer processes. A producer can produce one
item while the consumer is consuming another item.

 The producer and consumer must be synchronized, so that the

consumer does not try to consume an item that has not yet been
produced. (Both producer and consumer must be written with
considering mutual exclusion to avoid race condition)

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

9

…
…

Interprocess Communication

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

10

Producer

Consumer

Shared memory

kernel Kernel’s space

Produce-Consumer with Shared Memory

• OS only involved in creation of a
shared memory!

• Producer and Consumer must
deal with synchronization and
mutual exclusion for using the

shared memory

Interprocess Communication
(Message-Passing)

 OS provide the means for interprocess communication via a message-passing

facility (message queue, socket).

 Message passing provides a mechanism to allow processes to communicate and

to synchronize their actions without sharing the same address space.

 It is particularly useful in a distributed environment, where the communicating

processes may reside on different computers connected by a network.

 Two operation are provided as library or system calls.

◼ Send(message)

◼ Receive(message)

 To communicate between processes, a communication link must exist between
them. This link can be implemented in various ways based on mean (message
queue, socket, …)

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

11

Interprocess Communication
(Message-Passing: Message Queue)

 A message queue is a linked list of message stored within
the kernel’s space and identified by a message queue ID.

 A new message queue is created or opened by msgget().

 A new messages are added to the end of a queue by
msgsnd().

 Messages are fetched from a queue by msgrcv().

 The msgctl() system call provides a variety of message

control operations as specified by cmd.
◼ IPC_STAT, IPC_SET, IPC_RMID

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

12

9/5/2024

3

Interprocess Communication
(Message-Passing)

 Logical Methods for implementing a link and send()/ receive
operations.

◼ Direct or indirect communication

◼ Synchronous or asynchronous communication

◼ Automatic or explicit buffering

 Under direct communication, each processes must know end point
address for sending or receiving message between.

 Under indirect communication, the messages are sent to and
received from mailboxes, or ports.

COSC450 Operating System, Fall 2014

Dr. Sang-Eon Park

13

Interprocess Communication
(Message-Passing: Direct Communication)

 Under direct communication, each processes must know end point
address for sending or receiving message between.

◼ send (P, message) – send a message to process with end point address P.

◼ receive(Q, message) – receive a message from process with end point
address Q.

 A communication link properties in direct communication

◼ A link is established between every pair of processes to communicate. (each
process in pair knows each identity (by ex. IP + port number).

◼ A link is associated with exactly two processes.

◼ There is one link between each pair of process (peer to peer)

COSC450 Operating System, Fall 2014

Dr. Sang-Eon Park

14

Interprocess Communication
(Message-Passing: Direct Communication)

 Direct communication method exhibits

◼ Symmetry in addressing since both processes know end point
address each other (Full Duplex).
 send (P, message) – send a message to process with end point address P.

 receive(Q, message) – receive a message from process with end point address Q

◼ Asymmetry in addressing since only one processes know end
point address (Half Duplex).
 send (P, message) – send a message to process with end point address P.

 receive(id, message) – receive a message from any process.

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

15

Interprocess Communication
(Message-Passing: Indirect Communication)

 With indirect communication, the messages are sent to
and received from mailboxes, or ports.

 Each mailbox has a unique identification. For example,
POSIX message queues use an integer value to identify a
mailbox.

 A process can communicate with another process via a
number of different mailboxes, but two processes can
communicate only if they have a shared mailbox.

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

16

Interprocess Communication
(Message-Passing: Indirect Communication)

 Operations
◼ create (A) – create a mailbox (in POSIX with ftok(), msgget())

◼ send(A, message)—Send a message to mailbox A. (in POSIX with msgsnd())

◼ receive(A, message)—Receive a message from mailbox A.(in POSIX with

msgrcv())

◼ remove (A) – remove mailbox (in POSIX with msgctl())

 communication link properties in indirect communication

◼ Link established only if processes share a common mailbox

◼ A link may be associated with many processes

◼ Each pair of processes may share several communication links

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

17

Interprocess Communication
(Message-Passing: Indirect Communication)

 Since a mailbox can be shared by several processes, we need
consider mailbox sharing.

◼ Let’s assume process P1, P2 and P3 share mailbox A

◼ P1 send a message to the mailbox.

◼ P2 and P3 try to receive message from the mailbox.

◼ Who gets the message?

 Possible solutions

◼ Allow a link to be associated with at most two processes

◼ Allow only one process at a time to execute a receive operation

◼ Allow the system to select arbitrarily the receiver. Sender is notified who the
receiver was.

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

18

9/5/2024

4

Interprocess Communication
(Message-Passing: Synchronization)

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous (TCP or SCTP with socket)

◼ Blocking send -- the sender is blocked until the message is received

◼ Blocking receive -- the receiver is blocked until a message is available

 Non-blocking is considered asynchronous (UDP with socket)

◼ Non-blocking send -- the sender sends the message and continue

◼ Non-blocking receive -- the receiver receives:
 A valid message, or

 Null message

 Different combinations possible
◼ If both send and receive are blocking, we have a rendezvous

COSC450 Operating System, Fall 2014

Dr. Sang-Eon Park

19

Interprocess Communication
(Message-Passing: Buffering)

 Queue of messages attached to the link.

 Implemented in one of three ways

◼ Zero capacity – no messages are queued on a link.

Sender must wait for receiver (rendezvous)

◼ Bounded capacity – finite length of n messages
Sender must wait if link full

◼ Unbounded capacity – infinite length
Sender never waits

COSC450 Operating System, Fall 2014

Dr. Sang-Eon Park

20

Overview of Thread

 Most software run on modern computers or mobile devices are
multithreaded.

 An application typically is implemented as a separate process with
several threads of control.

 Each threads are run on different part of a process.

 Each thread consist of a thread ID, a program counter (PC), a
register set, and a stack.

 It shares with other threads belonging to the same process its code
section, data section, and other operating-system resources, such

as open files and signals

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

21

Overview of Thread

code data files

registers stack PC

code data files

registers

stack

PC

registers

stack

PC

registers

stack

PC

threads

threads

Single-threaded process Multi-threaded process

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

22

Overview of Thread

 Multi-threaded software example

◼ Web browser: one thread display images or text, another thread
retrieves data from the network.

◼ A word processer: a thread for displaying graphics, a thread for
responding to keyboard keystrokes, a thread performing spelling
and grammar checking in the background.

◼ A web server: for each client’s request, server create a thread to
take care one client request.

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

23

Overview of Thread

 Most operating system kernels are also typically multithreaded.

 As an example, during system boot time on Linux systems, several
kernel threads are created.

◼ Each thread performs a specific task, such as managing devices, memory

management, or interrupt handling.

 The command ps -ef can be used to display the kernel threads on a
running Linux system.

 Examining the output of this command will show the kernel thread
kthreadd (with pid = 2), which serves as the parent of all other
kernel threads.

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

24

9/5/2024

5

Overview of Thread

Kernel tread

COSC450 Operating System, Fall 2014

Dr. Sang-Eon Park

25

Benefits with Threads

 Resource sharing - threads share the memory and the resources of the process
to which they belong by default. The benefit of sharing code and data is that it
allows an application to have several different threads of activity within the same
address space.

 Economy - Because threads share the resources of the process to which they
belong, it is more economical to create and context-switch threads.

 Responsiveness - Application may allow a program to continue running even if
part of program which is run by a thread is blocked.

 Scalability - The benefits of multithreading can be even greater in a
multiprocessor architecture, where threads may be running in parallel on
different processing cores.

COSC450 Operating System, Fall 2014

Dr. Sang-Eon Park

26

Multicore Programming with Threads

 Multithreaded programming with multicore CPU provides a
improved concurrency (some threads can run in parallel).

 Consider an application with four threads run on a system with a
single core CPU.

◼ Since the single core in CPU can take care one thread at a time, need context
switch between threads to support concurrency.

◼ Consider an application with four threads run on a system with two-core CPU.
Some threads can run in parallel in this system.

 A concurrent system supports more than one task by allowing all the tasks to make progress.

 In contrast, a parallel system can perform more than one task simultaneously.

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

27

Multicore Programming with Threads

T1 T2 T3 T4 T1 T2 T3 T4 T1 …Single core

Concurrent execution on a single-core system

time

T1 T3 T1 T3 T1

T2 T4 T2 T4 T2

Core 1

Core 2

…

…

time

Parallel & Concurrent execution on multi-core system

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

28

Multicore Programming with Threads

 OS and application developer’s challenges with Multi-core
or multiple CPU.

◼ Designers of operating systems must write scheduling
algorithms that use multiple processing cores to allow the
parallel execution.

◼ For application programmers, the challenge is to modify existing
programs as well as design new programs that are

multithreaded.

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

29

Multicore Programming with Threads

 Five areas present challenges in programming for multicore
systems:

1. Identifying tasks – examining applications to find areas that can be divided

into separate concurrent tasks.

2. Balance – applications are divided into multiple tasks with balanced working

load

3. Data Splitting -Just as applications are divided into separate tasks, the data
accessed and manipulated by the tasks must be divided to run on separate
cores.

4. Data Dependency – If there are data dependency between tasks,
programmer need consider synchronization for avoid race condition.

5. Testing and debugging -Testing and debugging multi-threaded programs is
more difficult than single threaded programs

COSC450 Operating System, Fall 2014
Dr. Sang-Eon Park

30

9/5/2024

6

Multicore Programming with Threads
(Types of Parallelism)

 Data parallelism focuses on distributing subsets of the same data
across multiple computing cores and performing the same
operation on each core.

Ex) summation of array size 2N

◼ A thread on core0 (or CPU0) sum the elements [0] .. [N-1]

◼ A thread on core1 (or CPU1) sum the elements [N] .. [2N-1]

 Task parallelism involves distributing tasks (threads) across
multiple computing cores. Each thread is performing a unique
operation. Different threads may be operating on the same data, or

they may be operating on different data

COSC450 Operating System, Fall 2014

Dr. Sang-Eon Park

31

Multicore Programming with Threads
(Types of Parallelism)

COSC450 Operating System, Fall 2014

Dr. Sang-Eon Park

32

core0 core1 core2 core3

core0 core1 core2 core3

data

data

Data
parallelism

Task
parallelism

