- a. (1.5 pt.)
 - Size of Each block = 4×2^{10} Byte = $8 \times 4 \times 2^{10}$ bits = 2^{15} bits
 - One block can keep = size of block/size of a block address = 2¹⁵ bits / 64 bits = 2¹⁵ / 2⁶
 = 2⁹ -1 = 511 block information
 - Total # of blocks in the secondary memory = size of secondary memory / block size
 = 2TB / 4KB blocks = 2 × 2⁴⁰ / 4 × 2¹⁰
 - $= 2^{41} / 2^{12} = 2^{29}$ blocks
 - # of blocks need to keep track of free blocks = 2²⁹ blocks /511 = 1,050,628.007
 ∴ 1,050,629 blocks
- b. (1.5 pt.)
 - Total # of blocks in the disk = 2²⁹ blocks
 - Need 2^{29} bits for bit map= 2^{29} bit = $2^{29}/8$ Byte= $2^{29}/2^3 = 2^{26}$ Byte
 - # of blocks need for bitmap = $2^{26} / (4 \times 2^{10}) = 2^{26} / 2^{12} = 2^{14}$ blocks
- c. (1 pt.)
 - Since this system use 64 bit disk block number, this system support 2⁶⁴ blocks
 - Maximum disk size = maximum # of block supported \times one block size = $=2^{64} \times 4 \times 2^{10}$ Byte $=256 \times 2^{70} = 32$ ZB (Zibi)

2. (1 pt.)

Sol) since 1 block is 2KB, and 16 Byte per block address, one block can save $2 \times 2^{10} / 16 = 2^{11}/2^4 = 2^7 = 128$ block information

Total = 10 + 128 = 138 block information. Since a block size is 2KB, largest file will be 2KB × 138 = 276 KB

- **3.** (1 pt.)
 - a. Contiguous allocation File name, first block number and number of blocks used
 - b. Linked allocation scheme File name, First block number
 - c. I-node allocation scheme File name, i-node number

1.

- **4.** (1 pt.)
 - a. Files are cached in the RAM when it is opened.
 - b.
 - In LSF, each i-node is not at a fixed location; they are written to the log.
 - LFS uses a data structure called an i-node map to maintain the current location of each i-node.
 - Opening a file consists of using the map to locate the i-node for the file.
- **5.** (2 pt.) The algorithm needs to maintain a bitmap with a size matching the number of inodes currently used by active files. The bitmap values are initialized in two phases:
 - Phase one For each modified file, its i-node is marked in the bitmap. Each directory is also marked and recursively inspected.
 - Phase two unmarking any directories that have no modified files or directories in them or under them.
- 6. (1 pt.)

Size of bit-map = $8 \times 2^{10} \times 2^{14}$ byte = 8×2^{24} Byte = $8 \times 8 \times 2^{24}$ bit. = 2^{30} bits There are 2^{30} blocks

Total disk size = # of block × one block size = $2^{30} \times 8 \times 2^{10} = 8 \times 2^{40} = 8$ TB