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Publisher’s Editorial
Back to the Future
Solomon A. Garfunkel
Executive Director
COMAP, Inc.
57 Bedford St., Suite 210
Lexington, MA 02420
s.garfunkel@mail.comap.com

First, a mea culpa. I recently attended a showing of the movie “Good Night
and Good Luck” and was taken by the courage of Edward R. Murrow, Fred
Friendly, et al. at CBS during the McCarthy era. And I felt embarrassed. For
a number of years, I have watched several of my colleagues in mathematics
and mathematics education work hard to destroy much of the progress that
we have made—and I have been silent. The pressure to stay quiet is strong.
COMAP lives in part on our ability to secure grants from the National Science
Foundation. NSF doesn’t enjoy controversy. Moreover, any number of the
people that I see as destructive sit on proposal review panels from time to time.
And they are very political. Single-issue politics is always quite ugly. I suspect
that most if not all of this group would consider themselves to be liberals; but
they have no trouble working with this most conservative of administrations
as long as their views of mathematics education prevail—even if that means
the end of science education at NSF.

In the early 1970s, when I first became seriously involved in mathemat-
ics education and the world of proposals, grants, etc., there was a constant
complaint from program officers at NSF: Mathematicians simply did not write
proposals, and when called upon to review proposals, they invariably savaged
their mathematical colleagues. Hence mathematics education grants were well
below the numbers that the importance of the subject justified. NSF program
officers came to mathematics conferences and all but begged us to ask them for
money. They also pleaded with us to speak with one voice, that is, to iron out
our differences, figure out for ourselves what the priorities should be, and get
to work together on attacking the important problems rather than each other.

And believe it or not, by the end of the 1980s, mostly because of the courage
of the NCTM leadership and the good offices of MSEB, we got our collective act
together. We all quoted the Standards and A Nation at Risk, and Everybody Counts,
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and we wrote proposals to make the vision of those documents come to pass.
We began to receive funding at a level that made real change possible—and we
are reaping the benefits today with increased NAEP and SAT scores.

So what did we decide to do? Shoot ourselves in whatever foot we could
find! We began the math wars; we went back to savaging our colleagues; we
made NSF look bad in the eyes of Congress; we gave succor and ammunition
to our enemies; and we lost our intellectual honesty in the name of winning
political favor. The result is an NSF science education budget that is greatly
reduced and skewed against mathematics. Funding has moved dramatically
from curriculum- and staff-development to “research” in mathematics edu-
cation. People and organizations directly responsible for the demonstrated
successes of the past two decades are being told that there is no room at the
inn. In the name of practicality, we reward mediocrity.

There are consequences of these actions. Just as we learned that natural
disasters require competent people and institutions (and not simply political
hacks at the helm), there will be real and serious consequences for mathematics
and mathematics education because of the present funding environment. Of
course, these consequences are several years away and so safe from existing
politicians’ blame or attention. Nevertheless, we are headed for disaster unless
we have the courage to stand up and fight—today. This is precisely equivalent
to the global warming debate. We are poisoning our profession just as we
poison our atmosphere. And we are running out of time, because systems take
as long to fix as they do to break.

I call on the staff of NSF to take credit for their own successes and tell the
community about what they know works—even if the current administration
wants to tell a different story. I call on the private foundations to step into the
coming void and fill in until the current federal policies turn around. And I
call on members of our community who understand what’s at stake to stand
up and be counted.

About the Author
Sol Garfunkel received his Ph.D. in mathematical logic from the University

of Wisconsin in 1967. He was at Cornell University and at the University of
Connecticut at Storrs for 11 years and has dedicated the last 25 years to research
and development efforts in mathematics education. He has been the Executive
Director of COMAP since its inception in 1980.

He has directed a wide variety of projects, including UMAP (Undergraduate
Mathematics and Its Applications Project), which led to the founding of this
Journal, and HiMAP (High School Mathematics and Its Applications Project),
both funded by the NSF. For Annenberg/CPB, he directed three telecourse
projects: For All Practical Purposes (in which he also appeared as the on-camera
host), Against All Odds: Inside Statistics (still showing on late-night TV in New
York!), and In Simplest Terms: College Algebra. He is currently co-director of the
Applications Reform in Secondary Education (ARISE) project, a comprehensive
curriculum development project for secondary school mathematics.



About This Issue 187

Important Note from the Editor

About This Issue
(and Others to Come)
Paul J. Campbell
Editor

This issue of The UMAP Journal represents a departure from past practice
and a further step toward electronic publishing.

For its first five years, the Journal published 512 pp/yr with a supplementary
volume of UMAP Modules: Tools for Teaching (at extra cost to subscribers) that
ran between 1044 and 1258 pp. Those were typescript pages that held only half
the content of a page of today’s Journal.

In 1984, the Mathematical Contest in Modeling (MCM) was founded, the
Journal began to be typeset, and the annual UMAP Modules: Tools for Teaching
supplement was bundled into the COMAP membership option for receiving
the Journal. That supplemental volume, which libraries shelve as a separate
serial, collected together UMAP Modules—and later also ILAP Modules—from
the year’s issues of the Journal, together with additional Modules (particularly
longer ones) for which there was no room in the Journal.

We aimed for four 92-page issues per year and devoted one issue to the
MCM. The size of the MCM issue has varied with the number of Outstanding
teams, the length of their papers (sometimes the size of a small telephone book),
and my ability to edit the papers down to a modeling core. The last year that
we had only 368 pp in the Journal was 1992; the MCM issue in fact became a
double issue (and more). In 2000, we had 530 pp, and the combined total for
the Journal and the Tools volume has varied over the past 10 years between 642
and 715 pp. This year, the MCM yielded a record 10 Outstanding teams.

Meanwhile, costs for publishing on paper have risen faster than the Journal’s
income.

Hence, spurred by the desire to control costs, but also by the intention to
make the contents of the Journal and the Tools volume more usable by members,
we have settled on the following plan:

COMAP members will receive four 92-page issues of the Journal,
plus a CD-ROM bundled into the MCM issue.
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Here are the particulars:

• As with other COMAP electronic products, the files on the CD-ROM will be
Adobe Acrobat PDF files. In particular, color images that are rendered only
in black and white in the printed copy will appear in the PDF files in color.

• The ICM and MCM issues, like the other two issues, will be limited to 92
print pages each.

• If an issue runs longer than 92 pp, some articles will not appear in print but
only on the CD-ROM. However, all articles on the CD-ROM will appear in
the printed table of contents and are regarded as published in the Journal.
Pagination will run continuously, including in sequence articles that do not
appear in printed form. So, if you notice that, say, page 350 in the printed
copy is followed by page 403, your copy is not necessarily defective! The articles
corresponding to the intervening pages should be on the CD-ROM.

• The CD-ROM will contain an entire year of Journal issues.

• The Tools volume will no longer appear as a printed volume but only in
electronic form on the CD-ROM.

• We remind readers of the COMAP’s policy concerning usage of material
appearing in the Journal, which applies to all material on the CD-ROM. The
policy appears as a footnote on the first page of each article:

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice. Abstracting with credit is per-
mitted, but copyrights for components of this work owned by others
than COMAP must be honored. To copy otherwise, to republish, to
post on servers, or to redistribute to lists requires prior permission
from COMAP.

We hope that you will find this arrangement, if not entirely satisfying, at
least satisfactory. It will mean that we will not have to procrusteanize the
content of the Journal to fit a fixed number of allocated pages. For example,
we might otherwise need to select only two or three of the MCM Outstanding
papers to publish (a hard task indeed!). Instead, we can continue to bring you
the full content as in the past.
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Modeling Forum

Results of the 2005
Mathematical Contest in Modeling

Frank Giordano, MCM Director
Naval Postgraduate School
1 University Circle
Monterey, CA 93943-5000
frgiorda@nps.navy.mil

Introduction
A total of 664 teams of undergraduates, from 259 institutions and 306 de-

partments in 10 countries, spent the second weekend in February working on
applied mathematics problems in the 21st Mathematical Contest in Modeling
(MCM).

The 2005 MCM began at 8:00 p.m. EST on Thursday, February 3 and ended
at 8:00 p.m. EST on Monday, February 7. During that time, teams of up to
three undergraduates were to research and submit an optimal solution for one
of two open-ended modeling problems. Students registered, obtained contest
materials, downloaded the problems at the appropriate time, and entered com-
pletion data through COMAP’S MCM Website. After a weekend of hard work,
solution papers were sent to COMAP on Monday. The top papers appear in
this issue of The UMAP Journal.

Results and winning papers from the first 20 contests were published in spe-
cial issues of Mathematical Modeling (1985–1987) and The UMAP Journal (1985–
2004). The 1994 volume of Tools for Teaching, commemorating the tenth anniver-
sary of the contest, contains all of the 20 problems used in the first 10 years of the
contest and a winning paper for each year. Limited quantities of that volume
and of the special MCM issues of the Journal for the last few years are available
from COMAP. That volume is available on COMAP’s special Modeling Re-
source CD-ROM (http://www.comap.com/product/?idx=613). In addition,
COMAP will shortly release a new volume, The MCM at 21, which will contain
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all of the 20 problems from the second 10 years of the contest and a winning
paper for each year.

This year’s Problem A asked teams to develop a model showing the conse-
quences of a massive dam failure. Problem B asked teams to propose a model
to help determine the optimal number of tollbooths in a barrier-toll plaza. The
10 Outstanding solution papers are published in this issue of The UMAP Jour-
nal, along with commentary from problem authors, contest judges, and outside
experts.

In addition to the MCM, COMAP also sponsors the Interdisciplinary Con-
test in Modeling (ICM) and the High School Mathematical Contest in Modeling
(HiMCM). The ICM, which runs concurrently with MCM, offers a modeling
problem involving concepts in operations research, information science, and
interdisciplinary issues in security and safety. Results of this year’s ICM are
on the COMAP Website at http://www.comap.com/undergraduate/contests;
results and Outstanding papers appeared in Vol. 26 (2005), No. 2. The HiMCM
offers high school students a modeling opportunity similar to the MCM. Fur-
ther details about the HiMCM are at http://www.comap.com/highschool/
contests .

Problem A: Flood Planning
Lake Murray in central South Carolina is formed by a large earthen dam,

which was completed in 1930 for power production. Model the flooding down-
stream in the event there is a catastrophic earthquake that breaches the dam.

Two particular questions:

1. Rawls Creek is a year-round stream that flows into the Saluda River a short
distance downriver from the dam. How much flooding will occur in Rawls
Creek from a dam failure, and how far back will it extend?

2. Could the flood be so massive downstream that water would reach up to
the S.C. State Capitol Building, which is on a hill overlooking the Congaree
River?

Problem B: Tollbooths
Heavily-traveled toll roads such as the Garden State Parkway in New Jersey,

Interstate 95, and so forth, are multilane divided highways that are interrupted
at intervals by toll plazas. Because collecting tolls is usually unpopular, it is
desirable to minimize motorist annoyance by limiting the amount of traffic
disruption caused by the toll plazas. Commonly, a much larger number of
tollbooths is provided than the number of travel lanes entering the toll plaza.
Upon entering the toll plaza, the flow of vehicles fans out to the larger number
of tollbooths, and when leaving the toll plaza, the flow of vehicles is required
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to squeeze back down to a number of travel lanes equal to the number of travel
lanes before the toll plaza. Consequently, when traffic is heavy, congestion
increases upon departure from the toll plaza. When traffic is very heavy, con-
gestion also builds at the entry to the toll plaza because of the time required for
each vehicle to pay the toll.

Make a model to help you determine the optimal number of tollbooths to
deploy in a barrier-toll plaza. Explicitly consider the scenario where there is
exactly one tollbooth per incoming travel lane. Under what conditions is this
more or less effective than the current practice? Note that the definition of
“optimal” is up to you to determine.

The Results
The solution papers were coded at COMAP headquarters so that names

and affiliations of the authors would be unknown to the judges. Each paper
was then read preliminarily by two “triage” judges at either Appalachian State
University (Flood Planning Problem) or at the National Security Agency (Toll-
booths Problem). At the triage stage, the summary and overall organization
are the basis for judging a paper. If the judges’ scores diverged for a paper, the
judges conferred; if they still did not agree on a score, a third judge evaluated
the paper.

This year, again an additional Regional Judging site was created at the U.S.
Military Academy to support the growing number of contest submissions.

Final judging took place at Harvey Mudd College, Claremont, California.
The judges classified the papers as follows:

Honorable Successful
Outstanding Meritorious Mention Participation Total

Flood Planning Problem 3 25 50 94 172
Tollbooths Problem 7 60 145 280 492

10 85 195 374 664

The 10 papers that the judges designated as Outstanding appear in this
special issue of The UMAP Journal, together with commentaries. We list those
teams and the Meritorious teams (and advisors) below; the list of all partici-
pating schools, advisors, and results is in the Appendix.
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Outstanding Teams
Institution and Advisor Team Members

Flood Planning Papers

“From Lake Murray to a Dam Slurry”
Harvey Mudd College
Claremont, CA
Jon Jacobsen

Clay Hambrick
Katie Lewis
Lori Thomas

“Through the Breach: Modeling Flooding
from a Dam Failure in South
Carolina”

University of Saskatchewan
Saskatoon, SK, Canada
James Brooke

Jennifer Kohlenberg
Michael Barnett
Scott Wood

“Analysis of Dam Failure in the Saluda
River Valley”

University of Washington
Seattle, WA
Rekha Thomas

Ryan Bressler
Christina Polwarth
Braxton Osting

Tollbooths Papers

“The Booth Tolls for Thee”
Duke University
Durham, NC
William G. Mitchener

Adam Chandler
Matthew Mian
Pradeep Baliga

“A Single-Car Interaction Model of Traffic
for a Highway Toll Plaza”

Harvard University
Cambridge, MA
Clifford H. Taubes

Sheel Ganatra
Ivan Corwin
Nikita Rozenblyum
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“Lane Changes and Close Following:
Troublesome Tollbooth Traffic”

Massachusetts Institute of Technology
Cambridge, MA
Martin Bazant

Andrew Spann
Daniel Kane
Dan Gulotta

“A Quasi-Sequential Cellular Automaton
Approach to Traffic Modeling”

Rensselaer Polytechnic Institute
Troy, NY
Peter Kramer

John Evans
Meral Reyhan

“Two Tools for Tollbooth Optimization”
University of California, Berkeley
Berkeley, CA
L. Craig Evans

Ephrat Bitton
Anand Kulkarni
Mark Shlimovich

“The Multiple Single-Server Queueing
System”

University of California, Berkeley
Berkeley, CA
Jim Pitman

Azra Panjwani
Yang Liu
Huan Qi

“For Whom the Booth Tolls”
University of Colorado
Boulder, CO
Anne Dougherty

Brian Camley
Bradley Klingenberg
Pascal Getreuer

Meritorious Teams

Flood Planning Papers (25 teams)
Albion College, Albion, MI (Darren Mason)
Bucknell University, Lewisburg, PA (Karl Voss)
Carroll College, Helena, MT (Sam Alvey)
China University of Mining and Technology, Xuzhou, Jiangsu, China (Zhang Xingyong)
College of Science, Southeast University, Nanjing, Jiangsu, China (Jia Xingang)
Duke University, Durham, NC (Owen Astrachan)
Fudan University, Shanghai, Shanghai, China (Cai Zhijie )
Harvey Mudd College, Claremont, CA (Jon Jacobsen)
James Madison University, Harrisonburg, VA (James Sochacki)
Lewis and Clark College, Portland, OR (Robert Owens)
McGill University, Montreal, Quebec, Canada (Nilima Nigam)
Midlands Technical College, West Columbia, SC (John Long)
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Nanjing University, Nanjing, Jiangsu, China (Bo Wen)
National University of Defense Technology, Changsha, Hunan, China (Yi Wu)
NC School of Science & Mathematics, Durham, NC (Daniel Teague)
United States Military Academy, West Point, NY (John Jackson)
University of Delaware, Newark, DE (Louis Rossi)
University of Electronic Science and Technology of China, Chengdu, Sichuan, China

(Gao Qing)
University of Washington, Seattle, WA (James Morrow)
Western Washington University, Bellingham, WA (Saim Ural)
Wuhan University, Wuhan, Hubei, China (Deng Aijiao )
Wuhan University, Wuhan, Hubei, China (Hu Xinqi)
Youngstown State University, Youngstown, OH (Angela Spalsbury)
Zhejiang Gongshang University, Hangzhou, Zhejiang, China (Ding Zhengzhong)
Zhejiang University City College, Hangzhou, Zhejiang, China (Huang Huang)

Tollbooths Papers (60 teams)
Albertson College, Caldwell, ID (Michael Hitchman)
Asbury College, Wilmore, KY (David Coulliette)
Asbury College, Wilmore, KY (Kenneth Rietz)
Beijing Normal University, School of Mathematical Sciences, Beijing, China

(Huang Haiyang)
Bethel University, St. Paul, MN (William Kinney)
California Polytechnic State University, San Luis Obispo, CA (Jonathan Shapiro)
Central Washington University, Ellensburg, WA (Stuart Boersma)
Chongqing University, Chongqing, China (Li Fu)
Chongqing University, Chongqing, China (He Renbin)
College of Mount St. Joseph, Cincinnati, OH (Scott Sportsman)
Cornell University, Ithaca, NY (Alexander Vladimirsky)
Davidson College, Davidson, NC (Malcolm Campbell)
Davidson College, Davidson, NC (Mark Foley)
Duke University, Durham, NC (Owen Astrachan)
Duke University, Durham, NC (William Mitchener)
Eastern Oregon University, La Grande, OR (Anthony Tovar)
Harbin Institute of Technology Science Faculty, Harbin, Heilongjian, China

(Shang Shouting)
Harvey Mudd College, Claremont, CA (Ran Libeskind-Hadas) (two teams) Hastings
College, Hastings, NE (Dave Cooke)
Jiangsu University, Zhenjiang, Jiangsu, China (Gang Xu)
Kansas State University, Manhattan, KS (David Auckly)
Lafayette College, Easton, PA (Ethan Berkove)
Luther College, Decorah, IA (Reginald Laursen) (two teams)
Nanchang University, Nanchang, Jiangxi, China (Liao Chuangrong)
Northern Kentucky University, Highland Heights, KY (Gail Mackin)
Northwest University, Xián, Shaanxi, China (Wang Liantang)
School of Economics & Management, Tsinghua University, Beijing, China (Xie Qun)
School of Financial Mathematics, Peking University, Beijing, China (Lan Wu)
School of Mathematical Sciences, Peking University, Beijing (Liu Xufeng )
School of Science, Beijing University of Posts and Telecommunications, Beijing, China

(Sun Hongxiang)
Shanghai Jiao Tong University, Shanghai, China (Song Baorui)
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Shanghai Jiao Tong University, Shanghai, China (Huang Jianguo)
South China University of Technology, Guangzhou, Guangdong, China (Liu Shen Quan)
South-China Normal University, Guangzhou, Guangdong, China (Wang Henggeng)
Southeast University, Nanjing, Jiangsu, China (Dan He)
Southeast University, Nanjing, Jiangsu, China (Wang Liyan)
Truman State University, Kirksville, MO (Steve Smith)
Tsinghua University, Beijing, China (Hu Zhiming)
Tsinghua University, Beijing, China (Lu Mei)
University College Cork, Cork, Ireland (Donal Hurley)
University of California, Berkeley, Berkeley, CA (Lawrence Evans)
University of Colorado at Boulder, Boulder, CO (Michael Ritzwoller)
University of Delaware, Newark, DE (Louis Rossi)
University of Pittsburgh, Pittsburgh, PA (Christopher Earls)
University of Pittsburgh, Pittsburgh, PA (Jonathan Rubin)
University of Puget Sound, Tacoma, WA (DeWayne Derryberry)
University of Richmond, Richmond, VA (Kathy Hoke) (two teams)
University of Saskatchewan, Saskatoon, SK, Canada (James Brooke)
University of Western Ontario, London, ON, Canada (Allan MacIsaac)
Wake Forest University, Winston-Salem, NC (Miaohua Jiang) (two teams)
Wesleyan College, Macon, GA (Joseph Iskra)
Western Washington University, Bellingham, WA (Saim Ural)
Worcester Polytechnic Institute, Worcester, MA (Suzanne Weekes)
Wuhan University, Wuhan, Hubei, China (Chen Wenyi)
Wuhan University of Technology, Wuhan, Hubei, China (Huang Wei)
Zhejiang University, Hangzhou, Zhejiang, China (Yong He)

Awards and Contributions
Each participating MCM advisor and team member received a certificate

signed by the Contest Director and the appropriate Head Judge.
INFORMS, the Institute for Operations Research and the Management Sci-

ences, recognized the teams from the University of Washington (Flood Planning
Problem) and University of California, Berkeley (Advisor: Jim Pitman) (Toll-
booths Problem) as INFORMS Outstanding teams and provided the following
recognition:

• a letter of congratulations from the current president of INFORMS to each
team member and to the faculty advisor;

• a check in the amount of $300 to each team member;

• a bronze plaque for display at the team’s institution, commemorating their
achievement;

• individual certificates for team members and faculty advisor as a personal
commemoration of this achievement;
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• a one-year student membership in INFORMS for each team member, which
includes their choice of a professional journal plus the OR/MS Today period-
ical and the INFORMS society newsletter;

• a one-year subscription access to the COMAP modeling materials Website
for the faculty advisor.

The Society for Industrial and Applied Mathematics (SIAM) designated one
Outstanding team from each problem as a SIAM Winner. The teams were from
Harvey Mudd College (Flood Planning Problem) and Rensselaer Polytechnic
Institute (Tollbooths Problem). Each of the team members was awarded a $300
cash prize and the teams received partial expenses to present their results in a
special Minisymposium at the SIAM Annual Meeting in New Orleans in July.
Their schools were given a framed hand-lettered certificate in gold leaf.

The Mathematical Association of America (MAA) designated one Outstand-
ing team from each problem as an MAA Winner. The teams were from the
University of Saskatchewan (Flood Planning Problem) and Duke University
(Tollbooths Problem). With partial travel support from the MAA, both teams
presented their solutions at a special session of the MAA Mathfest in Albu-
querque, NM in August. Each team member was presented a certificate by
Richard S. Neal, Co-Chair of the MAA Committee on Undergraduate Student
Activities and Chapters.

Ben Fusaro Award
Two Meritorious papers were selected for the Ben Fusaro Award, named for

the Founding Director of the MCM and awarded for the second time this year.
It recognizes an especially creative approach; details concerning the award,
its judging, and Ben Fusaro are in The UMAP Journal 25 (3) (2004): 195–196.
The Ben Fusaro Award teams were from McGill University (Flood Planning
Problem) and University of California, Berkeley (Advisor: Lawrence Evans)
(Tollbooths Problem). Each team received a plaque from COMAP.

Judging
Director
Frank R. Giordano, Naval Postgraduate School, Monterey, CA

Associate Directors
Robert L. Borrelli, Mathematics Dept., Harvey Mudd College, Claremont, CA
Patrick J. Driscoll, Dept. of Systems Engineering, U.S. Military Academy,

West Point, NY

Contest Coordinator
Kevin Darcy, COMAP Inc., Lexington, MA
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Flood Planning Problem

Head Judge
Marvin S. Keener, Executive Vice-President, Oklahoma State University,

Stillwater, OK (MAA)

Associate Judges
Peter Anspach, National Security Agency, Ft. Meade, MD (Triage)
Courtney Coleman, Mathematics Dept., Harvey Mudd College,

Claremont, CA (SIAM)
Ben Fusaro, Mathematics Dept., Florida State University, Tallahassee, FL
Jerry Griggs, Mathematics Dept., University of South Carolina, Columbia, SC
John Kobza, Mathematics Dept., Texas Tech University, Lubbock, TX

(INFORMS)
Michael Moody, Olin College of Engineering, Needham, MA
Kathleen M. Shannon, Dept. of Mathematics and Computer Science,

Salisbury University, Salisbury, MD (MAA)
Daniel Zwillinger, Newton, MA (SIAM)

Tollbooths Problem

Head Judge
Maynard Thompson, Mathematics Dept., University of Indiana,

Bloomington, IN

Associate Judges
William C. Bauldry, Chair, Dept. of Mathematical Sciences,

Appalachian State University, Boone, NC (Triage)
Kelly Black, Mathematics Dept., University of New Hampshire,

Durham, NH (SIAM)
Karen D. Bolinger, Mathematics Dept., Clarion University of Pennsylvania,

Clarion, PA (SIAM)
J. Douglas Faires, Youngstown State University, Youngstown, OH (SIAM)
William P. Fox, Mathematics Dept., Francis Marion University, Florence, SC
Mario Juncosa, RAND Corporation, Santa Monica, CA (retired)
Don Miller, Mathematics Dept., St. Mary’s College, Notre Dame, IN
John L. Scharf, Mathematics Dept., Carroll College, Helena, MT
Dan Solow, Mathematics Dept., Case Western Reserve University,

Cleveland, OH (INFORMS)
Michael Tortorella, Dept. of Industrial and Systems Engineering,

Rutgers University, Piscataway, NJ
Marie Vanisko, Dept. of Mathematics, California State University,

Stanislaus, CA (MAA)
Richard Douglas West, Francis Marion University, Florence, SC
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Regional Judging Session

Head Judge
Patrick J. Driscoll, Dept. of Systems Engineering

Associate Judges
Darrall Henderson, Dept. of Mathematical Sciences
Steven Henderson, Dept. of Systems Engineering
Steven Horton, Dept. of Mathematical Sciences
Michael Jaye, Dept. of Mathematical Sciences

—all of the U.S. Military Academy, West Point, NY

Triage Sessions:

Flood Planning Problem

Head Triage Judge
Peter Anspach, National Security Agency (NSA), Ft. Meade, MD

Associate Judges
Dean McCullough, High Performance Technologies, Inc.
Robert L. Ward (retired)
Blair Kelly,
Craig Orr,
Brian Pilz,
Eric Schram,
and other members of NSA.

Tollbooths Problem

Head Triage Judge
William C. Bauldry, Chair

Associate Judges
Terry Anderson,
Mark Ginn,
Jeff Hirst,
Rick Klima,
Katie Mawhinney,
and
Vickie Williams
—all from Dept. of Math’l Sciences, Appalachian State University, Boone, NC
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Fusaro Award Committee
Flood Planning Problem:
Peter Anspach, National Security Agency, Ft. Meade, MD
Michael Moody, Olin College of Engineering, Needham, MA

Tollbooths Problem:
William C. Bauldry, Chair, Dept. of Mathematical Sciences,

Appalachian State University, Boone, NC
Kathleen M. Shannon, Dept. of Mathematics and Computer Science,

Salisbury University, Salisbury, MD

Sources of the Problems
The Flood Planning Problem was contributed by Jerry Griggs (Mathematics

Dept., University of South Carolina, Columbia, SC).
The Tollbooths Problem was contributed by Michael Tortorella (Dept. of

Industrial and Systems Engineering, Rutgers University, Piscataway, NJ).
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Cautions
To the reader of research journals:
Usually a published paper has been presented to an audience, shown to

colleagues, rewritten, checked by referees, revised, and edited by a journal
editor. Each of the student papers here is the result of undergraduates working
on a problem over a weekend; allowing substantial revision by the authors
could give a false impression of accomplishment. So these papers are essentially
au naturel. Editing (and sometimes substantial cutting) has taken place: Minor
errors have been corrected, wording has been altered for clarity or economy,
and style has been adjusted to that of The UMAP Journal. Please peruse these
student efforts in that context.

To the potential MCM Advisor:
It might be overpowering to encounter such output from a weekend of

work by a small team of undergraduates, but these solution papers are highly
atypical. A team that prepares and participates will have an enriching learning
experience, independent of what any other team does.

COMAP’s Mathematical Contest in Modeling and Interdisciplinary Contest
in Modeling are the only international modeling contests in which students
work in teams. Centering its educational philosophy on mathematical model-
ing, COMAP uses mathematical tools to explore real-world problems. It serves
the educational community as well as the world of work by preparing students
to become better-informed and better-prepared citizens.



Results of the 2005 MCM 201

Appendix: Successful Participants
KEY:
P = Successful Participation
H = Honorable Mention
M = Meritorious
O = Outstanding (published in this special issue)

INSTITUTION CITY ADVISOR A B

CALIFORNIA
Cal Poly Pomona Pomona Hubertus von Bremen P

Ioana Mihaila P
Peter Siegel P

California Baptist U. Riverside Catherine Kong P
Calif. Poly. State U. San Luis Obispo Jonathan Shapiro M,P
Calif. State Poly. U. Pomona Kurt Vandervoort P
Calif. State U. Seaside Hongde Hu P

Jeffrey Groah P
Hartnell College Salinas Kelly Locke P
Harvey Mudd College Claremont Jon Jacobsen O,M

(CS) Ran Libeskind-Hadas M,M
Pomona College Claremont Ami Radunskaya P
Univ. of California Berkeley L. Craig Evans O,M

(Stat) Jim Pitman O

COLORADO
Colorado College Colorado Springs David Brown P
Colorado State Univ. Pueblo Bruce Lundberg P
Regis University Denver David Bahr H,P
USAF Academy USAF Timothy Cooley P H

James Rolf P
Univ. of Colorado Boulder Anne Dougherty O

Bengt Fornberg H
Michael Ritzwoller M

Denver Lynn Bennethum H
Michael Jacobson H

U. of Northern Colo. Greeley Nathaniel Miller P

CONNECTICUT
Southern Conn. State U. New Haven Ross Gingrich H
Western Conn. State U. Danbury Josephine Hamer P

DELAWARE
Univ. of Delaware Newark Louis Rossi M M
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INSTITUTION CITY ADVISOR A B

FLORIDA
Embry-Riddle University Daytona Beach Greg Spradlin H
Jacksonville University Jacksonville Robert Hollister H

GEORGIA
Georgia Southern Univ. Statesboro Laurene Fausett H P
State Univ. of West Georgia Carrollton Scott Gordon H
Wesleyan College Macon Charles Benesh P

Joseph Iskra M,H

IDAHO
Albertson College Caldwell Michael Hitchman P M
Idaho State University Pocatello Robert Van Kirk P

ILLINOIS
Greenville College Greenville George Peters P
Illinois Institute of Tech. Chicago Michael Pelsmajer P
Monmouth College Monmouth Howard Dwyer H

Christopher Fasano H
Northern Illinois Univ. DeKalb Chris Hurlburt H,H
Wheaton College Wheaton Paul Isihara P

INDIANA
Earlham College Richmond Mic Jackson P P

(CS) Charlie Peck P
Franklin College Franklin John Boardman P
Rose-Hulman Inst. of Tech. Terre Haute David Rader H,H
Saint Mary’s College Notre Dame Joanne Snow H,P

IOWA
Grinnell College Grinnell Charles Cunningham P

Karen Shuman P,P
Luther College Decorah Steve Hubbard P

Reginald Laursen M,M
Mt. Mercy College Cedar Rapids K.R. Knopp P
Simpson College Indianola James Bohy H

Jeff Parmelee P
Murphy Waggoner H,P

Wartburg College Waverly Brian Birgen P

KANSAS
Emporia State University Emporia Brian Hollenbeck P
Kansas State University Manhattan David Auckly M,P
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INSTITUTION CITY ADVISOR A B

KENTUCKY
Asbury College Wilmore David Coulliette M

Kenneth Rietz M
Brescia University Owensboro Chris Tiahrt P
Morehead State University Morehead Michael Dobranski P
Northern Kentucky University Highland Heights Gail Mackin P M
Thomas More College Crestview Hills Robert Riehemann P

MAINE
Colby College Waterville Jan Holly P

MARYLAND
Hood College Frederick Betty Mayfield H
Johns Hopkins University Baltimore Greg Eyink H

Fred Torcaso H,P
Loyola College Baltimore Jiyuan Tao P
Mount St. Mary’s University Emmitsburg Fred Portier P P
Salisbury University Salisbury Michael Bardzell P
Villa Julie College Stevenson Eileen McGraw P
Washington College Chestertown Eugene Hamilton P

MASSACHUSETTS
College of the Holy Cross Worcester Gareth Roberts P
Harvard University Cambridge Clifford Taubes O
MIT Cambridge Martin Bazant O
Olin College of Engineering Needham Burt Tilley H
Salem State College Salem Kenny Ching P
Simon’s Rock College Great Barrington Allen Altman P,P

Michael Bergman P P
Smith College Northampton Ruth Haas H
University of Massachusetts Lowell James Graham-Eagle P
Western New England College Springfield Lorna Hanes P
Worcester Polytechnic Institute Worcester Suzanne Weekes M,P

MICHIGAN
Albion College Albion Darren Mason M P
Ferris State University Big Rapids Holly Price H
Lawrence Technological University Southfield Ruth Favro H P

Valentina Tobos H
Siena Heights University Adrian Pamela Warton P,P

Tim Husband H

MINNESOTA
Bethel University St. Paul William Kinney M,P
Minnesota State University Moorhead Ellen Hill P
Saint John’s University Collegeville Robert Hesse H
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INSTITUTION CITY ADVISOR A B

MISSOURI
Drury University Springfield Bruce Callen P

Bob Robertson H P
Northwest Missouri State University Maryville Russell Euler H
Saint Louis University St. Louis James Dowdy H
Southeast Missouri State University Cape Girardeau Robert Sheets P
Truman State University Kirksville Steve Smith M

MONTANA
Carroll College Helena Sam Alvey M P

Kelly Cline H,P

NEBRASKA
Hastings College Hastings Dave Cooke M

NEW JERSEY
New Jersey Institute of Technology Newark Roy Goodman P
Rowan University Glassboro Hieu Nguyen H,H

NEW MEXICO
New Mexico Tech Socorro Brian Borchers P

NEW YORK
Clarkson University Potsdam Kathleen Fowler H H

William Hesse P
Colgate University Hamilton Warren Weckesser H
Concordia College Bronxville John Loase H,P
Cornell University Ithaca Alexander Vladimirsky P M
Hobart and William Smith Colleges Geneva Scotty Orr P
Ithaca College Ithaca John Maceli H
Nazareth College Rochester Daniel Birmajer H
Rensselaer Polytechnic Institute Troy Peter Kramer O,P
Roberts Wesleyan College Rochester Gary Raduns P
United States Military Academy West Point J. Billie H

John Jackson M
Sakura Therrien P

Westchester Community College Valhalla Marvin Littman P

NORTH CAROLINA
Appalachian State University Boone Holly Hirst P
Davidson College Davidson Malcolm Campbell M

Tim Chartier H,H
Mark Foley M

Duke University Durham William Mitchener O,M
(CS) Owen Astrachan M M
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INSTITUTION CITY ADVISOR A B

Meredith College Raleigh Cammey Cole P
NC School of Science & Math. Durham Daniel Teague M P
Wake Forest University Winston-Salem Miaohua Jiang M,M

OHIO
Bowling Green State Univ. Bowling Green Juan Bes P
College of Mount St. Joseph Cincinnati Scott Sportsman M
Malone College Canton David Hahn P
Miami University Oxford Doug Ward P
University of Dayton Dayton Youssef Raffoul H
Youngstown State University Youngstown Angela Spalsbury M H

(CS) Michael Crescimanno P

OKLAHOMA
Oklahoma State University Stillwater Lisa Mantini H

OREGON
Eastern Oregon University La Grande David Allen P

Anthony Tovar M
Lewis and Clark College Portland Robert Owens M P
Linfield College McMinnville Jennifer Nordstrom P,P
Pacific University Forest Grove Christine Guenther P
Southern Oregon University Ashland Kemble Yates H
Western Oregon University Monmouth Maria Fung P

PENNSYLVANIA
Bloomsburg University Bloomsburg Kevin Ferland H P
Bucknell University Lewisburg Karl Voss M
Clarion Univ. of Pennsylvania Clarion Dana Madison H
Drexel University Philadelphia Hugo Woerdeman P
Gannon University Erie Michael Caulfield H,P
Gettysburg College Gettysburg Bogdan Doytchinov P
Juniata College Huntingdon John Bukowski H
Lafayette College Easton Ethan Berkove M,P
Slippery Rock University Slippery Rock Richard Marchand P
University of Pittsburgh Pittsburgh Jonathan Rubin H M

(Eng) Christopher Earls M
Westminster College New Wilmington Barbara Faires H

SOUTH CAROLINA
Benedict College Columbia Balaji Iyangar P
Francis Marion University Florence Thomas Fitzkee P
Midlands Technical College West Columbia John Long M,H



206 The UMAP Journal 26.3 (2005)

INSTITUTION CITY ADVISOR A B

SOUTH DAKOTA
Mount Marty College Yankton Bonita Gacnik P

Stephanie Gruver P P
James Miner P

SD School of Mines and Technology Rapid City Robert Kowalski P
Kyle Riley H

TENNESSEE
Austin Peay State University Clarksville Nell Rayburn P

TEXAS
Angelo State University San Angelo Karl Havlak P
Austin College Sherman John Jaroma P
Trinity University San Antonio Richard Cooper P

Allen Holder P

VIRGINIA
Eastern Mennonite University Harrisonburg Charles Cooley P

Leah Boyer H,H
James Madison University Harrisonburg Hasan Hamdan H

Caroline Smith P
James Sochacki M

Maggie Walker Governor’s School Richmond John Barnes P,P
Harold Houghton P,P

Roanoke College Salem Jeffrey Spielman P
University of Richmond Richmond Kathy Hoke M,M
Virginia Western Community College Roanoke Steve Hammer P

Ruth Sherman P

WASHINGTON
Central Washington University Ellensburg Stuart Boersma M
Heritage University Toppenish Richard Swearingen P H
Pacific Lutheran University Tacoma Daniel Heath P,P
University of Puget Sound Tacoma DeWayne Derryberry M
University of Washington Seattle James Morrow M H

Rekha Thomas O H
Western Washington University Bellingham Saim Ural M M

Tjalling Ypma P,P

WISCONSIN
Northland College Ashland William Long P,P
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INSTITUTION CITY ADVISOR A B

CANADA
Dalhousie University Halifax Dorothea Pronk P,P
McGill University Montreal Antony Humphries H

Nilima Nigam M
University of Saskatchewan Saskatoon James Brooke O M
University of Western Ontario London Allan MacIsaac M
York University Toronto Hongmei Zhu P

Huaiping Zhu H P

CHINA
Anhui

Anhui University Hefei Wang Xuejun H
Zhu Xiaobao P
Zhang Quanbing P
Wu Yunqi P

Anhui Univ. of Technology and Science Wuhu Wang Chuanyu P
Hefei University of Technology Hefei Gu Junli H

Zheng Qi P
Du Xueqiao P
Huang Youdu P

Univ. of Science and Technology of China Hefei Liu Yanjun P
Huang Zhangjin P
Yang Zhouwang P

(CS) Sun Guangzhong P

Beijing
BeiHang University Beijing Wu Sanxing H
Beijing Institute of Science and Technology Beijing Sun Huafei H
Beijing Institute of Technology Beijing Wang Hongzhou H P

Yan Guifeng H P
Beijing Jiaotong University Beijing Wu Faen P

Wang Xiujuan P,P
(Eng) Deng Xiaoqin P
(Info) Wang Bingtuan P,P
(Sci) Feng Guochen P

Liu Minghui H P
Wang Xiaoxia H

Beijing Language and Culture University (CS) Beijing Liu Guilong P P
Beijing Materials Institute Beijing Li Zhenping P P

Cheng Xiaohong P,P
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INSTITUTION CITY ADVISOR A B

Beijing Normal University Beijing Cui Hengjian P H
Shen Fuxing H
He Qing P,P
Peng Fanglin P
Wang Jiayin H
Huang Haiyang M
Liu Laifu P

Beijing University of Chemical Technology Beijing Liu Damin P
Jiang Guangfeng H
Yuan Wenyan P
Jiang Xinhua P

Beijing University of Posts and Telecomm. Beijing Ding Jinkou H
Zhang Wenbo P
Wu Yunfeng H

(Sci) Sun Hongxiang M
He Zuguo H H

(Applied Sci) Xue Yi P
Beijing University of Technology Beijing Chang Jingang P

Guo Sili P
Yang Shilin P P

Central University of Finance and Economics Beijing Ge Binhua H H
Huang Huiqing H,P

China Agricultural University Beijing Zou Hui H,P
Peking University Beijing Wang Ming P

Deng Minghua H,P
(CS) Tang Huazhong P
(Econ) Lan Wu M

Liu Xufeng M,P
Renmin University of China (Statistics) Beijing Jin Yang P
Tsinghua University Beijing Hu Zhiming M,H

Lu Mei M,H
(Econ) Xie Qun M

Chongqing
Chongqing University Chongqing Li Chuandong P

Liu Qiongfang P
He Renbin M
Duan Zhengmin H
Wang Zongli P

(Chem) Li Zhiliang H
(CS) Fu Li M

Fujian
Xiamen University (Info) Xiamen Zheng Xiaolian H
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INSTITUTION CITY ADVISOR A B

Guangdong
Jinan University Guangzhou Hu Daiqiang H

Fan Suohai P
(CS) Luo Shizhuang H
(Electronics) Ye Shiqi P

Shandong University Jinan Ma Jianhua P
South-China Normal University Guangzhou Wang Henggeng M

(CS) Li Hunan P P
(Info) Yu Jianhua H
(Phys) Liu Xiuxiang H,P

South China University of Technology Guangzhou Liang Man Fa P
Liu Shen Quan M
Qin Yong An P
Liu Xiao Lan H

Sun Yat-Sen University Guangzhou Feng Guo H
Jiang Xiao Long H
Chen Ze Peng P
Yuan Zhou H

Hebei
Hebei Polytechnic University Tangshan Wan Xinghuo H

Xiao Jixian P
Tan Yili H

North China Electric Power University Baoding Gu Gendai H
Liu Jinggang H
Shi Huifeng H
Zhang Po P

Shijiazhuang University of Economics Shijiazhuang Peng Jianping P
Kang Na P

Heilongjiang
Jia Mu-Si University Jia Mu-si Fan Wei H

Zhang Hong P P
Harbin Engineering University Harbin Yu Fei P

Zhang XiaoWei P
Luo Yue Sheng P

Harbin Institute of Technology Harbin Shang Shouting H M
Zhang Chiping P,P
Jiao Guanghong P,P
Liu Kean P H
Wang Xilian H P

(Econ) Wei Shang H
(Sci) Hong Ge P,P
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INSTITUTION CITY ADVISOR A B

Harbin Medical University Harbin Wang QiangHu P,P
Harbin University of Science and Technology Harbin Li Dongmei H

Chen Dongyan H
Tian Guangyue H
Wang Shuzhong H

Northeast Agricultural University Harbin Li Fangge P

Hubei

China University of Geosciences Wuhan Luo Wenqiang P
(CS) Cai Zhihua P

Huazhong University of Science & Technology Wuhan Yuan Linjie P
Wang Yongji P

Wuhan University Wuhan Deng Aijiao M H
Zhong Liuyi H
Chen Wenyi M,H
Hu Xinqi M
Yi Xuming P

(Eng) Luo Zhuangchu P
Wuhan University of Technology Wuhan Chen Ye H

Chu Jie P
He Lang H
Huang Wei M
Li Guang H,P

Hunan
Central South University Changsha He Wei H

Yi Kunnan P
Zhang Hongyan P

(Bio) Zhang Dianzhong P
Hunan University Changsha Li Xiaopei P

(Applied Math.) Ma Bolin P
(Info) Ma Chuanxiu P
(Stat) Luo Han P

National University of Defense Technology Changsha Duan Xiaojun P
Mao Ziyang P

(Math. & System Science) Cheng Lizhi P
Wu Yi M

Inner Mongolia
Inner Mongolia University Hohhot Wang Mei P

Ma Zhuang P
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INSTITUTION CITY ADVISOR A B

Jiangsu
China Univ. of Mining and Technology Xuzhou Wu Zongxiang H

Zhang Xingyong M
Zhu Kaiyong H,P

HoHai University Suzhou Rong Shen P
Jiangsu University Zhenjiang Xu Gang M,H

Li Yimin H,P
Nanjing University Nanjing Wu Zhaoyang P

Chunying Duan P
Yao Tianxing H,H

(Phys) Wen Bo M
Nanjing Univ. of Finance and Economics Nanjing Wang Geng P
Nanjing Univ. of Posts and Telecomm. Nanjing He Ming H,H
Nanjing University of Sci. & Tech. Nanjing Xu Chungen H

Liu Liwei P
Chen Peixin H
Zhang Zhengjun P

Southeast University Nanjing He Dan M
Wang Liyan M
Zhang Zhiqiang P P

(Sci) Jia Xingang M,P
Sun Zhizhong P,P

Xuzhou Institute of Technology Xuzhou Jiang Yingzi H H

Jiangxi
East China Inst. of Tech. (Foreign Lang.) Fuzhou Cai Ying P
Jiangxi Normal University Nanchang Wu Gengxiu H

Xiongjun P
Nanchang University Nanchang Chen Tao H

Chen Yuju P
Liao Chuangrong M
Ma Xinsheng Ma P

Jilin
Jilin University Changchun Zou Yongkui H,P

(Bio) Zhou Lai H
(Eng) Fang Peichen H,H

Pei Yongchen P,P
Northeast Normal University Changchun Li Zuofeng P P
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INSTITUTION CITY ADVISOR A B

Liaoning

Dalian Maritime University Dalian Zhang Yunjie P P
(CS) Yang Shuqin P,P

Dalian Nationalities University Dalian Guo Qiang P H
(CS) Li Xiaoniu H,H

Dalian University Dalian Tan Xinxin H,P
(Info) Gang Jiatai P

Dalian University of Technology Dalian Yu Hongquan H,P
Liu Jianguo P
Zhao Lizhong H,H
Wang Yi H
Li Lianfu P
Gao Xubin P,P

(Inst. of Univ. Students’ Innovation) Zhou Qi H,H
Pan Qiuhui H

Liaoning High Police Academic School Dalian Shen Cong P,P
Northeastern University Shenyang Sun Ping H,P

(Info) Hao Peifeng H,P
He Xuehong H,H

(Eng) Cui Jianjiang P H
(CS) Liu Huilin P H

Shenyang Institute of Aero. Engineering Shenyang Shan, Feng P,P
Zhu Limei H,H

Shaanxi
Northwestern Polytechnical University Xi’an Zhao Xuanmin H

Sun Hao P
Liu Xiaodong P

(Chem) Peng Guohua P
Zhang Shenggui P

(Phys) Shi Yimin H
Xiao Huayong H

Northwest University Xi’an Dou Jihong P
He Ruichan P
Wang Liantang M

Xi’an Communication Institute (Info) Xi’an Wang Hong P
Kang Jinlong P
Song Xiaofeng P

(Sci) Xi’an Li Guo P
Yang Dongsheng P
Zhang Jianhang P
Jiang Yan P
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INSTITUTION CITY ADVISOR A B

Xi’an Jiaotong University Xi’an He Xiaoliang H,H
Dai Yonghong H

(Applied Math.) Zhou Yicang P
Xidian University Xi’an Liu Hongwei P

Bo Liefeng P
Ye Feng P
Tang Houjian P

Shandong

Shandong University Jinan Liu Baodong P
Huang Shuxiang P
Huang Shuxiang P,P
Ma Jianhua P,P
Huang Shuxiang P

(CS) Liu Dong P

Shanghai
Donghua University Shanghai You Surong P

Chen Chao P
He Guoxin P
Wang ZhiJie P

East China University of Sci. and Technology Shanghai Liu Zhaohui P
Qin Yan H
Su Chunjie P
Sun Jun P
Wang Haitao P

(Bio) Chen Haoming P
Fudan University Shanghai Cao Yuan P

Cai Zhijie M
Jiading No. 1 Middle School Shanghai Xie Xilin and

Fang Yunping P,P
Shanghai Foreign Language School Shanghai Pan Liqun H,H

Sun Yu H,P
Shanghai Jiao Tong University Shanghai Song Baorui M

Huang Jianguo M,P
(Minhang Branch) Shanghai Zhou Gang P P

Zhou Guobiao P,P
Shanghai Normal University Shanghai Liu Rongguan P

Guo Shenghuan P
Shi Yongbing H
Zhang Jizhou and
Zhu Detong P
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INSTITUTION CITY ADVISOR A B

Shanghai University of Finance and Economics Shanghai Dong Dong-cheng P
Yu Juntai H
Yin Chenyuan H
Li Tao H

Shanghai Xiangming High School Shanghai Feng Qiang P,P
Shanghai Youth Centre of Sci. and Tech. Educ. Shanghai Chen Gan P
Shanghai Yucai High School Shanghai Li Zhengtai P
Tongji University Shanghai Zhang Hualong P

Chen Xiongda H
Gui Zipeng P

Sichuan
Chengdu University of Technology Chengdu Yuan Yong P

Wei Youhua P
Sichuan University Chengdu Niu Hai P

Zhou Jie H
Univ. of Electronic Sci. and Tech. of China Chengdu Gao Qing M H

Qin Siyi H
Xu Quanzi H

Southwest Jiaotong University E’mei Zhao Lianwen P P

Tianjin
Nankai University Tianjin Wang Yi P

Zhang Chunsheng P
Chen Dianfa P
Zhou Xingwei H
Wang Zhaojun P

Tianjin University Tianjin Liang Fengzhen H
Xu Genqi P,P
Lan Guoliang H
Rong Ximin H

Zhejiang
Zhejiang Gongshang University Hangzhou Ding Zhengzhong M P

Hua Jiukun H,P
Zhejiang Sci-Tech Univ. (Academy of Science) Hangzhou Hu Jueliang H

Luo Hua H
Zhejiang University Hangzhou Yang Qifan H

He Yong M,H
Tan Zhiyi P

(City College) Huang Waibin M
Wang Gui P
Kang Xusheng P
Zhao Yanan P,P
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INSTITUTION CITY ADVISOR A B

(Chu Kechen Honors College) Wu Jian H
Chen Lingxi H,P
Zhou Yongming H

(Ningbo Institute of Technology) Ningbo Sun Haina P
Tu Lihui P P
Li Zhening P

Zhejiang Univ. of Finance and Economics Hangzhou Wang Fulai P
Luo Ji P

Zhejiang University of Technology Hangzhou Zhou Minghua P
Wu Xuejun P

(Jianxing College) Wang Shiming P,P

FINLAND
Helsinki Mathematical High School Helsinki Terhi Olkkonen P P
Päivölä College Tarttila Merikki Lappi P,P

GERMANY
International University Bremen Bremen Peter Oswald H
Universität Karlsruhe Karlsruhe Lars Behnke P
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From Lake Murray to a Dam Slurry

Clay Hambrick
Katie Lewis
Lori Thomas
Harvey Mudd College
Claremont, CA

Advisor: Jon Jacobsen

Summary
We predict the extent of flooding in the Saluda river if a large earthquake

causes the Lake Murray dam to break. In particular, we predict how high the
water would be when it reached Columbia and how far the flooding would
spread up tributaries of the Saluda like Rawls Creek. We base our model on
the Saint-Venant equations for open-channel water flow. We use a discrete
version of them to predict the water level along the length of the river. Our
model takes into account the width of the floodplain, the slope of the river, the
size of the break in the dam, and other factors. We estimate parameters for
Lake Murray, its dam, and the Saluda River and calculate the flood results.

The South Carolina State Capitol is safe under even the most extreme cir-
cumstances, since it sits on a hill well above the highest possible water level.
However, flood waters could still reach 17 m at Columbia and even higher
upstream. Buildings in Columbia close to the water would be inundated, but
there should be enough warning time for residents to escape. Both our model
and local evacuation plans suggest that low-lying areas for miles around would
be covered with water.

The text of this paper appears on pp. 229–244.
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Through the Breach:
Modeling Flooding from a
Dam Failure in South Carolina

Jennifer Kohlenberg
Michael Barnett
Scott Wood
University of Saskatchewan
Saskatoon, SK, Canada

Advisor: James Brooke

Summary
The Saluda Dam, separating Lake Murray from the Saluda River in South

Carolina, could breach in the event of an earthquake.
We develop a model to analyze the flow from four possible types of dam

breaches and the propagation of the floodwaters:
• instant total failure, where a large portion of the dam erodes instantly;
• delayed total failure, where a large portion of the dam slowly erodes;
• piping, where a small hole forms and eventually opens into a full breach;

and
• overtopping, where the dam erodes to form a trapezoidal breach.

We develop two models for the spread of the downstream floodwaters.
Both use a discrete-grid approach, modelling the region as a set of cells, each
with an elevation and a volume of water. The Force Model uses cell velocities,
gravity, and the pressure of neighbouring cells to model water flow. The Down-
hill Model assumes that flow rates are proportional to the height differences
between the water in adjacent cells.

The Downhill Model is efficient, intuitive, flexible, and could be applied to
any region with known elevation data. Its two parameters smooth and regulate
water flow, but the model’s predictions depend little on their values.

For a Saluda Dam breach, the total extent of the flooding is 106.5 km2; it
does not reach the State Capitol. The flooding in Rawls Creek extends 4.4 km
upstream and covers an area of 1.6–2.4 km2.

The text of this paper appears on pp. 245–261.
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Analysis of Dam Failure in the
Saluda River Valley

Ryan Bressler
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Braxton Osting
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Advisor: Rekha Thomas

Summary
We identify and model two possible failure modes for the Saluda Dam:

gradual failure due to an enlarging breach, and sudden catastrophic failure
due to liquefaction of the dam.

For the first case, we describe the breach using a linear sediment-transport
model to determine the flow from the dam. We construct a high-resolution
digital model of the downstream river valley and apply the continuity equations
and a modified Manning equation to model the flow downstream.

For the case of dam annihilation, we use a model based on the Saint-Venant
equations for one-dimensional flood propagation in open-channel flow. As-
suming shallow water conditions along the Saluda River, we approximate the
depth and speed of a dam break wave, using a sinusoidal perturbation of the
dynamic wave model.

We calibrate the models with flow data from two river observation stations.
We conclude that the flood levels would not reach the Capitol Building but

would intrude deeply into Rawls Creek.

The text of this paper appears on pp. 263–278.
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Catastrophic Consequences of
Earthquake Destruction of the
Saluda Dam
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McGill University
Montréal, Québec, Canada
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Summary
We model the flow of water in the Saluda river valley to determine the extent

of flooding resulting from a failure of the Saluda Dam due to an earthquake.
The model is divided into two parts: the flow of water in the river, and the
evolution of the dam breach. We consider two questions in detail: How far
up Rawls Creek, 3.3 km from the dam, will the flooding extend? And will the
State Capitol in Columbia, 14 km downriver from the dam, get wet?

We assume that the dam fails as a result of overtopping after the dam slumps
due to soil liquefaction. We model the shape of the breach as an enlarging trape-
zoid. This model provides the essential time-varying boundary conditions for
the flow in the river and results in the dam collapsing in 3 to 4 min.

The model for the water flow is based on dividing the river into sections of
varying sizes. Tunable parameters for each section allow shaping of the valley
along the river. The geometry of each cross section is modeled as a piecewise-
linear function with three parameters (two for the slopes, one for the length).
In addition, the length of each section of the river can be adjusted to obtain
greater resolution for regions of interest. We model the flow of the water
by the transfer of momentum and volume between the sections of the river.
The equations governing these exchanges comprise a low-order finite-volume
advection scheme. For our geometry, the flow is sub-critical and momentum-
dominated, allowing the above simplified physics model for the flow.
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We check convergence and stability of the results by varying the time reso-
lution.

The simulations of the model indicate major flooding in Rawls Creek up to
2.4 km from the Saluda River, but flooding will not extend to the State Capitol.

[EDITOR’S NOTE: This Meritorious paper won the Ben Fusaro Award for the
Flood Planning Problem. Only this abstract of the paper appears in this issue
of the Journal.]
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The Booth Tolls for Thee

Adam Chandler
Matthew Mian
Pradeep Baliga
Duke University
Durham, NC

Advisor: William G. Mitchener

Summary
We determine the optimal number of tollbooths for a given number of in-

coming highway lanes. We interpret optimality as minimizing “total cost to
the system,” the time that the public wastes while waiting to be processed plus
the operating cost of the tollbooths.

We develop a microscopic simulation of line-formation in front of the toll-
booths. We fit a Fourier series to hourly demand data from a major New Jersey
parkway. Using threshold analysis, we set upper bounds on the number of
tollbooths. This simulation does not take bottlenecking into account, but it
does inform a more general macroscopic framework for toll plaza design.

Finally, we formulate a model for traffic flow through a plaza using cellular
automata. Our results are summarized in the formula for the optimal number
B of tollbooths for L lanes: B = �1.65L + 0.9�.

The text of this paper appears on pp. 283–297.
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Lane Changes and Close Following:
Troublesome Tollbooth Traffic

Andrew Spann
Daniel Kane
Dan Gulotta
Massachusetts Institute of Technology
Cambridge, MA

Advisor: Martin Zdenek Bazant

Summary
We develop a cellular-automaton model to address the slow speeds and

emphasis on lane-changing in tollbooth plazas. We make assumptions about
car-following, based on distance and relative speeds, and arrive at the criterion
that cars maximize their speeds subject to

gap >

⌊
Vcar

2

⌋
+

1
2
(Vcar − Vfrontcar)(Vcar + Vfrontcar + 1).

We invent lane-change rules for cars to determine if they can turn safely and
if changing lanes would allow higher speed. Cars modify these preferences
based on whether changing lanes would bring them closer to a desired type
of tollbooth. Overall, our assumptions encourage people to be a bit more
aggressive than in traditional models when merging or driving at low speeds.

We simulate a 70-min period at a tollbooth plaza, with intervals of light and
heavy traffic. We look at statistics from this simulation and comment on the
behavior of individual cars.

In addition to determining the number of tollbooths needed, we discuss how
tollbooth plazas can be improved with road barriers to direct lane expansion
or by assigning the correct number of booths to electronic toll collection. We
set up a generalized lane-expansion structure to test configurations.

Booths should be ordered to encourage safe behavior, such as putting faster
electronic booths together. Rigid barriers affect wait time adversely.

Under typical traffic loads, there should be at least twice as many booths as
highway lanes.

The text of this paper appears on pp. 317–330.
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A Quasi-Sequential
Cellular-Automaton Approach
to Traffic Modeling

John Evans
Meral Reyhan
Rensselaer Polytechnic Institute
Troy, NY

Advisor: Peter Kramer

Summary
The most popular discrete models to simulate traffic flow are cellular au-

tomata, discrete dynamical systems whose behavior is completely specified in
terms of its local region. Space is represented as a grid, with each cell contain-
ing some data, and these cells act in accordance to some set of rules at each
temporal step. Of particular interest to this problem are sequential cellular
automata (SCA), where the cells are updated in a sequential manner at each
temporal step.

We develop a discrete model with a grid to represent the area around a toll
plaza and cells to hold cars. The cars are modeled as 5-dimensional vectors,
with each dimension representing a different characteristic (e.g., speed). By
discretizing the grid into different regimes (transition from highway, tollbooth,
etc.), we develop rules for cars to follow in their movement. Finally, we model
incoming traffic flow using a negative exponential distribution.

We plot the average time for a car to move through the grid vs. incoming
traffic flow rate for three different cases: 4 incoming lanes and tollbooths, 4
incoming lanes and 4, 5, and 6 tollbooths. In each plots, we noted at certain
values for the flow rate, there is a boundary layer in our solution. As we increase
the ratio of tollbooths to incoming lanes, this boundary layer shifts to the right.
Hence, the optimum solution is to pick the minimum number of tollbooths for
which the maximum flow rate expected is located to the left of the boundary
layer.

The text of this paper appears on pp. 331–344.
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The Multiple Single Server
Queueing System

Azra Panjwani
Yang Liu
HuanHuan Qi
University of California, Berkeley
Berkeley, CA

Advisor: Jim Pitman

Summary
Our model determines the optimal number of tollbooths at a toll plaza in

terms of that minimizing the time that a car spends in the plaza.
We treat the toll collection process as a network of two exponential queueing

systems, the Toll Collection system and the Lane Merge System. The random,
memoryless nature of successive car interarrival and service times allows us to
conclude that the two are exponentially distributed.

We use properties of single server and multiple server queuing systems to
develop our Multiple Single Server Queuing System. We simulate our network
in Matlab, analyzing the model’s performance in light, medium, and heavy
traffic for tollways with 3 to 6 lanes. The optimal number of tollbooths is
roughly double the number of lanes.

We also evaluate a single tollbooth vs. multiple tollbooths per lane. The
optimal number of booths improves the processing time by 22% in light traffic
and 61% in medium traffic. In heavy traffic, one tollbooth per lane results in
infinite queues.

Our model produces consistent results for all traffic situations, and its flex-
ibility allows us to apply it to a wide range of toll-plaza systems. However,
the minimum time predicted is an average value, hence it does not reflect the
maximum time that an individual may spend in the network.

The text of this paper appears on pp. 345–354.
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Summary
We determine the optimal number of lanes in a toll plaza to maximize the

transit rate of vehicles through the system. We use two different approaches,
one macroscopic and one discrete, to model traffic through the toll plaza.

In our first approach, we derive results about flows through a sequence of
bottlenecks and demonstrate that maximum flow occurs when the flow rate
through all bottlenecks is equal. We apply these results to the toll-plaza system
to determine the optimal number of toll lanes. At high densities, the optimal
number of tollbooths exhibits a linear relationship with the number of toll lanes.

We then construct a discrete traffic simulation based on stochastic cellular
automata, a microscopic approach to traffic modeling, which we use to validate
the optimality of our model. Furthermore, we demonstrate that the simulation
generates flow rates very close to those of toll plazas on the Garden State Park-
way in New Jersey, which further confirms the accuracy of our predictions.

Having the number of toll lanes equal the number of highway lanes is
optimal only when a highway has consistently low density and is suboptimal
otherwise. For medium- to high-density traffic, the optimal number of toll lanes
is three to four times the number of highway lanes. Both models demonstrate
that if a tollway has lanes in excess of the optimal, flow will not increase or
abate.

Finally, we examine how well our models can be generalized and comment
on their applicability to the real world.

[EDITOR’S NOTE: This Outstanding paper won the Ben Fusaro Award for the
Tollbooths Problem. The text of the paper appears on pp. 355–371.]
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For Whom the Booth Tolls
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Summary
We model traffic near a toll plaza with a combination of queueing theory

and cellular automata in order to determine the optimum number of tollbooths.
We assume that cars arrive at the toll plaza in a Poisson process, and that the
probability of leaving the tollbooth is memoryless. This allows us to completely
and analytically describe the accumulation of cars waiting for open tollbooths
as an M|M|n queue. We then use a modified Nagel-Schreckenberg (NS) cellu-
lar automata scheme to model both the cars waiting for tollbooths and the cars
merging onto the highway. The models offer results that are strikingly consis-
tent, which serves to validate the conclusions drawn from the simulation.

We use our NS model to measure the average wait time at the toll plaza.
From this we demonstrate a general method for choosing the number of toll-
booths to minimize the wait time. For a 2-lane highway, the optimal number of
booths is 4; for a 3-lane highway, it is 6. For larger numbers of lanes, the result
depends on the arrival rate of the traffic.

The consistency of our model with a variety of theory and experiment sug-
gests that it is accurate and robust. There is a high degree of agreement between
the queueing theory results and the corresponding NS results. Special cases of
our NS results are confirmed by empirical data from the literature. In addition,
changing the distribution of the tollbooth wait time and changing the probabil-
ity of random braking does not significantly alter the recommendations. This
presents a compelling validation of our models and general approach.

The text of this paper appears on pp. 373–390.
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From Lake Murray to a Dam Slurry

Clay Hambrick
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Advisor: Jon Jacobsen

Summary
We predict the extent of flooding in the Saluda river if a large earthquake

causes the Lake Murray dam to break. In particular, we predict how high the
water would be when it reached Columbia and how far the flooding would
spread up tributaries of the Saluda like Rawls Creek. We base our model on
the Saint-Venant equations for open-channel water flow. We use a discrete
version of them to predict the water level along the length of the river. Our
model takes into account the width of the floodplain, the slope of the river, the
size of the break in the dam, and other factors. We estimate parameters for
Lake Murray, its dam, and the Saluda River and calculate the flood results.

The South Carolina State Capitol is safe under even the most extreme cir-
cumstances, since it sits on a hill well above the highest possible water level.
However, flood waters could still reach 17 m at Columbia and even higher
upstream. Buildings in Columbia close to the water would be inundated, but
there should be enough warning time for residents to escape. Both our model
and local evacuation plans suggest that low-lying areas for miles around would
be covered with water.

Introduction
In central South Carolina, a lake is held back by a 75-year-old earthen dam.

What would happen if an earthquake breached the dam? The concern is based
on an earthquake in 1886 at Charleston that scientists believe measured 7.3 on
the Richter Scale [Federal Energy Regulatory Commission 2002]. The location
of fault lines almost directly under Lake Murray [SCIway 2000; South Carolina
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Geological Survey 1997; 1998] and the frequency of small earthquakes in the
area led authorities to consider the consequences of such a disaster.

Our task is to predict how water levels would change along the Saluda
River, from Lake Murray Dam to Columbia, if an earthquake on the same scale
as the 1886 breaches the dam. In particular, how far would the tributary Rawls
Creek flow back and how high would the water rise near the State Capitol in
Columbia, South Carolina.

Figure 1. Topographical map of the Saluda River from the base of Lake Murray to the Congaree
River [Topozone 2004].

We lay out our assumptions and set up a submodel of Lake Murray and the
Lake Murray dam to simulate the overflow when the dam breaks.

We then build a model based on the Saint-Venant equations [Moussa and
Bocquillon 2000], using conservation of water and momentum to capture the
nature of a flood where the main water channel overflows into the surrounding
area. We convert the model to a system of difference equations and feed the
dam outflow into the beginning of the river.

To increase accuracy, we measure along the river the ratio of the floodplain
to the river width and use these values to modify the equations. We then use
data from Lake Murray and the Saluda river to model several scenarios.

Finally, we discuss the implications of our model, analyze its strengths and
weaknesses, and discuss how the model could be extended.

Background of Earthquake Effects
• Effect on the dam

– How the dam is compromised (size and shape of the initial breach)

– Interaction between the lake water and the initial breach

– Breach size and shape over time
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Figure 2. Schematic of the earth dam and the new planned dam at Lake Murray [Lake Murray
2005].

• Effect on the water

– Earthquake’s effect on the lake in so far as it affects the dam

• Effect on the surrounding countryside

– Whether earthquake alteration of the landscape opens or closes available
floodplains

– Whether earthquake damage could divert the Saluda river

– Whether earthquake damage would make the Saluda’s path choppier
and slow down the water

The situation looks something like this: A large earthquake compromises
the Lake Murray dam. Earthen dams do not usually fail completely or instanta-
neously [U.S. Army Corps of Engineers 1997]. Instead, the dam begins to leak.
Over time, the water causes further erosion, allowing more and more water to
flow out of the lake, until the lake and dam reach a new equilibrium. Depend-
ing on the initial breach and the dam construction, the final equilibrium may
take anywhere from a few minutes to a few hours [U.S. Army Corps of Engi-
neers 1997] to reach. The fully formed breach usually has a width somewhere
between half the height of the dam and three times the height of the dam [U.S.
Army Corps of Engineers 1997; 1980]. At half a mile wide (1,609 m) and 208 ft
(63 m) tall [SouthCarolinaLakes.net], the Lake Murray Dam is about 25 times
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as wide as it is tall, which suggests a breach width much smaller than the dam
width.

Below the dam, the increasing flow of water puts stress on the countryside,
with flooding and hillside carving. Water back-flows up smaller creeks such
as Rawls Creek and pools in the flatter sections. Far downstream, either the
water pools enough to stay within normal channels, or excess water creates its
own channel, or excess water continues flowing from river to river to the sea.

Assumptions

Earthquake
• Aftershocks disregarded: Earthquakes generally consist of a main shock and

smaller aftershocks. Although an aftershock is itself a significant event and
might cause a spike in dam destruction, for simplicity we neglect aftershocks.

• Dam breach only: The earthquake could affect the dam, the water involved,
and the landscape. The earthquake’s effect on the water matters only if
the water damages the terrain or escapes from the lake or riverbed. Thus,
by assuming that the earthquake affects only the dam, we bundle any ef-
fect of the earthquake on the water into the water’s effect on other things.
The earthquake could significantly affect the terrain, but such changes are
unpredictable and we assume no significant terrain changes take place.

Weather and Terrain
• No effect from wind: The effects of wind here are minuscule in comparison

with other forces.

• Low land near river would flood: We assume that the river would overflow its
banks and fill the surrounding floodplain.

Lake Murray and Dam
• Lake has a simple shape: We assume that the lake has perfectly vertical sides

and a flat bottom.

• Dam breach is rectangular: We can thus model a variety of dam breaches, since
we can vary the height and width independently.

• Washed-out dam materials are negligible compared to water flooding: Since we
already assume that the breach does not erode, there is no new source of
earth after that initial point. This assumption should work well when the
breach is small but less so when the breach is large.
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Saluda River
• River channel has constant width: The Saluda river widens slightly after 11.4 km

[Topozone 2004]; but to model it simply, we assume that it has a constant
width.

• River has steady elevation loss: Due to limits of our topographical data, we
assume that the height of the river drops off steadily.

• River has constant initial depth: Because we assume that the river drops off
steadily, there are no pockets where water could pool. Since the river starts
in equilibrium, we assume that the depth is uniform from start to finish.

• River is straight: The curvature of a river contributes somewhat to slow the
flow of water, and some models include a curvature parameter; but given
how straight the Saluda is [Topozone 2004], it is reasonable to approximate
it as a linear river.

Dam Model
We use a submodel to simulate what happens on the lake and at the dam after

an earthquake causes a breach. The submodel provides information about the
volume and speed of water leaving the dam at any given time. This information
depends on the volume of water in the lake, the surface area of the lake, and
the size of the breach in the dam.

We model the breach as a rectangular opening in the dam. We assume that
water would flow out of the bottom of this breach and that its energy would be
conserved. The potential energy is converted into kinetic energy, and so from
the equation

1
2ms2 = mgh

we get

s =
√

2gh,

where

s is the speed of the water,

m is the mass of the water,

g is acceleration due to gravity, and

h is the height of the water—the difference in height between the lake and the
bottom of the breach.
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We assume that all water leaves at the maximum speed, a slight overestimate.
We can write this equation in terms of our model as

swater leaving =
√

2g(hlake − hdam).

The volume of water leaving in each time step is the area of the breach times
the velocity of the water times the size of the time step:

vwater leaving = wbreach(hlake − hdam)swater leavingttime step,

where v is volume, w is width, h is height, s is speed, and t is time.
We assume in effect that the lake is a large straight-sided holding tank, so

its area doesn’t change when the water height does. This means that the height
of the lake is simply the volume divided by area, or

hlake =
vlake

alake

where h is the height, v the volume, and a is the area. This assumption can be
changed to make the area of the lake a function of the amount of water in it; for
example, we could model the lake as a shallow cone.

We also assume that the breach in the dam stays the same size throughout
the simulation, though it would be simple to make the width and depth of the
breach increase as a function of the amount and speed of the water flowing
through. Doing so would mimic erosion caused by the force of the water
traveling through the gap.

Saint-Venant Model
Our primary model is based on the Saint-Venant system of (partial differ-

ential) equations. This choice was inspired by Moussa and Bocquillon [2000],
who describes how to use them (slightly modified) to model floods. These
equations govern open-channel fluid flow that is nonuniform and nonconstant,
and they take into account variations in velocity, the topography of the river
and surroundings, and friction with the ground. This makes the Saint-Venant
system much preferable to simpler models, especially since friction is a domi-
nant force in flood behavior (the floodwaters cover uneven ground with many
obstacles—trees, houses, etc.).

The (modified) Saint-Venant system consists of a water conservation equa-
tion,

η
∂y

∂t
+ y

∂V

∂x
+ V

∂y

∂x
= 0,

and a linear momentum equation,

∂V

∂t
+ V

∂V

∂x
+ g

(
∂y

∂x
+ Sf − S

)
= 0,

where
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y is the height of the water;

x is the distance along the river;

t is time;

V is the speed of the water,

S is the river slope;

η , the new parameter introduced by Moussa and Bocquillon [2000], is the
relative floodplain width (see below); and

Sf is the so-called energy-line slope.

The energy-line slope represents how much friction the flowing water must
overcome; it is calculated from the velocity and flow radius of the water via the
Manning formula [Moussa and Bocquillon 2000],

Sf = n2kV 2R−4/3,

where R, the hydraulic or flow radius, is given by R = W1y/(W1 + 2y), where
W1 is the width of the channel. There are two constants: n is the dimensionless
“roughness parameter” characterizing the land that the water flows over, while
k is a constant equal to 1 s2/m2/3.

But what does the introduction of the parameter η do? The model assumes
that outside the river channel there is a floodplain that has a very high fluid
resistance (e.g., trees, houses). This means that the downstream flow of water
in this area is negligible. However, the floodplain serves as a sink for water,
so ∂y/∂t is modified by the factor η, the ratio of of the floodplain width to the
channel width. This way, when the water rises, the actual height change in the
channel is attenuated by η, since some water is absorbed by the floodplain. We
make η a function of the distance along the river by measuring the width of the
floodplain at various points.

To model numerically, we turn this PDE system into a difference-equation
system. As is common with numerical PDEs, and in particular fluid dynamics
problems, special care must be taken to ensure the stability of the algorithm [Tre-
fethen 1996]. We use the Lax-Wendroff difference formula,

un+1
j = un

j + 1
2λ(un

j+1 − un
j−1) − 1

2λ2(un
j+1 − 2uj + n + un

j−1).

Here the upper indices represent time and the lower, space; λ is the ratio of the
time to the space step size. (Our model converts distance and time to model
units, so the step size in each is 1.) The second term acts to damp out spikes,
since it looks at how much each point differs from the points on either side of
it, and compensates.

We find that the model is highly sensitive to the roughness parameter n
(note that this is the effective roughness in the channel only). When n is large
(even at 0.03, the standard value for large rivers), there is high resistance to



236 The UMAP Journal 26.3 (2005)

the water flow, and the floodwater tends to pile up. This leads to excessive
steepness in the water-depth profile and tends to make the model break down.
Fortunately, we can assume a smaller value for n, since we are considering only
the water in the channel area, which is bounded on the sides not by rocks and
grass (as a river is normally), but by other floodwater (covering the floodplain),
which is moving a bit slower (in fact, we assume that it is stationary) but should
be smoother than stationary rocks. Therefore, we take n = 0.01.

Further, the model is increasingly unstable at higher rates of lake outflow.
This is presumably because the Saint-Venant equations are essentially pertur-
bations about steady flow, so they tend to break down in massive flooding. We
resort to periodic averaging of neighboring water depths (every 20 time steps,
for the most part). This does not seem to affect the results much.

Rawls Creek Back-Flooding
Our initial idea for computing the back-flooding at Rawls Creek was to

use the same Saint-Venant modeling technique as for Saluda, adjusted for the
different parameters of Rawls, and using the water depths calculated at the
creek’s mouth for the “dam”. However, it is unclear what the initial speeds
should be, since the back-flow water moves more or less perpendicularly to the
main flood. Moreover, the model displays severe instability with the relevant
data. Hence, we take the water height at the mouth and use the topographical
map Topozone [2004] to find the matching place upstream. Though highly
simplistic, this method is consistent with a modified Saint-Venant system, since
it assumes that there is no flow outside the main channel and that the floodplain
area is filled instantaneously along with the channel. The Rawls Creek valley
is simply a wider section of floodplain (and we include it in calculating the
floodplain widths).

Parameters

Lake Murray Dam
We use the following parameter values:

• g = 9.8 m/s2, the gravitational constant

• h0lake = 60 m [SouthCarolinaLakes.net]. This is the initial height of water in
the lake.

• v0lake = 3 × 109 m3 [Publications 2004]. This is the initial volume of water in
the lake.

• a0lake , the area of the lake assuming that the sides are exactly vertical.
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Saluda River
• lengthriver = 16200 m, the length of the Saluda River as measured on the

topographic map in Figure 1.

• hBedUpstream = 0 m, the height of the stream bed just after the dam, compared
to the base of the dam.

• hBedDownstream = −10 m, the height of the stream bed as it joins the Congaree
River outside Columbia. We obtain this value by comparing the height
above sea level of the beginning and at the end of the Saluda river on the
topographic map in Figure 1.

• h0water = 1.2 m [South Carolina Department of Natural Resources], the initial
water depth along the river, assumed uniform.

Floodplain
Water flowing out from the dam would not stay entirely within the Saluda

River bed. To model accurately the ratio of the river channel to the floodplain
surrounding it, we examine topographical maps. The river has an elevation of
approximately 170 ft (52 m). The area near the river rises gradually to approxi-
mately 200 ft (61 m), before nearby hills start. We assume that this area between
the river and the hills is the approximate floodplain. We measure the width of
this plain every 600 m. We assume that the width varies linearly between these
measurements and interpolate plain widths for distances downstream that we
didn’t measure directly. This assumption allows us a much more accurate
model than if we simply assume that the floodplain has constant width.

Results
The Lake Murray Dam is roughly 800 m long (in the highest region) by

60 m high [Topozone 2004], so any breach up to this size is at least theoretically
possible.

No Breach
Breach width: 0 m, breach height: 0 m

Tested with no breach, the model performs as expected, with the water
level staying very nearly constant, since replacement water from the ordinary
hydroelectric pipes is included in the model.
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Figure 4. Ratio of the width of the river channel and the flood plain as a function of distance along
the river. The two spikes are tributaries; the left one is Rawls Creek. The widening at the end is
the mouth of the Saluda where it enters the Congaree.

Realistic Breach
Breach width 800 m, breach height 10 m

The most common earthquake failure mode for an earthen dam is for the un-
derwater side to simply landslide down, producing a wide but shallow breach.

In this scenario, flooding crests in the Rawls after 1.1 h at a height of 7.1 m.
This means that the creek backfloods for some 2.4 km along its course, as mea-
sured on the topographical map Topozone [2004]. Crest at Columbia (where
the Saluda flows into the Congaree) is reached after 7.5 h at a height of 4.15 m.
Since the Capitol sits some 50 m above the river, it is in no danger.

Alternative Breach
Breach width 133 m, breach height 60 m

To explore the effect of breach shape as well as size, we run a scenario with
a breach of the same cross-section as the previous case but with the opposite
rectangular shape. Since the breach is deeper, the speed of the escaping water
is higher than before and more water escapes also, since the lake can drain to
a lower level.

The water crests at the Rawls after 1.4 h at 9.11 m. The backflooding extends
for 3.0 km. Crest at Columbia occurs after 7.0 h at 6.23 m.
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Figure 5. Contour map of the water level along the river from the start of the simulation to the
end. The x-axis is distance (m) along the river and the y-axis is time (s) into the simulation. The
color bar gives the scale for the height (100s of m) of the water.

Figure 6. Water level where Rawls Creek joins the Saluda River, from the start of the simulation to
the end. The x-axis is time (s) into the simulation and the y-axis is the height (m) of the water.
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Figure 7. Water level where the Saluda River meets the Congaree River in Columbia, from the start
of the simulation to the end. The x-axis is time (s) into the simulation (in seconds) and the y-axis
is the height (m) of the water.

Maximum Breach
Breach width: 800 m, breach height: 60 m

What if the entire dam simply vanishes? Both the model and our assump-
tions are overextended by this scenario. Despite more frequent smoothing
(every 5 time steps), the numbers consistently exploded after 3 h of simulated
time. Fortunately, this was long enough for cresting at the Rawls and for a
pretty good guess at the Columbia crest. Unfortunately, the water rises so high
in the early sections of the river that our values for η are no longer valid—the
flood simply expands outside the normal floodplain. This means that the water
would not actually be as high as the model indicates.

The Rawls crest occurs after 0.4 h 34.35 m. This height of water causes
backflooding as much as 5 km upstream (a strong indication that our η values
are indeed too low for this level of flooding). The Columbia crest appears after
4 to 5 h and is no more than 17 m. The Capitol is still safe, by a large margin.

Interpretation
While the Capitol is safe in all scenarios, massive flooding nonetheless oc-

curs in low-lying areas and in the homes and businesses along the Columbia.
Happily, based on the flood scenarios above, if a warning system is in place,
there should be enough time to escape before the flood water arrives.
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Analysis of Model

Strengths and Weaknesses
Our model is built on trade-offs. One weakness is the transformation of

PDEs into difference equations; the latter are prone to instability in extreme
scenarios.

Our assumptions represent other trade-offs. The floodplain, though a vast
improvement over an extremely simple model where all water stays in the
channel, requires us to assume that the water instantaneously drains from the
river and immediately stops moving. Extending the system to be be fully
three-dimensional, with water flowing both downstream and outward from
the riverbed, would represent a great improvement (and indeed, is performed
admirably by various commercial software packages).

On the other hand, we implement equations designed specifically to model
situations like the one on the Saluda River and use data specific to Lake Murray
and the Saluda River.

Comparison to Other Predictions
The company that owns the dam provides an evacuation map that shows

where the water is expected to go during a flood. This map seems to agree
roughly with our worst-case model predictions.

Future Work
• We could model an expanding trapezoidal breach, representing erosion of

the original breach, using values from the literature [U.S. Army Corps of
Engineers 1980] to select appropriate slope and time intervals.

• We could acquire data on the normal width of the Saluda River at inter-
vals along its course between Lake Murray and the Congaree, rather than
assuming a constant stream width.

• We could collect data on the elevation of the stream at regular intervals.
For instance, the river might have a waterfall, which could affect the flood
pattern.

• We could consider information on the distribution of the lake’s water. In
real life, the lake has large areas that are shallow, with a smaller deep region.

• We could move from the straight-stream assumption to a two-dimensional
analysis; some momentum is lost in bends in the river.
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• Our assumptions (the earthquake affects just the dam, aftershocks can be
disregarded, wind has no effect, and washed-out dam materials can be dis-
regarded) are sturdy enough that an upgrade of the water-flow modeling
technique used (Saint-Venant) should be attempted before correcting these
assumptions.

Conclusion
Dam-breach flooding is a rare but very serious problem, especially when

the dam sits less than 20 km above a major city. We create a hydrodynamical
model that gives the downstream results of both likely and possible earthquake-
driven dam breach scenarios. Since the city of Columbia sits mainly on a hill,
the predicted flood levels of 4 m to 17 m would flood only the few blocks closest
to the river. However, upstream areas such as Rawls Creek would experience
levels 7 m to 34 m higher. The water could arrive at Rawls in as little as half
an hour, and flood 2.5–5 km upstream; so an early-warning system for dam
breaches along the Saluda is a vital protective measure.

Our model produces results that make intuitive sense when we vary the
parameters: The flooding increases with a larger breach, and a deeper breach
floods more than a shallower one of the same area. The water height falls off
downstream, as some of the water is held in the floodplain, and this attenuation
varies with the width of the floodplain.
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Summary
The Saluda Dam, separating Lake Murray from the Saluda River in South

Carolina, could breach in the event of an earthquake.
We develop a model to analyze the flow from four possible types of dam

breaches and the propagation of the floodwaters:

• instant total failure, where a large portion of the dam erodes instantly;

• delayed total failure, where a large portion of the dam slowly erodes;

• piping, where a small hole forms and eventually opens into a full breach;
and

• overtopping, where the dam erodes to form a trapezoidal breach.

We develop two models for the spread of the downstream floodwaters.
Both use a discrete-grid approach, modelling the region as a set of cells, each
with an elevation and a volume of water. The Force Model uses cell velocities,
gravity, and the pressure of neighbouring cells to model water flow. The Down-
hill Model assumes that flow rates are proportional to the height differences
between the water in adjacent cells.

The Downhill Model is efficient, intuitive, flexible, and could be applied to
any region with known elevation data. Its two parameters smooth and regulate
water flow, but the model’s predictions depend little on their values.
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For a Saluda Dam breach, the total extent of the flooding is 106.5 km2; it
does not reach the State Capitol. The flooding in Rawls Creek extends 4.4 km
upstream and covers an area of 1.6–2.4 km2.

Variables and Assumptions
Table 1 shows the variables used in the design and simulation of the flooding

model, and Table 2 lists the parameters in the simulation program.

Table 1.

Variables used in the model.

Variable Definition

Voume flow rates from the dam
QTF1 For instant total failure
QTF2 For delayed total failure
QPIPE For piping failure
QOT For overtopping failure m
Qpeak Maximum flow rate

Times when water ceases to flow through the dam
tTF1 For instant total failure
tTF2 For delayed total failure
tPIPE For piping failure
tOT For overtopping failure

∆V Total volume of water displaced from Lake
Murray by flooding

VolLM Normal volume of Lake Murray
AreaLM Normal area of Lake Murray
dbreach Depth of the breach from the top of the dam
tbreach Time from when the breach begins to form

until its final formation
m Slope of the sides of the cone approximating

Lake Murray

General Assumptions
• Normal water level is present in the lake prior to a dam breach.

• No seasonal variation of flows occurs in waterways.

• Volume of water in Lake Murray can be accurately approximated by a right
circular cone (Figure 1).

Dam Assumptions
• Saluda Dam fails in one of four ways:

– instant total failure,

– delayed total failure,
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Table 2.

Parameters used in the simulation program.

Parameter Typical value Meaning

BREACH_TYPE varies one of INSTANT_TOTAL_FAILURE, DELAYED_TOTAL_FAILURE,
PIPING, or OVERTOPPING

∆T 10.0 Length of one time step (s)
MIN_DEPTH 0.0001 Depth below which a cell is considered empty (m)
TFINAL 100000 Time for the breach to empty completely the affected portion

of the reservoir (s)
Tb 3600 Time until breach reaches maximum size (s)
Qpeak 25000 Maximum flow rate of the breach (m3/s)
dbreach 30 Maximum depth of breach below initital reservoir level (m)
VolumeLM 2.714 × 109 Initial volume of Lake Murray (m3)
AreaLM 202 × 106 Initial area of Lake Murray (m2)
k 0.504 Spreading factor (regulates amount of water exchanged

between two cells)
MAX_LOSS_FRAC 0.25 Maximum fraction of a cell’s water that it can donate in a

single time step

Figure 1. Reservoir approximation using a right circular cone.
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– piping, or

– overtopping.

• Composition of the earthen dam is uniform throughout.

• Width of the base of the breach is between the height of the dam and three
times the height of the dam [U.S. Army Corps of Engineers 1997].

• No human attempt is made to prevent dam breaching.

Downstream Assumptions
• Resistance to water flow due to structures such as bridges and buildings is

negligible.

• Water does not alter the terrain significantly as it flows over the floodplain.

• Water does not make alluvial deposits as it flows over the floodplain.

• A negligible amount of water is present in the valley before flooding.

• Negligible water inflow occurs from sources other than the dam breach.

• No human attempt will be made to prevent flooding.

Accepted Facts
• Area of Lake Murray: 200 km2

• Volume of Lake Murray: 2.710 × 106 m3

• Height of dam: 63.4 m (crest at 370 ft above sea level)

• Length of dam: 2.4 km

• Elevation of surface of Lake Murray: 106.5—110 m above sea level

Model Design
Dam Breach

Each type of dam breach is described by flow rate as a function of time, with
corresponding parameters.

Instant Total Failure
A model of flow rate for instant total failure is right triangular [U.S. Army

Corps of Engineers 1997] (Figure 2). The parameters are breach depth and peak
volume outflow, with values

dbreach = 20 m, Qpeak = 30,000 m3/s.
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Figure 2. Flow rate for an instant total failure.

Delayed Total Failure
An isosceles triangle model makes sense for delayed failure because it takes

half of the total volume of water removed from the lake to erode the dam and
the flow rate does not peak until the erosion is complete [U.S. Army Corps of
Engineers 1997] (Figure 3). Also, for an earthen dam, the erosion time may be
longer than for other types of dams, such as concrete.

This model has the same parameters and same values:
dbreach = 20 m, Qpeak = 30,000 m3/s.

Figure 3. Flow rate for a delayed total failure.
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Piping Failure
For a piping failure, the breach begins in the middle of the dam face and

grows until the material above the pipe collapses [Sedimentation and River
Hydraulics Group 2004]. As the breach grows, the flow rate increases expo-
nentially; the peak flow rate occurs when the material above the pipe collapses.
From that point, the flow through the breach is similar to a total failure. We
select an exponential decay so as to observe a different effect from the linear
decay of the total failure models (Figure 4).

We choose the growth rate so that the peak flow rate occurs at the breach
time, and the decay rate so that the flow rate is less than 1% of the peak flow
rate at the final time. The parameters are the breach depth, the peak volume
outflow of the dam, and the breach time, with values

dbreach = 20 m, Qpeak = 30,000 m3/s, tbreach = 50,000 s.

Figure 4. Flow rate for a piping failure.

To demonstrate better the change in flow rate with time when the breach
begins to form, we plot over a shorter range of time in Figure 5.

Overtopping Failure
For an overtopping failure, the water begins flowing over the top of the

breach, eroding the dam from above. We found little information about over-
topping failures. From the piping failure, we estimate that the flow rate in-
creases according to a parabolic shape until dam erosion is complete (Figure 6).
After this point, which corresponds to the breach time, the flow rate behaves
as in a total failure.

The parameters are again breach depth, peak volume outflow of the dam,
and breach time, with values

dbreach = 20 m, Qpeak = 30,000 m3/s, tbreach = 30,000 s.
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Figure 5. Flow rate for beginning of a piping failure.

Figure 6. Flow rate for an overtopping failure.

Downstream Flow
We model the behaviour of the water in the region downstream of the breach

using a discrete approach. The Force Model uses a physical analogy based on
the Bernoulli equation for fluid flow; the Downhill Model uses a simpler, more
intuitive mechanism for water flow. The Force Model produces unphysical
results; therefore, we use Downhill Model in analysis of the flooding.

For both models, the region surrounding the Saluda Dam is divided into
a grid of square cells. Each cell covers a surface area of 210 m by 210 m and
has an associated elevation above sea level and a volume of water (based on
the mean depth of water in the cell). The elevation data are adapted from the
U.S. Geological Survey’s National Elevation Data [2004] by (to reduce process-
ing time) averaging together groups of 7 × 7 cells. Each model simulates the
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propagation of water among cells; the models differ in how neighbouring cells
determine how much water to exchange per unit time.

Force Model
Design

This model performs a force analysis on the water contained in the model
cells. Each cell has an associated elevation above sea level, mean depth of water
contained in the cell, and mean velocity (x- and y-components) of water within
the cell. The force acting on a particular cell is assumed to be due to two effects
only: the pressure force exerted by the four cells in direct contact with it, and
the gravitational force that accelerates the water to places of lower elevation
(that is, downhill).

The main principles of the model are:

• Volume flow between cells is proportional to the difference in pressure be-
tween the four adjacent cells with a common face.

• Pressure difference in cells is proportional to the difference in mean depth
of each cube.

As demonstrated in the Figures 7 and 8, the mean pressure exerted by a cell
is assumed to be the pressure at half the depth of the cell, or P = 1

2ρgd.

Figure 7. Pressure forces acting on cell matrix.
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Figure 8. Gravitational forces acting on cell matrix.

We assume that the area over which the pressure acts is the mean depth of
the two adjacent cells, so that the depth of water varies linearly between them,
with the depth at the boundary the average depth of the two. The force exerted
by a neighbouring cell is the mean pressure times the area between the two
cells. To find acceleration, we divide the force by the mass of water in the cell,
taken to be the volume of the cell times the water density:

ax =
g(d2

0x − d2
2x)

4wd1
.

We calculate the acceleration due to gravity by estimating the gradient of
the ground of the current cell and its four immediate neighbours. We determine
the horizontal component of the acceleration geometrically (Figure 9) to be

ag =
2∆hwg

4w2 + ∆h2
.

The model iterates through a large number of time steps, typically each of
1 s duration. At the beginning of each time step, water is injected into the cells
containing the dam breach; the amount is determined by the breach models
described above. For each time step, the acceleration (x- and y-components) is
calculated for each cell in the region, and the velocity of water in the region is
updated according to

vnew = vold + a∆t.
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Figure 9. Determination of tangential component of gravity.

The direction of the velocity determines in which direction each cell donates:
For vx > 0, the cell donates to the right; for vx < 0, the cell donates to the left.
The amount of water donated is proportional to the speed in that direction, so
that the change in water depth of the current cell is

ddonated =
davg∆t

2w
.

The water depth of the neighbouring cell receiving the donation is also
updated, so that the total amount of water in the model is conserved (except
for donations off the edges of the map and the water injected at the breach cell).

For very large velocities, a cell can donate more water than it has. Specif-
ically, if the speed times the time step size is larger than the cell width, the
donation would be greater than the cell’s current volume. If this occurs, the cell
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is assumed to donate all its water, and the donations in the x- and y-directions
are scaled to account for this.
Justification

This model is intuitively appealing: It models the behaviour of the water
using a simple but meaningful physical analogy. The force analysis used is
equivalent to taking the gradient of the Bernoulli equation and modeling the
fluid discretely.

The model computes and saves velocity information, allowing modeling of
the manner in which regions are flooded. For example, the model could predict
the speed of the water as it struck a particular building in Columbia, such as
the State Capitol.
Reasons for Rejecting the Model

The results from the model are unrealistic. Since cells with large volumes
of water have small accelerations, these cells tend to empty very slowly, even
if adjacent to completely empty cells; for the same reason, small cells tend to
empty too quickly. The result is a checkerboard pattern: Large cells grow larger
and their small neighbours grow smaller. This error relates to our assumption
that all water within a cell has the same velocity: A single cell cannot spread
out in all directions. For a simpler terrain (such as a simple downhill channel),
this would not be a problem; however, this terrain is highly complicated and
requires the water to propagate in several directions.

Another problem with this model is its complexity. The model juggles a
large number of parameters for each cell, making tuning and troubleshooting
difficult.

Downhill Model
Design

The Downhill Model assumes that the flow rate between two cells is pro-
portional to the height difference between the centers of mass of those cells
multiplied by the effective area between them. The model allows water to be
donated in multiple directions by a single cell, if it is higher than several of its
neighbours. As in the Force Model, the program iterates through time steps,
adding water each step to the cells containing the dam breach.

For each time step, each cell (except those on the bottom and right bound-
aries of the map, which are handled later) exchanges water with the two cells
immediately below and to the right. This ensures that each cell exchanges wa-
ter with its four neighbours exactly once per time step. To exchange with a
neighbour, a cell changes its height according to the formula

ddonated = kdavg(h0 − h2).

The value of k is based on the assumption that the water speed at the breach
during the peak flow rate is 30 m/s. We later describe the model’s response to
a change in k.
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The neighbouring cell then changes its height by the negative of this value.
To ensure consistency, the changes in height are not applied until the end of
the time step, after all cell height changes have been calculated. If a cell had
donated more than MAX LOSS FRAC of the water that it originally contained,
then its donations are scaled down so that it donates exactly this amount. The
factor MAX LOSS FRAC is used to prevent sloshing: Large cells tend to empty
completely into empty neighbours, which then donate back on the next turn,
so that half of the cells are empty at any one time.

For cells along the boundary, donations on their side(s) against the edges
of the map are assumed to be equal to their donations on the opposite sides.
Since these cells are far away from the breach or areas of interest, their precise
behaviour is less important. Our approach ensures that water reaching the
edges of the map leaves smoothly, without piling up unphysically.
Justification

This model affords rapid computation and uses a simple principle that is
easy to troubleshoot. Although the equation governing the water exchange
between cells lacks a direct physical analogy, it produces results consistent
with physical expectations. Water travels most quickly downhill or across the
nearly flat floodplain, and creeps uphill only as water levels rise.

Testing and Results
Testing

To test our models, we use National Elevation Data from the U.S. Geological
Survey [USGS 2004]. The data are a set of elevation values (in meters above
sea level) arranged into rows and columns. Each element represents a square
with sides 30 m in length. To reduce computation, we averaged groups of 7×7
cells together, so that the cells that we used were squares 210 m on a side.

We tested both the Force Model and the Downhill Model by placing the
breach cell just in front of the dam face and modeling the spread of water for
several choices of breach type (instant total failure, delayed total failure, piping,
overtopping) and time period (360, 1800, 6240 s). We tested the k dependence
and MAX LOSS FRAC dependence by using the instant total failure breach model.

To prevent errors from very small volumes in cells, we treated a cell as empty
if its mean depth was less than 0.0001 m. This cutoff was especially important
in the Force Model, where such small cells acquire enormous velocities (>
106 m/s) when placed next to a cell with a significant amount of water.

We tested the Downhill Model for robustness by running the instant total
failure model for 50,000 time steps. The model behaves poorly beyond 40,000
time steps, when the flow rate out of the map becomes much greater than the
flow rate of the dam breach (which has slowed by this point). We also tested
the model for very large flow rates. For rates that increased the height of the
breach cell by more than 10 m per time interval (more than 30 times as large
as any flow rate in the simulation), the simulation lasts only 1000 time steps
before becoming unstable.
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Results
Flooding Extent

The extent of the flooding is largely independent of the type of breach (Figure 10);
the difference between breach types is in how quickly flooding spreads. For instant total
failure breach, the flooding has a maximum extent of 106.5 km2. The flooding
is greatest in the Saluda and Congaree valleys, which are quite flat and broad.
The flooding in the city of Columbia itself, which is elevated from these valleys,
is very minimal. We did not model the effects of the flooding farther down the
Congaree, but we expect those to be comparable to the flooding within the
region simulated.

Figure 10. Comparison of dam breach scenarios: flooding area after 24 h.

Rawls Creek
The flooding in Rawls creek is extensive in area but not in upstream extent.

Although it is difficult to establish where the flooding of the Saluda river ends
and the flooding of Rawls Creek begins, the area around Rawls Creek that
becomes flooded we estimate as between 1.6 and 2.4 km2. The farthest flooded
point is 4.4 km upstream.
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State Capitol
Flooding does not reach the State Capitol, even for the most extreme case,

instant total failure

Error Analysis, Sensitivity, and Robustness
The model depends on the factor k to scale the amount of water donated. Its

value is based on the assumption that the water speed at the breach during the
peak flow rate is 30 m/s. However, the value of k does not affect the simulation
greatly; the total flooded area after 1800 time steps varies by just 17% when k
is varied by a factor of 100.

The MAX LOSS FRAC is used to prevent each cell from donating too much
water. However, the extent of the flooding is not strongly dependent on its
value, which we took as 0.25 to produce reasonably smooth water distributions.

Strengths and Weaknesses
Strengths

The model is independent of the site simulated: Given elevation data for a
region and an equation governing the flow rate of water from a dam breach, it
calculates the behaviour of flooding.

The Downhill Model is intuitive. It relies on a simple exchange rule between
cells, making it easy to tune and troubleshoot. Tuning may be needed to account
for problems associated with more extreme flooding cases, a need to extract
additional results from the model, or other unforeseen demands.

The algorithm is efficient; the computation of a single time step is linear in
the number of cells in the region. This efficiency makes it possible to model
many variations on breach types and flow rates in a short period of time.

The model produces three data sets of grids: 0/1 values describing which
cells are flooded; the water depth in each cell to determine the severity of the
flooding in a region; and the water depth plus elevation for each cell. From
plots of these data sets, the extent and severity of the flooding are easy to see.

Weaknesses
The primary weakness of this model is the tendency of water in the deeper

regions of the flooded area to slosh. It should be possible to eliminate this,
perhaps by introducing a depth dependence into MAX LOSS FRAC.

Another weakness that could be corrected with more analysis is the time
scale. Since the k-dependence—the only place where the duration of the time
step is used explicitly—is weak, the model’s time scale is not easily changeable.
The time scale could be calibrated by running simulations of an analytical
system, such as the propagation of water down a channel, and determining the
speed of the water and hence the time scale. Since the time scale was not needed
to analyze the extent of the flooding, we did not perform this calibration.
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Appendix: Dam Breach Model Equations
For an instant total failure:

QTF1(t) =



−Qpeak(t − tTF1)

tTF1
, t < tTF1;

0 tTF1 < t,

where tTF1 =
2∆V

Qpeak
.

For a delayed total failure:

QTF2(t) =




2Qpeakt

tTF2
, t ≤ 1

2 tTF2;

2(tTF2 − t)Qpeak

tTF2
, 1

2 tTF2 − t < 0 and t − tTF2 < 0;

0, tTF2 ≤ t,

where tTF2 =
2∆V

Qpeak
.

For a piping breach that turns into a total failure:

QPIPE(t) =




(Qpeak + 1)t/tb − 1, t ≤ tb;

Qpeak exp
[
5(t − tb)
t − tb

]
, tb − t < 0 and t + t < 0;

0, t ≤ t,

where

tPIPE = ∆V − tbreach




5
(

2 + Qpeak

ln(Qpeak + 1)
− 1

)

Qpeak(1 − e−5)
+ 1


 .

For an overtopping breach:

QOT =




Qpeak+
15

(
t2 + 2ttbreach − t2breach

) × 10−6, t ≤ tbreach;

Qpeak(t − tOT)
tbreach − tOT

, tbreacht < 0 and t − tOT < 0;

0, otherwise,

where

tOT =
2(∆V + 0.000005t3breach − tbreachQpeak)

Qpeak
+ tbreach.
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Summary
We identify and model two possible failure modes for the Saluda Dam:

gradual failure due to an enlarging breach, and sudden catastrophic failure
due to liquefaction of the dam.

For the first case, we describe the breach using a linear sediment-transport
model to determine the flow from the dam. We construct a high-resolution
digital model of the downstream river valley and apply the continuity equations
and a modified Manning equation to model the flow downstream.

For the case of dam annihilation, we use a model based on the Saint-Venant
equations for one-dimensional flood propagation in open-channel flow. As-
suming shallow water conditions along the Saluda River, we approximate the
depth and speed of a dam break wave, using a sinusoidal perturbation of the
dynamic wave model.

We calibrate the models with flow data from two river observation stations.
We conclude that the flood levels would not reach the Capitol Building but

would intrude deeply into Rawls Creek.

Introduction
The Saluda Dam, located 20 km above Columbia, South Carolina, impounds

the almost 3-billion-cubic-meter Lake Murray [South Carolina Electric & Gas
Company 1995]. It is a large earthen dam of a type that has failed in earthquakes
before [Workshop 1986]. In such a failure, the water in Lake Murray would
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rush down the Saluda River Valley towards Columbia, its 100,000 residents,
and the State Capitol.

We present a comprehensive mathematical description of the resulting flood,
including its intrusion into Columbia and the tributaries of the Saluda. See Fig-
ure 1 for an overview of the local topography.

Figure 1. An overview of Lake Murray and the Saluda River Valley generated from the NCRS
topographical data [National Geophysical Data Center 2005]. (a) Lake Murray. (b) Saluda River.
(c) Rawls Creek. (d) State Capitol Building.

A brief survey of earthquake-related earthen dam incidents [Workshop
1986] reveals that failure can follow two distinct courses:

• A crack or breach forms in the dam, causing gradual failure due to erosion.

• The dam is completely annihilated, resulting in the formation of a surge.

To describe both of these situations accurately, we apply two different models.

Gradual Failure The relatively gradual rate at which water is introduced into
the downstream valley suggests that the dispersion of the flood may be mod-
eled using classical open-channel hydraulics. We divide the downstream
river course into basins or reaches and then use the Manning formula and
the continuity equation to describe the movement of water between them.
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We determine the flow into the first basin using a model for the destruction
of the dam due to breach erosion.

We create a three-dimensional topographical model of each basin using
3’ resolution data from the NGDC Coastal Relief Model [National Geophys-
ical Data Center 2005]. (Figure 1 was generated using these models.) This
lets us estimate the relationship between the volume in each basin and the
cross-sectional area of its outflow channel. The Manning formula and the
continuity equation yield a system of coupled first-order differential equa-
tions. We integrate this system numerically and calibrate it using data for
normal flow in the Saluda River from river observation stations just below
the Saluda Dam and just above Columbia City [USGS 2005].

Rapid Failure The flood wave is described as a sinusoidal perturbation to the
steady-state solution of the Saint-Venant equation. We apply the dynamic
wave model of Ponce et al. [1997] to determine the surge’s propagation.

We represent the Saluda River Valley as a prismatic channel of rectangular
cross section. We use a small surge recorded by the USGS river observation
station in the Saluda Valley [USGS 2005] to calibrate the frictional constant
governing the rate of attenuation of the flood waves.

Finally, we address the results of the two models and their consequences
for Rawls Creek, the Capitol, and the residents of Columbia.

Gradual Failure
Our model for downstream flooding depends on the conservation of matter

as described by the continuity equation, which states that for any given reach
of the river, the change in volume equals the difference between flow in and
flow out:

dV

dt
= Qin − Qout, (1)

where V is the volume of the reach, t is time, and Qin and Qout are the flows.
We divide the Saluda River Valley into four reaches. Since the amount of

water involved in a dam failure flood would be significantly greater than that
contributed by any other source, we simplify our model by assuming that all
flow into and out of a reach would occur along the Saluda. For each reach, we
set Qin of each reach equal to Qout of the reach above it, ignoring all tributaries.
Eq. (1) becomes:

dVn

dt
= Qn−1 − Qn, n = 1, . . . 4, (2)

where Vn is the volume in the nth reach (numbered downstream from the dam)
and Qn is the flow out of the nth reach; Q0 is the flow into the reach 1 through
the breach in the dam.
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To evaluate (2), we must estimate several parameters and relations:

• the flow out of the reservoir (into the first reach) resulting from a dam breach,

• the flow through each reach, and

• the topographical profiles of the reaches.

Flow Through the Breach
Dam-breach erosion is an interaction between the flooding water and the

material of the dam. Once a breach has formed, the discharging water further
erodes the breach. Enlargement of the breach increases the rate of discharge,
which in turn increases the rate of erosion. This interaction continues until the
reservoir water is depleted or until the dam resists further erosion.

We assume that the pre-breach flow into and out of the reservoir can be
ignored, since they are of opposite sign and of negligible magnitude compared
to the flooding waters. The breach outflow discharge Q0 equals the product
of the rate at which the water is lowering and the surface area at that height,
As(H). Also, the breach outflow discharge is related to the mean water velocity
u and the breach cross-sectional area Ab by the continuity equation:

As(H)
dH

dt
= −Q0 = −uAb. (3)

Experimental observations show that the flow of water through a breach
can be simulated by the hydraulics of broad-crested weir flow [Chow 1959;
Pugh et al. 1984]:

u = α(H − Z)β , (4)

where Z is the breach bottom height measured from the bottom of the lake. For
critical flow conditions, α = [(2/3)3g]1/2 = 1.7 m/s and β = 1/2 [Singh 1996].

We further assume that the surface area of the reservoir, As, is independent
of the height (i.e., the reservoir is rectangular). Combining (3) and (4) yields

As
dH

dt
= −uAb = −α(H − Z)

1
2 Ab. (5)

We describe erosion in the breach using the simplest method that has been
used to model dam breaks accurately in the past [Singh 1996] and assume that

dZ

dt
= −γuφ = −γαφ(H − Z)φβ , (6)

where γ and φ are determined from experimental analysis of the dam material
and u is given by (4). Because we do not have access to the dam, we assume
that φ = 1 (linear erosion) and approximate γ as 0.01. This value of γ has given
good results for linear erosion in the past [Singh 1996]. Eqs. (5)–6) are coupled
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first-order differential equations governing the elevation of the water surface
and the elevation of the breach bottom as functions of time. To evaluate them,
we must determine the shape of the breach.

Breaches in dams are typically modeled as triangles, trapezoids, or rectan-
gles; but rectangles are used most often, since the resulting ODEs (5)–(6) are
solved relatively easily [Singh 1996]. For simplicity, we model the breach as a
rectangle with constant width b such that it erodes only in the vertical direction.
Thus, the area of the breach is given by

Ab = b(H − Z). (7)

Substituting (7) into (5) and rewriting (6) with φ = 1 and β = 1/2 gives

dH

dt
= −αb

As
(H − Z)

3
2 ,

dZ

dt
= −γα(H − Z)

1
2 . (8)

Equations (8) admit the solution

H(Z) = Z + q + C exp
(−(Z0 − Z)

q

)
, (9)

t(Z) =
2
√

q arctanh
(√

H(Z)−Z
q

)
γα

− D,

where q = Asγ/b and C = H0 − Z0 − q, H0 and Z0 are the initial values of H
and Z at t = t0, and D is a constant of integration determined from the initial
conditions. The quantity Z(t) is defined implicitly by (9), and H(t) can then be
recovered from (9). Then the flow through the breach, Q0 can be determined
from (3) and (5):

Q0 = −α

[
q + C exp

(−(Z0 − Z)
q

)]1/2

Ab. (10)

When Z(t) = 0 at some time t̃, the dam must stop eroding and from (8) we
obtain

dH

dt
= −αb

As
H3/2, (11)

resulting in

H(t) =
(

1√
H0

+
αb

2As
(t − t0)

)−2

for t ≥ t̃. (12)

Figure 2 graphs Q and Z vs. time. The discontinuity of the derivative at
time t̃ ≈ 2 h is the transition between these two solutions.
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Figure 2. Flow through dam and height of breach bottom as breach enlarges.

Flow Between Reaches and the Manning Equation
We select reaches so that the river valley at their junctions is relatively pris-

matic and narrow. Assuming that the flow in a flood would be regulated by
the rate at which water can flow through these narrows, we model the river as
a series of pools, one flowing into the next.

Traditionally, flow in a floodplain is analyzed as the flow in a prismatic
channel using the Manning equation

u =
1

nm

(
A

Pw

)2/3 √
S, (13)

where

u is the mean flow velocity,

nm is determined experimentally for each channel,

A is the cross-sectional area of the flow channel,

Pw is the wet perimeter of the channel cross section, and

S is the slope of the energy line.

There is no theoretical basis for the Manning equation; however, it has been
extensively verified experimentally. Its primary advantage is the amount of
information available on estimating Manning coefficients, nm [Chanson 2004].
We apply it in our model because we can estimate nm for the Saluda from
data for other floodplains. The prismatic nature of the narrows means that we
can apply the Manning equation without correcting for channel irregularities.
Typical values of nm are 0.5 for a brush-covered floodplain and 1.5 for a tree-
covered one [Chanson 2004]. Assuming that our floodplain is somewhere
between, we choose a moderate value of nm = 1.
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We set S, the slope of the energy line, equal to the slope of the valley floor.
This is equivalent to assuming that the depth and speed of the water are constant
with respect to flow direction in each narrows. Because of this, our model will
be most accurate when radical changes in volume occur on a time scale greater
than the time required to pass through the narrows. From the propagation rates
observed, the time required for the water to pass through each of the narrows is
on the order of 0.1 h. The flood that we wish to consider rises sharply for 0.5 h,
stays steady for 1.5 h, and then trails off gradually (see Figure 2). Our model
is least accurate for the steepest part of the initial rise but ultimately describes
most of the flood well.

We estimate the slope of the channel out of each reach from USGS topo-
graphical maps [USGS 1971; 1994; 1997]:

S1 =
1

1200
, S2 =

1
800

, S3 =
1

600
, S4 =

1
800

. (14)

We estimate S4, the slope of the final outflow channel, conservatively so as
to produce a worst-case scenario of the flooding of the basin that contains
Columbia.

Our topographical models of the river basin allow us to establish one-to-one
correspondences between the volume of water in each reach, the cross-sectional
area and wet perimeter of its outlet, and the height of the water in the reach.
These correspondences define the cross-sectional area and wet perimeter of the
outflow narrows as functions of volume; we designate these functions as An(V )
and Pn(V ). Noting that for a given channel cross section, the flow Q satisfies

Q = uAn, (15)

where u is the mean water velocity, (13) can be stated as a constraint on (2):

Qn = Anun =
An

nm

(
An

Pn

)2/3 √
Sn, (16)

where An = An(ρV ), Pn = Pn(ρV ), and V = V (t − ζ).
We introduce parameters ρ and ζ to calibrate of the model; we determine

them subsequently from observational data.

ρ describes how friction and surface features of the reach prevent the entire
volume of water from flowing downstream.

ζ describes the amount of time that it takes water to pass through a reach. We
assume ζ to be constant because of the constant length of our reaches.

Selection and Analysis of Reaches
We use 3’ topographical data [National Geophysical Data Center 2005] to

construct a topographical model. To establish correspondences between the
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volume Vn of water contained in each basin and the area An and wet perimeter
Pw of their outflow channels, we intersect the topographical model of each
basin with a plane representing the water level and integrate numerically over
the appropriate regions. We construct a database of these values in terms of
height, to be used as we simulate (2). Figure 3 displays one such profile, for
reach 4, with volume and area next to the topographical map of the basin.

Our accuracy is limited by the 0.2-m height resolution of the NGDC data.
This does not significantly effect the accuracy of our volume estimates, but the
area and wet perimeter estimates display noticeable discontinuities for small
volumes. (The oscillatory behavior seen later in Figure 4 is caused by this.) Our
model could be improved by conducting better surveys of the outflow channel
of each reach; since we are primarily interested in large volumes, we proceed.

To summarize, our model places the following requirements on the selection
of the reaches:

• The inflow and outflow channels must be narrower than the rest of the reach.

• The channels must also be prismatic.

• Water should take approximately the same amount of time to flow down
each reach.

To satisfy these conditions, we construct reaches as follows:

• Reach 1: The 6-km section from Saluda Dam to the narrows at Correly Island.

• Reach 2: The 6-km section from Correly Island to the narrows just below
Interstate 20.

• Reach 3: The 6-km section from just below Interstate 20 to the narrows just
above the Saluda’s outlet into the Congaree river.

• Reach 4: A large section of the Congaree River Basin including the area
around the Capitol and a 6-km stretch of downstream channel.

Reaches 1, 2, and 3 satisfy our requirements extremely well. The Congaree
River valley widens rapidly into a floodplain below Columbia and there are
no natural narrows. We end our basin at a point that is somewhat narrow and
satisfies the requirement for water flow time. A large portion of the broad river
valley is included to allow for upstream flooding.

Calibration and Sensitivity Analysis
The US Geological Survey (USGS) has river observation stations just below

the dam (at 34◦03′03” N 81◦12′35” W) and just above Columbia (at 34◦00′50” N
81◦05′17” W). Each logs the last 31 days’ flows [USGS 2005]. On 6 January 2005,
the station at Saluda Dam registered a surge of 30,000 m3. Flow rates jumped
from 27 m3/s to 700 m3/s and then receded over a 5-h period. A similar surge
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Figure 3. Topographical map and volume and outlet channel area profiles for Reach 4.

Surge down the Saluda River on 6 January 2005.
The solid line is flow at the upstream station and
the dotted line is flow at the downstream station.

Our simulation of a similar surge.

Figure 4. Actual surge and simulated surge.
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was recorded by the Columbia observation station 1.5 h later (see Figure 4).
We use this event to calibrate our model.

We first calibrate the model to produce a typical river flow at the dam to a
value of 60 m3/s and systematically vary ρ. We find that our model displays
stable but oscillatory behavior for ρ < 0.1. The oscillations can be traced
to jumps in the flow rates between the breaches, and we attribute them to
inaccuracy of our channel profiles for small volumes.

For ρ = 0.1, our system becomes unstable when large volumes are intro-
duced. Since we are indeed interested in a large flood, we set ρ = 0.01. This
value is consistent with the idea that the ground cover density, and thus the
amount of water stored in the ground cover, increases with distance from the
main river channel. The small size of ρ corresponds to the fact that in our
equation it scales volume.

Once our model is stable for typical flow volumes, we introduce a “flood”
in the form of a Gaussian bump in Q0 of similar shape to the Jan. 6th event. We
adjust ζ until this event arrives at the bottom of reach 3 in 1.5 hours. This occurs
when ζ = −0.5, consistent with the three reaches that must be traversed. In
calibrating our model for a large flood by using a small one, we assume that the
effect of ζ is independent of flood size. A better calibration could be achieved
by analyzing observations of a larger flood, but such data are not available from
the observation stations [USGS 2005].

Predictions
Our model predicts that the flood waters would travel slowly down the

Saluda River Valley, producing extremely high levels of flooding in the upper
reaches of the Saluda near Rawls Creek (reach 1) and near Columbia (reach 4).
Our results are summarized in Figure 5 and in Tables 1–2. Our numerical
simulations suggest that Rawls Creek would flood approximately 32 m but the
State Capitol building would remain dry.

Table 1.

The maximum flood volumes in each reach and their corresponding elevations above sea level.

Reach Max. Flood Vol. Max Flood Elev. Avg. River Elev.
(×108 m3) (m) (m)

1 19 87 58
2 15 79 55
3 3.5 68 50
4 2.4 68 45
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Table 2.

Elevation above sea level of points of interest.

Point of Interest Elevation (m)

Lake Murray 120
Saluda River (Just Below Dam) 60
Rawls Creek (Reach 1) 55
Saluda River (Bottom of River) 45
Capitol (Reach 4) 100

Figure 5. Volumes predicted in each reach as a gradual flood propagates.

Rapid Failure: Dam Break Wave
The complete annihilation of a dam results in a highly turbulent, unsteady

flow that is commonly known as a dam break wave. The removal of the dam
results in the creation of a retreating (negative surge) wave front in response
to the sudden reduction in flow depth [Chanson 2004]. In the case of a dam
separating two bodies of water, the intersection of the resulting negative surge
with a relatively slow moving body of water results in a discontinuity of ve-
locity. Since momentum must be preserved, these two bodies of water cannot
intersect without the creation of a second wave moving in a direction opposite
to that of the first wave; this second wave is a positive surge (see Figure 6).

The propagation properties of the wave resulting from the intersection of
the positive and negative surges can be described using equations developed
by Saint-Venant. These equations form a coupled system of one-dimensional
quasi-linear hyperbolic partial differential equations describing varied unsteady
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Figure 6. The shape of the wave just after the dam fails. The dam is located at x = 0. Note the
discontinuity between the positive and negative surges at x = 100 m.

channel flow [Freed 1971]:
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where u is the mean velocity of the wave, d is the flow depth, x is the direction
of propagation, t is time, and g is the acceleration due to gravity. Sf is the
friction slope and S0 is the slope of the canal.

The first equation is known as the equation of motion and describes the con-
tribution of various forces to wave propagation, each of which is represented
by a separate term:

• the first term describes the local inertia of the wave,

• the second term describes the convective inertia of the wave,

• the third term describes the pressure differential, and

• the fourth term describes the friction and bed slope.

The second equation, known as the equation of continuity, expresses conser-
vation of mass.

The Saint-Venant equations assume the following [Chanson 2004; Freed
1971]:

• The flow is one dimensional; motion occurs only in the direction of propa-
gation.
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• Vertical acceleration is negligible, resulting in a hydrostatic pressure distri-
bution.

• Water is incompressible.

• Flow resistance is the same as for uniform flow, Sf = S0.

We are interested in describing the flood wave attenuation. In our model,
we assume that the total volume of water impounded by the Saluda Dam is
released as a single giant surge. The final value to which the peak discharge is
attenuated is independent of the magnitude of the initial peak discharge [Ponce
et al. 2003]. This allows for generalization of results calculated by our model
to waves of arbitrary size.

Solutions to the Saint-Venant Equations
Ponce et al. [2003] derives a solution to (17) in the case of a dam failure

through sinusoidal perturbation of the steady-state solution. Using spectral
analysis, it can be shown that the peak discharge at position X has magnitude

qp = qp0 exp
(−αX

L0

)
, (18)

where
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with

F0 the Froude number F0,

u0 the steady equilibrium mean flow velocity,

L the perturbation wavelength,

L0 the reference channel length,

d0 the steady equilibrium flow depth,

B the average reach width,

Vw the reservoir volume,

g the acceleration due to gravity, and

m the Manning friction coefficient.
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The equation for unit width discharge (speed × depth) is

q =
N

N + 1
Vmaxd (19)

where N = 0.4
√

8/f , f is the Darcy friction factor, Vmax is the maximum
reservoir volume, and d is the flow depth.

We compute the wave speed using the empirical data in Figure 4 and from
it estimate the Darcy friction factor f for the Saluda River Valley. From (19), we
also estimate the depth of the wave.

Predictions
Using estimated values of the depth of the water impounded by the dam,

the depth of the Saluda River in close proximity to the dam, and the volume of
the Saluda River Basin, we approximate the depth of a dam break wavefront
as a function of distance from the damsite. Figure 7 displays the results. The
depth of the dam break wave decreases exponentially from an initial value of
65 m to a final value of approximately 4 m at a distance of 20 km from the dam
site. This distance roughly corresponds to the distance between the Saluda
Dam and the Capitol Building.

Since the Capitol Building sits approximately 50 m above the Saluda River,
the possibility of the wave reaching the Capitol Building is extremely small.
The probability is further decreased by the simplistic geometry of our model,
which approximates the river bed approximated as rectangular and of uniform
width and texture. In reality, the river exhibits numerous contractions and
expansions and is far from uniform in texture. These qualities would further
attenuate the flow depth of the propagating wave.

Figure 7. Predicted maximum depth of the floodwave for the upper Saluda River (left) and the
entire Saluda River (right).

Our model predicts a wave 40 m high in the vicinity of Rawls Creek. A
rapid dam failure would cause significant intrusion of flood waters into the
Rawls Creek basin.
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Conclusions
In either gradual or rapid failure of the Saluda dam, the effect on the down-

stream areas would be severe. Our models predict that the waters near Rawls
Creek could rise by as much as 40 m (rapid dam failure) or 32 m (gradual dam
failure), protruding far into the Rawls Creek basin and other drainages. The
waters would not be as high near Columbia and would not reach the Capitol
Building. However damage to low-lying areas would be severe, since the water
might rise as much as 23 m.

Several improvements could be made to the models:
Gradual Failure Model
• This model successfully describes small surges in the Saluda River. How-

ever, extrapolating small events to larger events is inherently problematic;
so for a flood of the magnitude that we are considering, we should test the
model against larger events in the Saluda and/or large events in comparable
rivers.

• Estimates in our erosion model could be strengthened with better informa-
tion about the material from which the dam is constructed.

• Better profiles of the outlet channel of each reach would allow us to apply
the Manning Equation more accurately.

Rapid Failure Model
• We calibrate this model too from a small surge in the Saluda River. A more

comprehensive study of waves from other breached dams would provide
better data for calibration of this model for large events.

• Access to the river site would provide better estimates for friction factors of
the floodplain.

• This model is intended to place an upper bound on the magnitude of the
flood wave. Further consideration of factors such as turns in the flood course
would increase the accuracy of this model.
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Judge’s Commentary:
The Outstanding Flood Planning
Papers

Daniel Zwillinger
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Introduction
Flood planning for dams is a real-life activity. An analysis of the Saluda Dam

at Lake Murray determined that the area below the dam needed to be protected
in the event of dam failure, and a second dam is being built. Investigation
conclusions can be found on the Web.

Since flood plan analysis is complex, mathematical modeling is appropriate
and useful. A sequence of models is typically used to understand a phenom-
ena. For the Saluda Dam, a first model might have a straight river, the dam
disappearing instantaneously, and a simple model of water flow. More detailed
effects could then be added: the riverbed bends, the riverbed gradient is not
uniform, perhaps the dam breaks slowly, perhaps the dam is breached in the
center, etc. Starting with a complicated model may make it difficult to deter-
mine if the results are reasonable, since there may be little to validate against. A
series of models that allows additional effects to be incorporated sequentially
is preferable; it may facilitate creation of a sensitivity analysis.

Water flow in open channels has traditionally been modeled by the Saint-
Venant equations, which are nonlinear partial differential equations. Many
teams started by numerically solving these equations and got immersed in
details. (The MCM is not a contest in computation!) Often these teams focused
only on the water flow and spent little effort modeling the dam break itself.
Although there are many models for dam failure, a dam “vanishing” completely
is rather simplistic. (There are a few well-defined dam failure mechanisms.
Teams that considered different mechanisms tended to do better than those
teams that used simplistic assumptions.)
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Many teams started with static models, but most recognized that these mod-
els do not yield reasonable results. The dam-break problem seemed to require
a dynamic approach. The approaches varied considerably, but included:

• Continuous technique: use of sophisticated equations, such as Saint-Venant’s
equation. (Note: Copying an equation derivation achieves little. Pointing
out assumptions needed to obtain an equation may be useful.)

• One-dimensional discrete techniques: breaking the Saluda River up into
prisms and computing flow from one to the next. Rectangles and trapezoids
were popular choices.

• Two-dimensional discrete techniques: cellular automata using USGS data
and computing flows from neighboring cells. The cellular approach can be
difficult to understand and to implement correctly.

Widely varying techniques obtained approximately the same result. Teams
that used more than one approach tended to do better. The usual answers to
the specific test questions are: No, the State Capitol doesn’t flood, and Rawls
Creek backs up about 2.5 miles.

The outstanding papers are remarkable in that each used a fundamentally
different technique:

• The University of Washington team pursued an analytic approach. They
considered two models, obtained real data, and calibrated their model.

• The Harvey Mudd team numerically solved the Saint-Venant equations.

• The University of Saskatchewan team considered a model, rejected it as
being unrealistic, and then numerically solved a dynamic model that they
created themselves.

Some overall comments on the submissions:

• Several teams validated their results from evacuation plans and recorded
flood events. Many others did not do enough reality checking; a back-of-
the-envelope computation frequently would have helped.

• Many teams had perhaps overly complicated models, involving many vari-
ables and parameters.

• The reference for a Web page should list the date of access.
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Summary
We determine the optimal number of tollbooths for a given number of in-

coming highway lanes. We interpret optimality as minimizing “total cost to
the system,” the time that the public wastes while waiting to be processed plus
the operating cost of the tollbooths.

We develop a microscopic simulation of line-formation in front of the toll-
booths. We fit a Fourier series to hourly demand data from a major New Jersey
parkway. Using threshold analysis, we set upper bounds on the number of
tollbooths. This simulation does not take bottlenecking into account, but it
does inform a more general macroscopic framework for toll plaza design.

Finally, we formulate a model for traffic flow through a plaza using cellular
automata. Our results are summarized in the formula for the optimal number
B of tollbooths for L lanes: B = �1.65L + 0.9�.

Previous Work in Traffic Theory
Most models for traffic flow fall into one of two categories: microscopic and

macroscopic.
Microscopic models examine the actions and decisions made by individual

cars and drivers. Often these models are called car-following models, since they
use the spacing and speeds of cars to characterize the overall flow of traffic.

Macroscopic models view traffic flow in analogy to hydrodynamics and the
flow of fluid streams. Such models assess “average” behavior, and commonly-
used variables include steady-state speed, flux of cars per time, and density of
traffic flow.
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Some models bridge the gap between the two kinds, including the gas-
kinetic model, which allows for individual driving behaviors to enter into a
macroscopic view of traffic, much as ideal gas theory can examine individual
particles and collective gas [Tampere et al. 2003].

The tollbooth problem involves no steady speed, so macroscopic views may
be tricky. On the other hand, bottlenecking is complex and tests microscopic
ideas.

An M|M|n queue seems appropriate at first: Vehicles arrive with gaps (de-
termined by an exponential random variable) at n tollbooths, with service at
each tollbooth taking an exponential random variable amount of time [Ge-
lenbe 1987]. We incorporate aspects of the situation from a small scale into a
larger-scale framework.

Properties of a Successful Model
A successful toll-plaza configuration should

• maximize efficiency by reducing customer waiting time;

• suggest a reasonably implementable policy to toll plaza operators; and

• be robust enough to handle efficiently the demands of a wide range of op-
erating capacities.

General Assumptions and Definitions

Assumptions
• All drivers act according to the same set of rules. Although the individual

decisions of any given driver are probabilistic, the associated probabilities
are the same for all drivers.

• Bottlenecking downstream of the tollbooths does not hinder their operation.
Vehicles that have already passed through a tollbooth may experience a
slowing down due to the merging of traffic, but this effect is not extreme
enough to block the tollbooth exits.

• The number of highway lanes does not exceed the number of tollbooths.

• All tollbooths offer the same service, and vehicles do not distinguish among
them.

• The amount of traffic on the highway is dictated by the number of lanes on
the highway and not by the number of tollbooths. Changing the number of
tollbooths does not affect “demand” for the roadway.

• The number of operating tollbooths remains constant throughout the day.
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Terms and Definitions
• A “highway lane” is a lane of roadway in the original highway before and

after the toll plaza.

• Influx is the rate (in cars/min) of cars entering all booths of the plaza.

• Outflux is the rate (in cars/min) of cars exiting all booths of the plaza.

Optimization
We seek to balance the cost of customer waiting time with toll plaza oper-

ating costs.

• The daily cost C of a tollbooth is the total time value of the delays incurred
for all individuals (driver plus any passengers) plus the cost of operation of
the booth. The tolls and the startup cost of building the plaza are not part of
this cost.

• a is the average time-value of a minute for a car occupant.

• γ is the average car occupancy.

• N is the total number of (indistinct) tolls paid over the course of one day.

• L is the number of lanes entering and leaving a plaza.

• W is the average waiting time at a tollbooth, in minutes.

• B is the number of booths in the plaza.

• Q is the average daily operating cost of a human-staffed tollbooth.

We seek a number of toolbooths B that minimizes cost C.
The total waiting time per car is WN , so the total cost incurred by waiting

time is WaNγ. General human time-value is cited as $6/hour or a = $0.10/min
[Boronico 1998]. The cost to operate a booth for a day is QB. The average
annual operation cost for a human-staffed tollbooth is $180,000, so we set Q =
$180000/365.25 days [Sullivan et al. 1994].

Reasoning that W depends on B, we have

C(B) = WaNγ + QB.

Car Entry Rate
We fit a curve to mean hourly traffic-flow data from Boronico [1998]. To

interpolate an influx rate for every minute during the day, we fit a Fourier
series approximation, whose advantage is its periodicity, with period of one
day. [EDITOR’S NOTE: We omit the table of data from Boronico [1998] and the
17-term expression for the approximating series.]



286 The UMAP Journal 26.3 (2005)

Model 1: Car-Tracking Without Bottlenecks

Approach
We seek an upper bound on the optimal number of booths for a particular

number of lanes.

Assumptions
• Each vehicle is looking to get through the toll plaza as quickly as possible,

and the only factor that may cause Car A, which arrives earlier than Car B,
to leave later than B is the random variable of service time at a tollbooth. In
other words, cars do not make bad decisions about their wait times

• Customers are served at a tollbooth at a rate defined by an exponential
random variable (a common assumption in queueing theory [Gelenbe 1987])
with mean 12 s/vehicle, or 5 cars/min.

• Traffic influx occurs on a “per lane” basis, meaning that influx per lane is
constant over all configurations with varying number of lanes.

• Bottlenecking occurs more frequently when there are more tollbooths, given
a particular number of lanes. This implies that omitting bottlenecking from
our model will cause us to overestimate the optimal number of tollbooths.

• There exists a time-saving threshold such that if the waiting time saved by
adding another tollbooth is under this threshold, it is not worth the trouble
and expense to add the tollbooth. We assume that if an additional tollbooth
does not reduce the maximum waiting time over all cars by the same amount
as the average time that it takes to serve a car at a tollbooth (12 s = 0.2 m),
then it is unnecessary.

• An incoming car chooses the tollbooth that will be soonest vacated, if all are
currently occupied. If only one is vacant, the car chooses that tollbooth. If
multiple tollbooths are vacant, the car chooses the one vacated the earliest.

• Cars make rational decisions with the goal of minimizing their wait times.

Expectations of the Model
• An additional booth should not increase waiting time.

• Each additional tollbooth offers diminishing returns of time saved.
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Development of Model
Cars arrive at the toll plaza at a rate described by the Fourier series approx-

imation of the data from Boronico [1998]. Cars are considered inside the toll
plaza (meaning that we begin to tabulate their waiting times) when they are
either being served or waiting to be served.

Service time does not count as waiting time; so if a car enters the toll plaza
and there is a vacant tollbooth, its waiting time is 0. If there are no vacant toll-
booths, cars form a queue to wait for tollbooths, and they enter new vacancies
in the order in which they entered the toll plaza. Once a car has been served, it
is considered to have exited its tollbooth and the toll plaza as a whole.

Our car-tracking model does not factor in the cost of tollbooth operation.

Simulation and Results
For L highway lanes, L ∈ {1..8, 16}, we ran the simulation for numbers B of

tollbooths up to a point where additional booths no longer have any noticeable
effect on waiting time. We exhibit results for a 6-lane highway in Table 1.

Table 1.

Waiting times (in minutes) for six-lane simulations.

Booths Ave. wait Ave. wait Max. wait Marginal utility
for wait > 0

6 28 43 99 N/A
7 12 28 55 44
8 6 17 32 23
9 2 8 16 16

10 0.25 1.22 2.78 13
11 0.02 0.17 0.75 2
12 0.004 0.07 0.31 0.44
13 0.001 0.04 0.27 0.04

The column “Marginal Utility” shows how much each additional booth
reduces maximum waiting time. For the 13th booth, this value is 0.04 min. To
choose an optimal number of booths by threshold analysis, we seek the first
additional booth that fails to reduce the maximum waiting time for a car by at
least the length of the average tollbooth service time (0.2 min). So, based on our
assumptions, it is unnecessary to build a 13th tollbooth for a toll plaza serving
6 lanes of traffic. Thus, we set B = 12 for L = 6. Table 2 shows the optimal
number of tollbooths for other various numbers of lanes.

Table 2.

Optimized number of booths.

Lanes 1 2 3 4 5 6 7 8 16
Booths 4 5 7 8 10 12 13 16 29
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We also explore the situation of one booth per lane. Regardless of the
number of lanes, we find average wait times of around 30 min (over 40 min for
cars that wait at all), and maximum wait time of around 100 min.

Discussion
Our results match our expectations. The optimal number of booths increases

with the number of lanes, each additional booth reduces waiting time, and
additional booths yield diminishing returns in reducing waiting time.

The benefits of this rather simplistic model are its speed and the definite
upper bounds that it offers.

Model 2: Cost Minimization

Approach
This model is concerned less with the details of individual vehicular motion

and decision-making than with the general aggregate effect of the motions of
the cars. We monitor traffic over the course of one day.

For instance, there is no need for this model to decompose analytically the
situation of two cars trying to merge into the same lane. Instead, it recognizes
that beyond a certain threshold of outflux from the booths, some bottlenecking
will occur.

Also, this model addresses the cost of daily operation of the plazas.

Assumptions, Variables, and Terms
• The average waiting time per car in the toll plaza, W , is comprised of time

in line (W1), service time (W2), and bottlenecking (W3).

• Fi (a function of time) is the influx (cars/min) to the plaza from one lane, Fo

is the outflux (cars/min) from the booth.

• r is the maximum potential service rate (cars/min).

• There is an outflux barrier, K (cars/min), above which bottlenecking takes
place. We take it to be linear in L and independent of B, and we call it the
bottlenecking threshold.

Development
From the definitions, we have W2 = 1/r. Both W1 and W3 depend on B.
The average time in line, W1, begins to accumulate when the influx of traffic

exceeds the toll plaza capacity (see Figure 1). The influx is LFi(t) and the
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maximal rate of service is Br. We integrate over time to calculate how many
cars were forced to wait in line.

Figure 1. The area below the curve and above the line represents cars in line.

Integrating again (over time) gives us the total waiting time for all those cars
(with 3600 as a scale factor for time units), and dividing by the total number of
cars gives the average waiting time:

W1 =
3600
N

∫ 24

0

∫ t

0

max
(
LFi(τ) − Br, 0

)
dτdt.

We obtain W3 in similar fashion:

W3 =
3600
N

∫ 24

0

∫ t

0

max
(
Fo(τ, B) − K, 0

)
dτdt.

The problem is to determine the variable(s) that K depends on. First, K
is not directly dependent on B, since bottlenecking should only be a result of
general outflux from the booths into L lanes. Instead, K depends indirectly
on the number of booths, because K depends on outflux Fo, which in turn
depends on B. Also, K also can be considered a linear function of L, because
L is directly proportional to influx, which, by the law of conservation of traffic,
must equal outflux in the aggregate.
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Simulation and Results
We use the same data and Fourier series for traffic influx as in Model 1. We

focus our attention on the case L = 6; other values are analogous.
We use Mathematica to integrate numerically the expression for W1 for a

given L and r = 5 cars/min. (N comes from integration of the influx expres-
sion.) We do the calculation for values of B ranging from L to L+7 (since L+7
is usually greater than the upper bound from Model 1) with step size 0.25. We
fit a quartic polynomial fit to the resulting points (B, W1(B)) to get W1 as a
function of B.

We illustrate for L = 6. We find N = 92,355. We plot W1 for values of B
from 6 to 13, in steps of 0.25, together with the best-fit quartic, in Figure 2.

Figure 2. W1(B) for B ranging from 6 to 13 (actual points with quartic fit).

The recipe for W3(B) is somewhat less straightforward, since Fo(t) is gen-
erated from a stochastic distribution, unlike the deterministic Fi(t). Also, Fo(t)
depends on B, a significant complication. We ran at least 20 trials of each case
(L, B) under the first model; the averaged outcomes of their outflux functions
are the function that we use for outflux in this model’s simulation, henceforth
referred to just as Fo(t, B).

We use surface-fitting software (Systat’s TableCurve3D) to generate an ex-
pression for outflux as a function of time and the number of booths and use
this expression in the compound integral for W3 in integrating numerically.
As before, we generate a scatter plot of points (B, W3(B)) and fit a quartic
polynomial.

The values of R2 for the surface fits all fall between .84 and .95, which are
acceptable values. All of the quartic fits have R2 near 1.

For the case L = 6, Figure 3 shows the surface fit and Figure 4 shows the
function W3.

With W3 a quartic polynomial in B, minimization via calculus yields a
solution. For 6 lanes, Mathematica’s numeric solver gives the minimum at
B = 10.84. Values for various numbers of lanes are summarized in Table 3.
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Figure 3. L = 6: Surface fit for outflux function in terms of time (h) and number of booths.

Figure 4. L = 6: Plot of W3(B) for B ranging from 6 to 13 (actual points plus quartic fit).

Table 3.

Optimized number of booths—final recommendations from Model 2.

Lanes 1 2 3 4 5 6 7 8 16
Booths 3 5 6 7 9 11 12 14 27
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Discussion
This model calculates total waiting time for drivers based on general ideas

of traffic flow. The results are reasonable and satisfy many of our expectations
for a successful model. The recommended B-values increase monotonically
with L and are all less than the upper bounds produced in Model 1. One booth
per lane is nowhere near optimal, because (as we can see from the graphs of
W1 and W3), while bottlenecking is zero, waiting time in line is much higher,
thus diminishing the effect of bottlenecking.

Given the model’s success, it may be disheartening to acknowledge its lack
of robustness. Any adjustments to fine-scale aspects of traffic, such as the
addition of a potential E-ZPass lane (to be discussed later), would be impossible
to implement. Perhaps the rate of service r could be adjusted higher for such a
scenario, but changing lanes before the tollbooths would be difficult to capture
with this model.

Model 3: Cellular Automata

Motivation
What effect does the discreteness of traffic have on the nature and solution

of the problem? A continuous model of traffic may neglect the very factors that
give rise to traffic congestion and jamming. To address this possibility, we turn
to cellular automata theory to develop a discrete, microscopic model.

Approach
Each cell is designated as a vehicle, a vacancy, or a barrier to traffic flow. The

model follows individual vehicles through the plaza and computes the waiting
time for each. The total waiting time measures the plaza’s efficiency.

In any particular time step, a vehicle advances, changes lanes, or sits still.
Vehicles enter the plaza from a stretch of road containing a specific number
of lanes. As a vehicle approaches the string of tollbooths, the road widens
to accommodate the booths (given that there are more tollbooths than lanes).
There is a specific delay associated with using a tollbooth. Once a vehicle leaves
a booth, it merges into a roadway with the original number of lanes.

Assumptions
• The plaza consists of occupied cells, vacant cells, and “forbidden” cells.

• Cells represent a physical space that accommodates a standard vehicle with
buffer regions on both sides.

• All vehicles are the same size.
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Governing Dynamics
Cars move through the toll plaza according to rules. Each vehicle has op-

tions, each with an associated probability. For each time step, the following
rules are applied in sequential order:

1. Starting at the front of the traffic and moving backward (with respect to the
flow), vehicles advance to the cell directly in front of them with probability
p; if the next cell is not vacant, the vehicle does not advance and is flagged.
This probability is meant to simulate the stop-and-go nature of slowly mov-
ing traffic. We can think of p as a measure of driver attentiveness; p = 1
corresponds to the case where drivers are perfectly attentive and move for-
ward at every opportunity, while p = 0 represents the extreme case where
drivers have fallen asleep and fail to move forward at all.

2. Using an influx distribution function, the appropriate number of new vehi-
cles is randomly assigned to lanes at the initial boundary (see next section).

3. Starting at the front of traffic and moving backward, vehicles flagged in
step 1 are given the opportunity to switch lanes. For each row of traffic,
the priority order for switching is determined by a random permutation of
lanes. Switching is attempted with probability q. If switching is attempted,
left and right merges are given equal probability to be attempted first. If
a merge in one direction (i.e. left or right) is impossible (meaning that the
adjacent cell is not vacant), then the other direction is attempted. If both
adjacent cells are unavailable, the vehicle is not moved.

4. Total waiting time for the current time step is computed by determining the
number of cells in the system containing a vehicle.

5. The number of vehicles advancing through the far boundary (end of the
simulation space) are tabulated and added to the total output. This number
is later used to confirm conservation of traffic.

Population Considerations
The Fourier series for daily influx distribution of cars is still valid for the

automata model, but the influx values must be scaled to reflect the effective
influx over a much smaller time interval (a single time step). The modified
influx function, Fin, is computed as follows:

Fin(τ) = min
(⌊

Fin(t)
η

⌋
, L

)
,

where η is a constant factor required for the conversion from units of t to those
of τ and L is the number of initial travel lanes.
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Computing Wait Time
Wait time is determined by looking through the entire matrix at each time

step and noting the number of cells with positive values. The only cells con-
taining positive values are those representing vehicles. Thus, by counting the
number of vehicles in the plaza at any given time, we are also counting the
amount of time spent by vehicles in the plaza (in units of time steps).

At time step i, total cumulative waiting time is computed as follows:

Wi = Wi−1 + 1
(
plaza(x, y) > 0

)
,

where 1() denotes an indicator function and plaza denotes the matrix of cells.

Simulation and Results
The cost optimization method defines total cost as

Ctotal = αγNW (B, L) + BQ.

Using the cellular automata model, we compute waiting time as a function
of both the number of lanes and the number of tollbooths. For fixed L, we
compare all values of Ctotal and choose the lowest one. The results are presented
in Table 4.

Table 4.

Optimization for cellular automata model.

Optimal number of booths
Highway lanes Typical day Rush hour

1 1 2
2 4 4
3 5 6
4 7 7
5 8 9
6 10 11
7 12 13
8 14 15
16 27 29

Each value in Table 4 represents approximately 20 trials. Through these
trials, we noted a remarkable stability in our model. Despite the stochastic
nature of our algorithm, each number of lanes was almost always optimized
to the same number of tollbooths. There were a handful of exceptions; they
occurred exclusively for small numbers of highway lanes (< 3 lanes).

Sensitivity Analysis
Our cellular automata model is relatively insensitive to bothpand q. Changes

of ±11% in p and ±5.2% in q have no effect on the optimal number of tollbooths
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for a six-lane highway. On the other hand, increasing the delay time by 25%
shifts the optimal number of booths from 10 to 11 (10%). Decreasing the delay
by 25% has no effect on the solution. Perhaps additional work could lead to
an elucidation of the relation between delay and optimal booth number that
could help stabilize the cellular automata model.

Comparison of Results from the Models
Table 5 show the optimal number of booths.

Table 5.

Comparison of final recommendations for three models.

Model
Lanes Car-tracking Macroscopic Automata

1 4 3 2
2 5 5 4
3 7 6 5
4 8 7 7
5 10 9 8
6 12 11 10
7 13 12 12
8 16 14 14

16 29 27 27

The car-tracking model serves as an upper bound for the optimal number of
booths, due to its omission of bottlenecking, a fact confirmed in the table. The
cellular automata model, on the other hand, incorporates bottlenecking. Due
to its examination of each car and each period waited, we lean more toward the
cellular automata model for a determination of the optimal number of booths
that is more accurate than those of the other two models.

The optimal values for each model are fit very well (r2 > .996) by a straight
line, with slopes between 1.6 and 1.7.

Conclusion
We use three models—the car-tracking model, the macroscopic model for

total cost minimization, and the cellular automata model—to determine the
optimal (per our definition) number B of tollbooths for a toll plaza of L lanes.

The car-tracking model uses a simple orderly lineup of cars approaching
tollbooths and ignores bottlenecking after the tollbooths; it provides a strong
upper bound on B for any given L.

The macroscopic model looks at the motion of traffic as a whole. It tab-
ulates waiting time in line before the tollbooths by considering times when
traffic influx into the toll plaza is greater than tollbooth service time. It also
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finds bottlenecking time by assuming there exists a threshold of outflux, above
which bottlenecks will occur, and notices when outflux is greater than said
threshold. This is a much more accurate model than the Car-Tracking Model,
and it provides us with reasonable solutions for B in terms of L.

The cellular automata model looks at individual vehicles and their “per lane
length” motion on a toll plaza made up of cells. With a probabilistic model of
how drivers advance and change lanes, this model details far better than the
other models the waiting time in line and the bottlenecking after the tollbooths.

Thus, we recommend values closer to those provided by the automata
model than the macroscopic one. In order to write B explicitly in terms of
L, we invoke the linearity of the results. Also, to preserve integral values for
B, we use the floor function and determine that

B = �1.65L + 0.9�.

Potential Extension and Further Consideration
Our models assume that all booths are identical. However, systems such as

E-ZPass allow a driver to pay a toll electronically from an in-car device without
stopping at a tollbooth. If all E-ZPass booths also double as regular teller-
operated booths, much of our models remain the same, except that the average
service rate might increase. The trouble comes when all the booths are not
the same and drivers may need to change lanes upon entering the plaza. This
directed lane changing was not implemented in any of the models presented
here, but could easily become a part of the automata model. Exclusive E-ZPass
booths also would drastically reduce the operating cost for the booth, since an
operator’s salary would not need to be paid (from $16,000 to $180,000 annually)
[Sullivan 1994].
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Summary
We find the optimal number of tollbooths in a highway toll-plaza for a

given number of highway lanes: the number of tollbooths that minimizes av-
erage delay experienced by cars.

Making assumptions about the homogeneity of cars and tollbooths, we cre-
ate the Single-Car Model, describing the motion of a car in the toll-plaza in
terms of safety considerations and reaction time. The Multi-Car Interaction
Model, a real-time traffic simulation, takes into account global car behavior
near tollbooths and merging areas.

Drawing on data from the Orlando–Orange Country Expressway Author-
ity, we simulate realistic conditions. For high traffic density, the optimal num-
ber of tollbooths exceeds the number of highway lanes by about 50%, while
for low traffic density the optimal number of tollbooths equals the number of
lanes.

Definitions and Key Terms
• A toll plaza with n lanes is represented by the space [−d, d] × {1, . . . , n},

where members of the set {0} × {1, . . . , n} are called tollbooths and d is
called the radius of the toll plaza. Denote the tollbooth {0} × {i} by τi. The
subspace [−d, 0) × {1, . . . , n} is known as the approach region and (0, d] ×
{1, . . . , n} is known as the departure region.
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• A highway/toll plaza pair is represented by the space H = (−∞, d) ×
{1, . . . , m} ∪ [−d, d] × {1, . . . , n} ∪ (d,∞) × {1, . . . , m}, where the toll plaza
is (as above) the subspace [−d, d] × {1, . . . , n} and the stretches of highway
are the subspaces (−∞, d) × {1, . . . , m} and (d,∞) × {1, . . . , m}. Elements
of the sets {1, . . . , m} and {1, . . . , n} are highway lanes and tollbooth lanes
respectively, and elements of R are highway positions. In practice, we take
m ≥ n.

• The fork point of a highway/toll plaza pair, given by the highway position
−d, is the point at which highway lanes turn into toll lanes. Similarly, the
merge point of a highway/toll plaza pair, given by the highway position d,
is the point at which toll lanes turn back into highway lanes (Figure 1).

0-d d

m lanes

n tollboothsFork point Merge Point

Tollbooth line

Merging

Queue

Traffic Flow

Figure 1. A depiction of the highway/toll plaza pair.

• A car C is represented by a 4-tuple (L, a+, a−, abrake) and a position function
p = (x, k) : R → H where x(t) is smooth for all t. Here, x(t) gives the high-
way position of the front tip of C and k(t) is the (tollbooth or highway) lane
number of C. Let L be the length of C in meters, a+ the constant comfort-
able positive acceleration, a− the constant comfortable brake acceleration,
and abrake the maximum brake acceleration. At a fixed time, the region of
H in front of C is the portion of H with greater highway position than C,
while the rear of C is the region of H with highway position at most the
position of C minus L.

• The speed limit vmax of H is the maximum speed at which any car in H can
travel.

• The traffic density ρ(t) of H at time t is the average number of cars per lane
per second that would pass highway position 0 if there were no toll plaza.

• The average serving rate s of tollbooth τi is the average number of cars that
can stop at τi, pay the toll, and leave, per second.
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Table 1.
Variables, definitions, and units.

Variable Definition Units

n Number of tollbooths unitless
ρ Traffic density cars/s
T Total delay time s
x Position m
v Velocity m/s
xo Position of initial deceleration m
to Time of initial deceleration s
xf Position upon returning to speed limit m
tf Time upon returning to speed limit s
x1 Position of car C m
x2 Position of car C′ m
v1 Velocity of car C m/s
v2 Velocity of car C′ m/s
x′
1 Position of car C after time step m

x′
2 Position of car C′ after time step m

v′
1 Velocity of car C after time step m/s

v′
2 Velocity of car C′ after time step m/s

G Safety gap m
G′ Safety gap after time step m
t Time s
t′ Additional time s
αC Compensation deceleration from car/safety gap overlap m/s2

αO Compensation deceleration from obstacle/safety gap overlap m/s2

x Position m
v Velocity m/s
ci Size of tollbooth line i cars
li Length of tollbooth line i m
tserve Time C enters departure area s
tmerge Time C upon passing merge point s
vout Velocity of a car C upon passing merge point s

Table 2.
Constants, definitions, and units.

Constant Meaning Units

d toll plaza radius m
m Number of highway lanes unitless
a+ Comfortable acceleration m/s2

a+ Comfortable deceleration m/s2

abrake Hard brake deceleration m/s2

L Car length m
vmax Speed limit m/s
s Mean serving rate cars/s
σ Standard deviation of serving time s/car
∆t Expected reaction time s
γ Unexpected reaction time s
ε Line spacing distance m
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General Assumptions

Time
• Time proceeds in discrete time steps of size ∆t.

Geometry of the Toll Plaza
• The highway is straight and flat and extends in an infinite direction before

and after the toll plaza. The highway is obstacle-free with constant speed
limit vmax. The assumption of infinite highway is based on toll plazas being
far enough apart that traffic delays at one toll plaza don’t significantly affect
traffic at an adjacent one.

• A car’s position is determined uniquely by a lane number and a horizontal
position. Thus, on a stretch of road with m operating lanes, the position of
a car is given by the ordered pair (x, i) ∈ R × {1, . . . , m}.

Tollbooths and Lines
• A car comes to a complete stop at a tollbooth.

• The time required to accelerate and decelerate to move up a position in a
waiting line is less than the serving time of the line. Thus, average time
elapsed before exiting a line is simply a function of average serving time
and line length measured in cars.

• A car cannot enter a tollbooth until the entire length of the car in front of it
has left the tollbooth.

• All tollbooths have the same normally distributed serving time with mean
1/s and standard deviation σ.

Fork and Merge Points
• Transitions between the highway and tollbooth lanes are instantaneous.

• When transitioning at the fork point into a tollbooth lane, cars enter the lane
with the shortest tollbooth lines.

• There is no additional delay associated with the division of cars into toll-
booths.

• The process of transitioning at the merge points from the tollbooth lanes,
called merging, does incur delay due to bottlenecking because we assume
that there are at least as many tollbooth lanes as highway lanes.
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Optimality
Measures of optimality for a toll include having minimal average delay,

standard deviation of average delay, accident rate, and proportion of cars de-
layed [Edie 1954]. We assume that optimality occurs when cars experience
minimal average delay. Specifically, for a car C, let xo, to be the position and
time at which C first decelerates from the speed limit to enter the tollbooth line,
and let xf , tf be time and position at which, having merged onto the highway
once more, C reaches the speed limit. Then the delay T experienced by the
car, or the time cost associated with passing through the toll plaza instead of
travelling unhindered, is given by

T = tf − to − xf − xo

vmax
. (1)

We secondarily prefer toll plaza configurations with minimal construction and
operating cost, i.e., toll plaza configurations with fewer tollbooths. Specifically,
for a given highway, if two values of n (the number of tollbooths) give suffi-
ciently close average delay times (say, within 1 s), we prefer the lower n.

We rephrase the problem as follows:

Given a highway configuration with m lanes and a model of traffic density, what
is the least number of tollbooth lanes n that minimizes the average delay (within
1 s) experienced by cars travelling through the tollbooth?

Expectations of Our Model
• For sufficiently low traffic density, the delay time per car is relatively con-

stant and near the theoretical minimum, because the tollbooth line does not
grow and there are no merging difficulties. We expect that for low density the
optimal number of tollbooths equals or slightly exceeds the number of lanes.

• For high traffic density, the delay time per car is very large and continues to
grow, because the tollbooth queue is unable to move fast enough to handle
the influx of cars; waiting time increases approximately linearly in time. We
expect that for high density, the optimal number of tollbooths significantly exceeds
the number of lanes.

• An excessive number of tollbooths leads to merging inefficiency, causing
great delay in the departure region.
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The Single-Car Model

Additional Definitions and Assumptions
• An obstacle for a car C is a point in the highway/toll plaza pair which C

must slow down to avoid hitting. The only obstacle that we consider is the
merge point under certain conditions.

• At a fixed time, the closest risk to a car C is the closest obstacle or car in
front of C.

• The unexpected reaction time γ is the amount of time a car takes between
observing an unexpected occurrence ( a sudden stop) and physically re-
acting (braking, accelerating, swerving, etc.). The expected reaction time
∆t is the amount of time between observing an expected occurrence (light
change, car brake, tollbooth) and physically reacting.

• Cars are homogeneous; that is, all have the same L, a+, a−, and abrake.

• All cars move in the positive direction.

• All cars observe the speed limit vmax. Moreover, unless otherwise con-
strained, a car travels at this speed or accelerates to it. In particular, outside
a sufficiently large neighborhood of the toll plaza, all cars travel at vmax.

• Cars accelerate and decelerate at constant rates a+ and a− unless otherwise
constrained.

• Cars do not attempt to change lanes unless at a fork or merge point. That
is to say, for a car C, k(t) is piecewise constant, changing only at t such that
x(t) = −d or d.

• A car C prefers to keep a certain quantity of unoccupied space between its
front and its closest risk, of size such that if C were to brake with maximum
deceleration, abrake, C would always be able to stop before reaching its clos-
est risk [Gartner et al. 1992, §4]. We refer to this quantity as the safety gap
G. Given the position of a car C, the position corresponding to distance G
in front of C is the safety position with respect to C. If the safety position
with respect C does not overlap the closest risk, we say C is unconstrained.

• A car can accurately estimate the position and velocity of itself and of the
car directly in front of it and its distance from the merging point.

• If a car C comes within a sufficiently small distance ε of a stopped car, C
stops. This minimum distance ε is constant.

• For each car, there is a delay, the reaction time, between when there is a need
to adjust acceleration and when acceleration is actually adjusted. Green
[2000] splits reaction times into three categories; the ones relevant to us are
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expected reaction time ∆t and unexpected reaction time γ, which are de-
fined above. Although these times vary with the individual, we make the
simplifying assumption that all cars have the same values, ∆t = 1 s and γ =
2 s. Reaction times provide a motivation for discretizing time with time step
∆t; drivers simply do not react any faster.

The Safety Gap
We develop an expression for the safety gap G of car C, which depends on

the speed of the closest risk C ′. Let the current speeds of C and C ′ be v1 and
v2. Now suppose that C ′ brakes as hard as possible and thus decelerates at
rate abrake. In time v2/abrake, car C ′ stops; meanwhile it travels distance

v2
v2

abrake
− 1

2abrake

(
v2

abrake

)2

=
v2
2

2abrake
.

If C starts braking after a reaction time of γ, it takes total time γ + v1/abrake
to stop and travels distance

γv1 +
v2
1

2abrake
.

Thus, in the elapsed time, the distance between C and C ′ decreases by

γv1 +
v2
1 − v2

2

2abrake
.

Therefore, this must be the minimum distance between the front of C and the
back of C ′ in order to avoid collision. Accounting for the length of C ′, the
minimum distance between C and C ′, and thus the safety gap, must be

G = L + γv1 +
v2
1 − v2

2

2abrake
.

Now suppose that the closest risk is an obstacle, in particular the merge
point. Rather than braking with deceleration abrake, C will want to keep a
safety gap that allows for normal deceleration of a−. Because deceleration
on approach is expected, C will opt to decelerate at a comfortable rate, a−.
Moreover, since C is reacting to an expected event, the reaction time is given
by ∆t. Since the length and velocity of the obstacle are both 0, the safety gap
must be

G = ∆tv1 +
v2
1

2a−
.

Individual Car Behavior
An individual car C can be in one of several positions:
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• No cars or obstacles are within its safety gap, that is, C is unrestricted. Con-
sequently, C accelerates at rate a+ unless it has velocity vmax.

• The tollbooth line is within braking distance. Since this is an expected oc-
currence, the car brakes with deceleration a−.

• Another car C ′ is within its safety gap, so C reacts by decelerating at some
rate αC so that in the next time step, C ′ is no longer within the safety gap.
C chooses αC based on the speeds v1, v2 and positions x1, x2 of both cars. If
C assumes that C ′ continues with the same speed, then after one time step
∆t the new positions and speeds are

x′
1 = x1 + v1∆t − 1

2αC(∆t)2,x′
2 = x2 + v2∆t,

v′1 = v1 − αC∆t,v′2 = v2,

and the new safety gap is

G′ = γv′1 +
v′21 − v′22
2abrake

.

For the new position of C2 to not be within the new safety gap, we must
have

x′
2 − x′

1 − L = G′.

Substituting into this equation, we find:

x2 + v2∆t − v1∆t + 1
2αC(∆t)2 − L = γv1 − γαC∆t +

(v1 − αC∆t)2 − v2
2

2abrake
.

Solving this equation for αC and taking the root corresponding to the situ-
ation that C trails C ′, we find that

cαC =
1

∆t

(
∆tabrake

2
+ v1 + γabrake

− 1
2

(
[(∆t)2 − 4v1∆tabrake + 4∆ta2

brakeγ + (2γabrake)2

+8(x2 − x1)abrake + 8v2∆tabrake − 8Labrake + 4v2
2

] 1
2

)
.

• The merge point is within its safety gap. The safety gap equation differs
from the car-following case by using a− instead of abrake and ∆t instead
of γ and by leaving out the L. Therefore, by the same argument as in the
previous paragraph, the deceleration is

αo =
1

∆t

(
v1 +

3∆ta−
2

− 1
2

√
(∆t)2 − 4v1∆ta− + 8(∆t)2a2− + 8(x2 − x1) + 8v2∆ta− + 4v2

2

)
.
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Finally, once we have determined the new acceleration α of C, we can
change its position and velocity for the next time step as follows (letting
x, v and x′, v′ be the old and new position and velocity respectively):

v′ = v + α∆t, x′ = x + v∆t + 1
2α∆t2.

Calculating Delay Time
We calculate the delay time T for a car C moving through a toll plaza by

breaking the process into several steps, tracing the car as soon as it starts slow-
ing down before passing through the tollbooth, and until it merges back into a
highway lane and accelerates to the speed limit.

Recalling our assumptions that cars do not change lanes, that they are
evenly distributed among the lanes, and that there is no time loss associated
with the distribution of cars into tollbooth lane at the fork point, we find that
the period of approach to a tollbooth can be broken down as follows:

• Deceleration from speed limit to stopping. We assume that a car comes to
a complete stop upon joining a tollbooth line as well as upon reaching the
tollbooth. Therefore, the first action taken by a car approaching a toll plaza
is to decelerate to zero; at constant deceleration a−, it takes time vmax/a− to
go from the speed limit to zero, over distance v2

max/2a−.

• Line Assignment. As a car approaches the toll plaza, it is assigned to the
currently shortest line. Let ci be the number of cars in line i. The cars
are spaced equidistantly throughout the line with distance ε between cars.
Thus, as long as the length of the line is less than d, we have that the length
of the line is li = ci(L+ε), where L is the length of a car. Now, if ci(L+ε) > d,
then the line extends to before the fork area, where there are m lanes instead
of n. Assuming that the line lengths are roughly the same, increasing the
minimum line length by one car increases the total number of cars by about
n, and therefore each of the m lanes has an additional n/m cars. It follows
that

li =

{
ci(L + ε), if ci(L + ε) < d;

d +
n[ci(L + ε) − d]

m
, otherwise.

(2)

• Movement through a Tollbooth Line. A car C joins the tollbooth line that
it was assigned if such a line exists, that is, if the line length li is positive.
In this case, C must wait for the entire line ahead to be serviced before C
reaches the tollbooth. Let tserve be the time when C enters the departure
area, after it has been serviced. If there is an overflow of cars from the
merge line such that C cannot leave the tollbooth, tserve is the time when the
car actually leaves, after the line in front has advanced sufficiently.

• Movement through the Departure Region. Different scenarios can occur
in the departure region.
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– Once C enters the departure area, it accelerates forward until either an-
other car or the merge point enters its safety gap.

– If another car C ′ enters the safety gap of C, C slows down and follows
C ′ until C ′ merges, at which time the merge point will overlap the safety
gap of C.

– When the safety position of C reaches the merge point, if C does not
have right of way, C will slow down so as to prevent the merge point
from overlapping the safety gap, treating the merge point as an obstacle.
This is in order to allow other cars who have already begun to merge,
to do so until C can merge.

– Upon having the right of way, C merges and accelerates unconstrained
from the departure region until reaching the speed limit. Let tmerge be
the time at which C merges and vout be its speed at that time. Then

tf = tmerge +
vmax − vout

a+
,

xf = d + vout
vmax − vout

a+
+

(vmax − vout)2

2a+
.

Thus by (1), the delay experienced by C is

T = tmerge − tline − li(tline) + d

vmax
+

vmax − vout

a+
− 3vmax

2a−
− vout(vmax − vout)

a+vmax
.

The Multi-Car Interaction Model
We now determine the average delay time for a group of cars entering the

toll plaza over a period of time. We simulate a group of cars arriving as per
an arrival schedule and average their respective delay times. There are two
complications: determining the arrival schedule (the distribution of individual
cars over which to average) and the two variables tmerge and vout (used in the
delay-time formula above).

To determine computationally the average delay time, we must use the
traffic density function ρ(t) to produce a car arrival schedule. We create the
arrival schedule by randomly assigning arrival times based on ρ. Using this
schedule, we determine which cars begin to slow down for a given time step.
Unfortunately this task is not as straightforward as determining whether a
car’s arrival time is less than the present time step. The arrival schedule pro-
vides the time a car reaches 0 (on the highway) if unconstrained. We wish to
know when a car reaches a certain distance from the tollbooth line. Essentially
given that a car would be at a set position (say 0 for the tollbooth) at time
t, we seek the time t′ when that car would have passed the front of the toll-
booth line. This reduces to a question of Galilean relativity and we find that
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t′ = t − li(t)/vmax. Now, up to knowing li(t), we can exactly determine when
cars join the tollbooth lines. We use (2) and the difference equation for car flow

∆ci

∆t
=

m

n
ρ

(
t − li

vmax

)
− si

to keep track of the length of the tollbooth line, increasing it as cars join and
decreasing it as cars are served.

As a car’s arrival time (adjusted to the line length) is reached, we imme-
diately assign it to the current shortest tollbooth line. We introduce normally
distributed serving times with mean 1

s (where s is serving rate) and standard
deviation σ that we assume to be 1

6s .
The second consideration in simulating many cars is how to determine

tmerge and vout for each car. Our time-stepping model allows us to recursively
update every car and thus to determine the actions of a single car at each time
step. Following the rules in the previous section, we know exactly when and
how much to accelerate (a+) and decelerate (αc, αo). Furthermore, we observe
that when a car that is first in its tollbooth lane approaches the merge point, it
joins a merging queue (with at most n members). The only time when a car (on
the merging queue) does not treat the queue as an obstacle (and consequently
slow down) is when a highway lane clears and the car is taken from the queue
and allowed to accelerate across the merge point and into free road. A lane is
clear once the car in it accelerates L + ε passed the merge point.

With this model, we thus have a method, given a highway with m lanes, a
certain traffic density function, and values for various constants, to calculate
the optimal number of tollbooth lanes n. We can estimate a finite range of val-
ues of n in which the optimal number must lie. For each value of n we run our
model, calculating the delay experienced by each car and averaging these to
calculate average delay. We then compare our average delays for all n, choos-
ing the minimal such n so that average delay is within 1 s of the minimum.

Case Study
We need reasonable specific values for our constants and density function

for use in our tests. We take most of these from the Orlando–Orange Country
Expressway Authority [2004] and a variety of reports on cars. We begin with
a few simplifying assumptions about our traffic density function.

• To determine optimal average delay, it suffices to calculate the average de-
lay over a suitably chosen day, as long as this day has periods of high and
low density. This is reasonable because over most weekdays, traffic tends to
follow similar patterns. Therefore, we limit the domain of ρ to the interval
of seconds [0, 3600 × 24].

• The function ρ(t) is piecewise constant, changing value on the hour. This
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is reasonable: Since cars are discrete, ρ(t) really is an average over a large
amount of time and thus must already be piecewise constant.

• The length of the time interval between an arriving car and the next car is
normally distributed.

The Orlando–Orange Country Expressway Authority’s report on plaza char-
acteristics [2004] allows us to construct a realistic traffic density function ρ
for the purposes of testing. The report gives hourly traffic volume on several
highways in Florida, which we use along with our assumption about normal
arrival times to develop an arrival schedule for cars on the highway.

We assume several realistic values for constants defined earlier (Table 3).

Table 3.
Constant values used in testing.

Constant name Symbol Value

Comfortable acceleration a+ 2 m/s2

Comfortable deceleration a− 2 m/s2

Hard braking deceleration abrake 8 m/s2

Car length L 4 m
Speed limit vmax 30 m/s
Line spacing ε 1 m

Our model assumes that every tollbooth operates at a mean rate of ap-
proximately s cars/s. But each type of tollbooth—human-operated, machine-
operated, and beam-operated (such as an EZ-pass)—has a different service
rate. We attempt to approximate the heterogenous tollbooth case by making
s a composite of the respective services rates. According to Edie [1954], the
average holding time (inverse of service rate) for a human operated tollbooth
is 12 s/car, while according to the Orlando–Orange County Expressway Au-
thority [n.d.], the average service rate for their beamoperated tollbooths, the
E-Pass, is 2 s/car. Similarly, a report for the city of Houston [Texas Transporta-
tion Institute 2001] places the holding time for a human operated tollbooth at
10 s/car and a machine operated tollbooth at 7 s/car. Looking at these times,
we find that a reasonable average holding time could be 5 s/car, giving us an
average service rate s = 0.2 cars/s.

For verification, we consider hourly traffic volumes for six Florida high-
ways, with from 2 to 4 lanes and varying traffic volumes [Orlando–Orange
Country Expressway Authority 2004]. We use the data to obtain ρ(t) and test
various components of our model. After model verification, we use our model
to determine the optimal tollbooth allocations.

We look at two typical cases. A toll plaza radius of d = 250 m [Orlando–
Orange Country Expressway Authority 2004] is fairly standard. The hourly
traffic densities of the six highways take a standard form; they differ mostly
in amplitude, not in shape. Therefore, we model our density functions on two
such standard highways, 4-lane Holland West (high density) and 3-lane Bee
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Line (low density) (Figure 2). We extrapolate their traffic volume profiles to
profiles for highways with 1 through 7 lanes. For m lanes, we scale the traffic
volume by m/4 (Holland West) or m/3 (Bee Line). Doing so maintains the
shape of the profile and the density of cars per lane while increasing the total
number of cars approaching the toll plaza.
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Figure 2. Traffic volume as a function of time for Holland West (top) and Bee Line (bottom).

Verification of the Traffic Simulation Model
Based on the optimality criteria, for various test scenarios we determine

the minimal number of tollbooths with average delay time within 1 s of the
minimal average delay. We show the results in Table 4.

Model results for three toll plaza match the actual numbers, and the other
three differ only slightly. In the case of Dean Road, having 4 tollbooths (the
actual case) instead of 5 leads to a significantly longer average delay time (70 s
vs. 25 s). For Bee Line and Holland West, the difference is at most 1 s. These
results suggest that our model agrees generally with the real world.
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Table 4.
Comparison of model-predicted optimal number of tollbooths and real-world numbers for six

specific highway/toll plaza pairs.

Highway Tollbooths Comparison
Optimal Actual

Hiawassee 4 4 same
John Young Parkway 4 4 same
Dean Road 5 4 mismatch
Bee Line 3 5 close
Holland West 7 6 close
Holland East 7 7 same

Results and Discussion
Using real-world data from the Orlando–Orange Country Expressway Au-

thority [2004], we create 14 test scenarios: high and low traffic density profiles
for highways with 1 to 7 lanes. For each scenario, we run our model for a num-
ber n of tollbooths n ranging from the number of highway lanes m to 2m + 2
(empirically, we found it unnecessary to search beyond this bound) and deter-
mine at which n the average delay time is least—this is the optimal number
of tollbooths. We present our optimality findings in Table 5. For high traf-
fic densities and more than two lanes, the optimal number of tollbooths tends
to exceed the number of highway lanes by about 50%, a figure that seems to
match current practice in toll plaza design; for low densities, the optimal num-
ber of tollbooths equals the number of highway lanes.

Table 5.
The optimal number of tollbooths for 1 to 7 highway lanes, by traffic density.

High density Low density

Lanes 1 2 3 4 5 6 7 1 2 3 4 5 6 7
Tollbooths 3 4 5 6 8 9 11 1 2 3 4 5 6 7

For high traffic density but only as many tollbooths as lanes, the average
delay time is is roughly 500 s, almost 20 times as long as the average delay
of 25 s for the optimal number of tollbooths. So we strongly discourage con-
struction of only as many tollbooths as lanes if high traffic density is expected
during any portion of the day. However, when there is low traffic density, this
case is optimal, with an average delay time of 22 s.

Further Study
To simulate real-world conditions more accurately, we could

• consider the effect of heterogenous cars and tollbooths;
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• allow for vehicles other than cars, each with their own size and acceleration
constants;

• consider the effect of changing serving rates, since research shows that av-
erage serving time decreases significantly with line length [Edie 1954]; or

• vary the toll plaza radius.

Strengths of Model
The main strength of the Multi-Car Interactive Model stems from our com-

prehensive and realistic development of single-car behavior. The intuitive no-
tion of a car’s safety gap and its relation to acceleration decisions, as well the
effects of reaction times associated with expected and unexpected occurrence
all find validation in traffic flow theory [Gartner et al. 1992]. The idea of a
merge point and a car’s behavior approaching that point mimics the practices
of yielding right-of-way as well as cautiously approaching lane merges. Our
choice of time step realistically approximates the time that normal decision-
making requires, allowing us to capture the complete picture of a toll plaza
both on a local, small scale, but also on the scale of overall tendencies. Finally
by allowing for certain elements of normally distributed randomness in serv-
ing time and arrival time we capture some of the natural uncertainty involved
in traffic flow.

A great strength of our model lies in the accuracy of its results. Our model
meets all of our original expectations and furthermore predicts optimal toll-
booth line numbers very close to those actually used in the real world, sug-
gesting that our model approximates real-world practice.

Finally, the Multi-Car Interactive Model provides a versatile framework for
additional refinements, such as modified single-car behavior, different types of
tollbooth, and nonuniform serving rates.

Weaknesses of Model
In the real world, a car in the center lane has an easier time merging into the

center lanes than a car in a peripheral lane, but this behavior is not reflected in
our model. We also disallow lane-changing except at fork and merge points,
though cars often switch lanes upon realizing that they are in a slow tollbooth
line. Our method of determining car arrival times may be flawed, since Gart-
ner et al. [1992, §8] suggest that car volume is not uniformly distributed over a
given time block but rather increases in pulses.

Perhaps the two greatest weaknesses of our model are that all cars behave
the same and all tollbooth lanes are homogeneous. While we believe that we
capture much of the decision-making process of navigating a toll plaza, we
recognize that knowledge is imperfect, decisions are not always rational, and
all tollbooth lanes, and not all cars (or their drivers) are created equal.
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Summary
We develop a cellular-automaton model to address the slow speeds and

emphasis on lane-changing in tollbooth plazas. We make assumptions about
car-following, based on distance and relative speeds, and arrive at the criterion
that cars maximize their speeds subject to

gap >

⌊
Vcar

2

⌋
+

1
2
(Vcar − Vfrontcar)(Vcar + Vfrontcar + 1).

We invent lane-change rules for cars to determine if they can turn safely and
if changing lanes would allow higher speed. Cars modify these preferences
based on whether changing lanes would bring them closer to a desired type
of tollbooth. Overall, our assumptions encourage people to be a bit more
aggressive than in traditional models when merging or driving at low speeds.

We simulate a 70-min period at a tollbooth plaza, with intervals of light and
heavy traffic. We look at statistics from this simulation and comment on the
behavior of individual cars.

In addition to determining the number of tollbooths needed, we discuss how
tollbooth plazas can be improved with road barriers to direct lane expansion
or by assigning the correct number of booths to electronic toll collection. We
set up a generalized lane-expansion structure to test configurations.

Booths should be ordered to encourage safe behavior, such as putting faster
electronic booths together. Rigid barriers affect wait time adversely.

Under typical traffic loads, there should be at least twice as many booths as
highway lanes.
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Definitions and Conventions
Car/Driver. Used interchangeably; “cars” includes trucks.

Tollbooth lane and highway lane. There arenhighway lanes andm tollbooths.
The tollbooth lane is the lane corresponding to a particular tollbooth after
lane expansion.

Default lane. In the lane-expansion region, each highway lane is assigned a
tollbooth lane such that following the highway lane without turning leads
by default to the tollbooth lane, and following that in the lane-contraction
region leads to the corresponding highway lane. Other tollbooth lanes begin
to exist at the start of lane expansion and become dead ends at the end of
lane contraction.

Delay. The time for a car to traverse the entire map of our simulated world,
which stretches 250 cells before and after the tollbooth.

Gap. We represent a lane as an array; the gap is obtained by subtracting the
array indices between two adjacent cars.

Assumptions and Justifications

Booths
A booth is manual, automatic, or electronic. A manual booth has a person to

collect the toll, an automatic booth lets drivers deposit coins, and an elec-
tronic booth reads a prepaid radio frequency identification tag as the car
drives by. A booth may allow multiple types of payment.

The cost of operating the booths is negligible. Compared to the cost of build-
ing the toll plaza or of maintaining the stretch of highway for which the toll
is collected, this expense is insignificant, particularly since automated and
electronic booths require less maintenance than manual booths.

Booth delays. Cars with an electronic pass can cross electronic tollbooths at a
speed of 2 cells per time increment (≈30 mph). A car with an electronic pass
can also travel through a manual or automatic booth but must wait 3–7 s
for the gate to rise. A car without an electronic pass is delayed 8–12 s at
an automatic booth and 13–17 s at a manual booth. We use probabilistic
uniform distributions over these intervals to ensure that cars do not exit
tollbooths in sync.
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Cars/Drivers
Cars are generated according to a probability distribution. We start them at

1 mi from the tollbooth and generate for a fixed amount of simulated time
(usually about 1 h), then keep running until all have gotten to the end of the
simulated road 1 mi beyond the tollbooth. There are no entry or exit ramps
in the 1 mi section leading to the tollbooth. Some vehicles are classified as
trucks, which function identically but must use manual tollbooths if they do
not have an electronic pass.

Drivers accurately estimate distances and differences in speed.

Car acceleration and deceleration is linear and symmetric. In reality, a car
can accelerate much faster from 0 to 15 mph than from 45 to 60 mph, and
the distances for braking and acceleration are different; but this is a standard
assumption for cellular-automaton models.

Cars pack closely in a tollbooth line. Drivers don’t want people from other
lanes to cut into their line, so they follow at distances closer than suggested
on state driver’s license exams.

Dissatisfaction from waiting in line is a nondecreasing convex function. An
especially long wait is a major annoyance. In other words, it is better to
spread wait times uniformly than to have a high standard deviation.

Lanes
Toll collectors can set up new rigid barriers in the lane-expansion region.

Doing so would make certain lane changes illegal in designated locations.
Since adding an extra tollbooth can be cost-prohibitive, setting up barriers
to promote efficient lane-splitting and merging is important.

Signs are posted telling drivers what types of payment each lane accepts.
If drivers benefit from a certain type of booth (e.g., electronic), they will tend
to gravitate toward it.

No highway lane is predisposed to higher speeds than others. Which lanes
are “fast” or “slow” is dictated by the types of tollbooths that they most
directly feed into.

The lane-expansion region covers about 300 ft. The lane contraction section
is also assumed to be 300 ft.

Criteria for Optimal Tollbooth Configuration
Cars slowing or stopping at tollbooths make for bottlenecks. Since the

speed of a car through a tollbooth must be slower than highway speed, adding
tollbooths is an intuitive way to compensate.
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Our goal is a configuration of lanes and tollbooths that minimizes delay for
drivers. Mean wait time is the simplest criterion but not the best. Consider
the case where there are no electronic passes and traffic is very heavy. In this
limiting but plausible case, there are constantly lines and cars pass through
each booth at full capacity. For a fixed number of tollbooths, the total wait time
should be similar regardless of tollbooth-lane configuration; but if one lane is
moving notably faster than the others, then the distributions of wait times will
differ. Because we assume that dissatisfaction is a convex function, we give
more weight to people who are stuck a long time. Klodzinski and Al-Deek
[2002, 177] suggest that the 85th percentile of delays is a good criterion.

At the same time, we do not wish to ignore drivers who go through quickly.
Therefore, we take the mean of the data that fall between the 50th and 85th
percentiles for each type of vehicle. This will put an emphasis on cars that
are stuck during times of high traffic but will not allow outliers to hijack the
data. We consider separately the categories of cars, trucks, and vehicles with
electronic passes, take the mean of the data that fall between the 50th and 85th
percentiles, and take the weighted average of this according to the percentage
of vehicles in the three categories.

We also wish to analyze effect of toll plaza layout. We therefore record the
incidence of unusually aggressive lane changes, excessive braking, and cars
getting “stuck” in the electronic lane that do not have an electronic pass.

Setting Up a Model
In the Nagel-Schreckenberg cellular-automaton model of traffic flow [Nagel

and Schreckenberg 1992, 2222], cars travel through cells that are roughly the
size of a car with speeds of up to 5 cells per time increment. This model
determines speeds with the rules that cars accelerate if possible, slow down to
avoid other cars if needed, and brake with some random probability. The model
updates car positions in parallel. Such models produce beautiful simulations
of general highway traffic, but less research has been done using the tight speed
constraints and high emphasis on lane-changing that a tollbooth offers.

Creating models for multiple lanes involves defining lane-change criteria,
such as change lanes if there is a car too close in the current lane, if chang-
ing lanes would improve this, if there are no cars within a certain distance
back in the lane to change into, and if a randomly generated variable falls
within a certain range [Rickert et al. 1996, 537]. Even with only two lanes,
one gets interesting behavior and flow-density relationships that match empir-
ical observations [Chowdhury et al. 1997, 423]. Huang and Huang even try
to implement tollbooths into the Nagel-Schreckenberg model, but their treat-
ment of lane expansion assumes that each lane branches into two (or more)
tollbooths dedicated to that lane [2002, 602]. In real life, sometimes highways
add tollbooth lanes without distributing the split evenly among highway lanes.

To allow for a various setups, we develop a generalized lane-expansion
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structure. In the tollbooth scenario, low speeds are more common than in
general stretches of highway, and there is a need to address more than two lanes.
We change car-following and lane-change rules to fit a congested tollbooth area.

In the Nagel-Schreckenberg model, cars adjust their speeds based on the
space in front. The tollbooth forces a universal slowdown in traffic. At these
slow speeds, it is possible to follow cars more closely than at faster speeds. In
the real world, we consider the speed of the car in front in addition to its distance
away. Random braking is needed in the Nagel and Schreckenberg model to
prevent the cars from reaching a steady state. However, in a tollbooth scenario,
the desire not to let other cars cut in line predisposes drivers to follow the car
in front more closely than expected. Thus, we do not use random braking but
incorporate randomness into the arrival of new cars and lane-change priority
orders. Instead of Nagel and Schreckenberg’s rules, we propose the following
rules for a cellular automaton model simulating a tollbooth scenario:

1. Cars have a speed of from 0 to 5 cells per time increment. In a single time
increment, they can accelerate or decelerate by at most 1 unit.

2. Drivers go as fast as they can, subject to the constraint that the distance to
the car in front is enough so that if it brakes suddenly, they can stop in time.

3. Cars change lanes if doing so would allow them to move faster. They modify
the increased speed benefits of changing lanes by checking if the lane leads
to a more desirable tollbooth type or if they face an impending lane merger.
Before changing lanes, cars check the gap criterion of rule 2) applies to both
the gap in front and the gap behind the driver after the lane change.

4. At each time step, we update positions and speeds from front to back.

We examine the rules in detail. Let us say that

• There are 250 cells in a mile (a little over 21 ft/cell).

• Each time step represents about 1 s.

Rule 1’s maximum speed of 5 cells per time step corresponds to 72 mph (each
unit of velocity is just under 15 mph), which is about the expected highway
speed. The numbers for length and time increments do not need to be precise,
since we can fix one and scale the other; what is important is that the length of
a cell is a little more than the average length of a car (about 15 ft).

For any pair of following cars, we want the rear car to be able to decelerate
at a rate of at most 1 unit and still avoid collision with the front car, even if
the front car begins decelerating at a rate of 1 unit per time step squared. If
for a given time step the rear and front cars have speeds Vcar and Vfrontcar and
immediately begin decelerating at a rate of 1 unit squared until they stop, the
total distances that they travel are

Vcar + (Vcar − 1) + · · · + 1 = 1
2Vcar(Vcar + 1),

Vfrontcar + (Vfrontcar − 1) + · · · + 1 = 1
2Vfrontcar(Vfrontcar + 1).
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Our condition is equivalent to the car in back remaining behind the car in front,
so the gap or difference in squares between the cars must be

gap > 1
2Vcar(Vcar+1)− 1

2Vfrontcar(Vfrontcar+1) = 1
2 (Vcar−Vfrontcar)(Vcar+Vfrontcar+1).

Thus, at each update, the rear car checks if it can increase its speed by 1 and still
satisfy this inequality or if it must decrease its speed to maintain the inequality,
and acts accordingly.

However, according to this model, if two cars are going the same speed, then
they theoretically touch. Besides being a safety problem, this also contradicts
the observations of Hall et al. that flow of cars as a function of percent occupancy
of a location increases sharply until about 20% and then decreases thereafter
[1986, 207]. With the inequality above, we could generate initial conditions with
high occupancy and high flow. Before we discard our model, though, let us
first check to see if these conditions would actually show up in the simulation.

We add the rule that a car tries to leave at least �Vcar/2� empty spaces before
the car in front; this would still let cars tailgate at low speeds. For high speeds,
this would be a somewhat unsafe distance but consistent with aggressive merg-
ing; but we expect high speeds to be rare near the tollbooth during moderate
or high congestion. Thus, our final criterion for rule 2 is that a car looks at the
number of empty spaces in front of it and adjusts its speed (upward if possible)
so that it still meets the inequality

gap >

⌊
Vcar

2

⌋
+

1
2
(Vcar − Vfrontcar)(Vcar + Vfrontcar + 1).

When changing lanes (rule 3), cars ask, “If I changed lanes, how fast could I
go this time step?” Cars avoid making lane changes that could cause a collision,
as determined by the gap criterion. When given an opportunity to change lanes,
a car compares the values of the maximum speeds that it could attain if it were
in each lane but adds modifiers. Lanes have penalties in valuation for leading
to tollbooths that the driver cannot use (−2 per lane away from a usable lane
before the lanes branch and −20 after) or are suboptimal (−1 per lane away
from an optimal lane), where suboptimal means a car with an electronic pass in
a lane that does not accept it. Leaving the tollbooth, drivers try hard to get out
of dead-end lanes (−3 or −5 depending on how far it is to the end). If drivers
value the lane they are in and a separate lane equally, they do not change. If
drivers value both the lane on their left and the lane on their right equally more
than their current lane, they pick randomly.

We update speeds in each lane from front to back, with lanes chosen in a ran-
dom order. A consequence of this is that information can propagate backwards
at infinite speed if for example the head of a string of cars all going at speed 1
came to a complete stop. This infinite wave-speed problem could be fixed by
introducing random braking, but at slow speeds we find it more acceptable to
have people inching forward continuously than to have people braking from 1
to 0 at inopportune times. This also has consequences for lane changes, in that
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randomly giving lanes an update priority will have different results from pro-
cessing all lane changes in parallel. Although some cellular-automaton traffic
models in the literature update in parallel, we use serial updating because it
makes handling the arrays easier and eliminates the problem of having peo-
ple from two different lanes trying to change into the lane between them at the
same time. The random update priority ordering for the lanes is changed every
time increment, so that there is less systematic asymmetry in lane changing.

Generalized Lane-Expansion Structure
We develop a system to describe easily a large number of different tollbooth

setups. The road both starts and ends as an n-lane highway and contains m
tollbooths in the middle. The lane dividers are labeled from 1 to n + 1 for the
highway lanes and from 1 to m + 1 for the tollbooth lanes. A rigid barrier
consists of an (x, y) pair where the xcoordinate represents a lane divider and
the y-coordinate represents a tollbooth divider. Figure 1 shows the case n = 4,
m = 6, with rigid barriers at (1, 1), (2, 3), (3, 4), and (5, 7). Cars may not make
lane changes across a rigid barrier.

Figure 1. Generalized lane-expansion scheme.

Suppose that we have an ordered set of rigid barriers {(x1, y1), . . . , (xk, yk)},
where xi + 1 > xi for i = 1, . . . , k − 1. Then the set of rigid barriers must obey
the following rules:

• you cannot drive off the road: (1, 1) and (n+1, m+1) must be rigid barriers;
and
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• rigid barriers do not cross each other: for i = 1, . . . , k−1, we have yi+1 > yi.

The dotted lines in Figure 1 can be crossed as normal lane changes. In the
lane-expansion region, each lane is assigned a “default” tollbooth lane that it
most naturally feeds into. Highway lanes 1, 2, 3, and 4 feed tollbooth lanes 1,
3, 4, and 5. If there is an adjacent lane not blocked by a rigid barrier, a car can
enter that lane. The default tollbooth lane then feeds back into the highway
lane after the tollbooth and the other highway lanes are treated as dead-ends.
Cars are given an incentive to change out of these dead-end lanes ahead of
time. We assume that rigid barriers and default lanes are symmetric between
lane expansion and contraction. Additionally, no lane changes are allowed on
the five cells immediately preceding and following the tollbooth cell.

Results
We simulate a 70-min period when incoming traffic starts light, increases

for 40 min, then decreases again. Figure 2 shows the generation rates for light,
normal, and heavy traffic. For a four-lane highway, these settings correspond
to volumes of about 2200, 3000, and 3600 cars over the 70-min period.

Figure 2. Traffic generation rates.

We test two cases of allocation and arrangement of tollbooths: no barriers,
or else each highway lane branches into an equal number of tollbooth lanes. In
both cases, we make the odd numbered lanes the default lanes. We tested both
of these cases for different orderings of the tollbooths. For a 4-lane highway, we
use 2 electronic booths, 4 automatic booths, and 2 manual booths. Half of the
vehicles had electronic passes and 10% of the vehicles are trucks (no electronic
pass). First we clustered all booths of the same type in some permutation, then
we alternated types. Figure 3 shows data averaged over 10 runs.



Lane Changes and Close Following 325

Figure 3a. Clustered lanes. Figure 3b. Alternating lanes.

Figure 3. Average delays for two lane configurations and with vs. without barriers. All situations
are for normal traffic load, 4 highway lanes, and 8 booths—2 electronic, 4 automatic, 2 manual.

The x-axis gives configurations and the y-axis is adjusted average delay
time (mean of the 50th through 85th percentiles of travel time through the 250
cells before and after the tollbooth). If there were no tollbooth, then a car at full
speed would have delay 100 s. Barriers are slightly worse than just allowing
people to change lanes.

We note from Figure 3a that each of the clustered lane types is different from
its mirror image, and this phenomenon is reproducible, which is puzzling. We
think that it is caused by our handling of the concept of default lane, where
some lanes feed directly into tollbooth lanes; with unrestricted lane expansion,
this might make some lane changes easier than others.

The alternating tollbooth configurations appear to have slightly less delay,
but they also generate more warning flags about dangerous turns and cars
becoming stuck in tollbooth lanes that they cannot use. For each clustered con-
figuration, either it or its mirror image gives time equivalent to the alternating
tollbooth configurations. Therefore, for safety reasons, we suggest using the
clustered configurations.

We next determine how many of each type of booth to use for a 4-lane
highway with 8 tollbooths and a lane-expansion region with no rigid barriers.
We put the electronic booths on the left and the manual booths on the right.
We vary the numbers of each type of tollbooth for different distributions of
cars, trucks, and vehicles with electronic passes and run the simulation under
normal traffic loads. Unless the percentage of trucks is very low, allocating
only 1 manual booth for the trucks generates a large number of trucks stuck
in lanes that they cannot use. The number of electronic booths should be 2
or 3, depending on whether cars with electronic passes outnumber vehicles
without them. Since 8 to 12 tollbooths is reasonable size for a 4-lane highway,
we recommend very roughly one-fourth electronic, one-half automatic, and one-fourth
manual tollbooths.
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How many tollbooths are needed for different levels of traffic? We round
down the number of manual and electronic tollbooths and round up the number
of automatic tollbooths from the above proportions. Using the light, normal,
and heavy traffic loads defined in Figure 2 above, we arrive at Figure 4.

Figure 4. Delay vs. number of tollbooths.

Finally, we consider the limiting case of no trucks and no electronic passes
(all tollbooths are automatic). This is the standard case directly comparable to
other models in the literature. Under light, normal, and heavy traffic loads, we
find that delay times are as in Figure 5.

Without electronic tollbooths, cars experience much longer delays, since
each must stop at a tollbooth. With only one tollbooth per lane, the normal
traffic load (3000 vehicles over 70 min) forces many people to wait over 45 min!
It takes about 12 lanes to reach minimal delay in this situation instead of the 9
in the situation with automatic and electronic lanes.

Do the Cars Behave Reasonably?
In Figure 6, we graph travel time vs. arrival time for all cars, under normal

traffic loads with no barriers, 4 highway lanes, 8 tollbooths (from left to right:
2 electronic, 4 automatic, 2 manual). There are two main features:

• The line represents cars with electronic passes. Even under a heavy traffic
load, they are not terribly delayed, since they can pass through their booth
without stopping.

• Along the top, we see the cars without electronic passes. The distribution of
their wait times looks like the graph of their generation rate shifted over by
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Figure 5. Delay vs. number of tollbooths—no trucks or electronic passes.

Figure 6. Travel time vs. arrival time.
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about 10 min. One can even see the graph split into several “lanes,” which
shows the difference between the slower truck lanes (manual tollbooths) and
the normal cars (automatic tollbooths).

We are also interested in what configurations lead to potential accidents. We
ran setups under the default parameters of normal traffic load, 50% electronic
passes, and 10% trucks. Figure 7 shows the number of occurrences of several
types of these behaviors, out of about 3000 cars total.

Figure 7. Incidents of dangerous behavior.

We see in the leftmost configuration that having only one manual lane leads
to trucks stuck in the wrong booth. Trucks joining the wrong booth also seems to
lead to an increase in hard braking; this appears to be an artifact of cars traveling
at speeds of 1 or 2 not decelerating properly when nearing a tollbooth. In
our experiments, this phenomenon tends to be correlated with inefficient lane-
changing schemes. The second configuration from the left is our recommended
configuration. The third and fourth configurations show the difference that
barriers make: They cause fewer tollbooth mistakes but lead to dangerous
turns and hard braking, which are probably related.

Sensitivity to Parameters
Changing the length of the lane-expansion and -contraction regions did

not have a statistically significant effect on either wait times or logs of bad
behaviors. The percentages of cars with electronic passes and trucks can be
changed by a fair amount before they affect anything. For a general number
n of highway lanes and rigid barriers, the marginal return of adding a new
tollbooth after 2n or 2n+1 is small unless the traffic load is exceptionally large.
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Strengths and Weaknesses

Strengths
Can handle a wide variety of possible setups. It is hard to add new tollbooths

but easier to change the type of tollbooth or set up barriers.

Captures important features of the actual situation.

Behavior based on simple procedures meant to accomplish natural goals. We
avoid introducing artificial effects by basing drivers’ behaviors on simple
methods of accomplishing natural goals, such as avoiding collisions and
getting into a better lane.

Weaknesses
Need to obtain real-world parameters. If we were acting as consultants for a

particular highway, we should collect data.

More complicated than simple models in literature. Our model may introduce
some artificial behavior. Cellular automaton models are supposed to have
complex behavior emerge from simple assumptions, not the other way
around.

Infinite speed of information propagation. Due to the order in which cars are
updated in our model, information about obstacles can propagate backwards
at infinite speed, an effect which can lead to inaccuracies.

Conclusion
Cellular-automaton models are one effective means of studying traffic sim-

ulations. Other approaches use partial differential equations motivated by
kinetics or fluid mechanics [Chowdhury et al. 1997, 213–225].

Our cellular automaton model gives us valuable insight into the tollbooth
traffic problem. We can see cars flowing through the tollbooths and piling up
during rush hour. We can follow the motions of individual cars and collect
statistics on their behaviors. From our experiments, we make the following
recommendations:

Tollbooths should be ordered based on encouraged behavior. Safety consid-
erations should take precedence; putting faster booths on the left and slower
booths on the right accomplishes this.

No barriers. Barriers prevent drivers getting to lanes that they need to use.



330 The UMAP Journal 26.3 (2005)

The distribution of types of cars should determine how many tollbooths. Traffic
density has little effect on the number of tollbooths needed to minimize de-
lay; the distribution of types of cars has a much larger effect.

An effective ratio of tollbooths is 1 electronic: 2 automatic : 1 manual.
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Summary
The most popular discrete models to simulate traffic flow are cellular au-

tomata, discrete dynamical systems whose behavior is completely specified in
terms of its local region. Space is represented as a grid, with each cell contain-
ing some data, and these cells act in accordance to some set of rules at each
temporal step. Of particular interest to this problem are sequential cellular
automata (SCA), where the cells are updated in a sequential manner at each
temporal step.

We develop a discrete model with a grid to represent the area around a toll
plaza and cells to hold cars. The cars are modeled as 5-dimensional vectors,
with each dimension representing a different characteristic (e.g., speed). By
discretizing the grid into different regimes (transition from highway, tollbooth,
etc.), we develop rules for cars to follow in their movement. Finally, we model
incoming traffic flow using a negative exponential distribution.

We plot the average time for a car to move through the grid vs. incoming
traffic flow rate for three different cases: 4 incoming lanes and tollbooths, 4
incoming lanes and 4, 5, and 6 tollbooths. In each plots, we noted at certain
values for the flow rate, there is a boundary layer in our solution. As we increase
the ratio of tollbooths to incoming lanes, this boundary layer shifts to the right.
Hence, the optimum solution is to pick the minimum number of tollbooths for
which the maximum flow rate expected is located to the left of the boundary
layer.
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Introduction

Figure 1. The New Jersey Turnpike (I-95) at night.

Models for traffic flow can be broken down into two basic types.

• The first type treats space and time as a continuum; both cars and time are
continuous in nature.

• The second type, discrete models, treats space as a lattice and time discretely.
A common discrete model is a cellular automaton, where space is modeled
by a lattice and each lattice site represents a state of the system. The lattice
sites are updated and their states change. For traffic flow, the states of the
lattice sites represent whether a car is present at that spatial location or not.

Near a tollbooth, cars must stop to pay before moving on. Since each car
affects the other cars in its direct neighborhood, it is not reasonable to model
cars as a continuum. Discrete time also allows us to control the movement of
the cars at each individual time step. Finally, discrete models in general are
much easier to understand and to implement on modern computing resources.

Assumptions
• Upon nearing a toll plaza, a driver maneuvers based on local congestion to

minimize travel time.

• Within 100 ft of the toll plaza, a driver remains in a lane and slows down
to an average speed of about 5–10 mph. We base the speed of the cars on
what is suggested in most driver’s manuals: Car separation should be one
car length for every 10 mph of speed.

• Once a driver pays the toll, they maneuver to a highway lane and accelerate
to highway speeds.
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• Drivers do not cooperate. While the drivers are not directly competing
against one other, they are affecting each other and are hence fierce indirect
obstacles/opponents.

• Vehicles are of constant length (17.5 ft).

• It takes about 4 s for a tollbooth employee to process a motorist [Chao n.d.].

A Quasi-SCA Model of Toll Plaza Dynamics

Case 1: Equal Numbers of Lanes and Booths

Preliminaries
Cellular automata (CA) are discrete dynamical systems whose behavior

is completely specified locally. Space is represented as a uniform grid, with
each cell containing data. Time advances in discrete steps, and the laws of the
universe are expressed in a look-up table relating each cell to nearby cells to
compute its new state. The system’s laws are local and uniform.

The basic one-dimensional cellular automata model for highway traffic flow
is the CA rule 184, as classified by Wolfram [Nagel et al. 1998; Jiang n.d.; Wol-
fram 2002]. CA 184 is a discrete time process with state space η ∈ {0, 1}Z and
the following evolution rule: If η ∈ {0, 1}Z is the state of at time n, then the
state η′ at time n + 1 is defined by

η′ :=




1, if η(x) = η(x + 1) = 1;
1, if η(x) = 1 − η(x + 1) = 0;
0, otherwise,

where η(x) denotes the value of η : Z → {0, 1} at the coordinate x.
In this model, cars march to the right in a rather uniform manner, and all

nodes execute their moves in parallel.
Toll plaza dynamics, while similar to traffic dynamics, are quite different.

• Toll plazas cannot be approximated as covering an infinite domain.

• Drivers must make decisions based on who moves in front of them. In this
sense, we use ideas from Sequential Cellular Automata (SCA) [Tosic and
Agha n.d.] instead of the classical schemes.

• Cells are updated in a slightly different manner than in classical cellular
automata. To model car movement properly, “cars” are moved through
cells one at a time.

Our model is like a board game. For these reasons, we dub our model a
“Quasi-SCA Model of Toll Plaza Dynamics.”
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We divide a multilane highway into equally partitioned lanes. Each cell
is approximately 25 ft long and contains information on whether it contains a
car and, if it does, certain information about the car. Furthermore, there are
specialized cell characteristics for different regimes, as shown in Figure 2. In
our model, we also move forward in discrete time steps. For convenience, this
time step is set to be 2 s in length.

Figure 2. Possible regimes.

To implement our model, we exploit the object-oriented features of C++. We
create a car class, with certain variables associated with it, as shown in Table 1.

Table 1.

Car class variables in C++.

The highway is represented as a large 50 × n array of car variables, where
n is the number of lanes. When initialized, this array contains empty grid
spaces. As cars enter in from the left, grid spaces are activated and infused
with information about the cars. Then, with this information, the state of the
system at the next time step can be determined.

Vehicle Speed
The speeds of cars not in the tollbooth regime are dictated by car separation

having to be one car length for every 10 mph of speed. Since our model is
discrete in both space and time, this criterion must be quantized. Moving one
grid space ahead in one temporal step corresponds to a speed of about 8.5 mph.
If we approximate one grid space as one car length and 8.5 mph ∼ 10 mph, we
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can generalize the speeds of the cars in the following manner:

s(i, j, t) :=




0, if minx>i{x | o(x, j, t) = 1} = i + 1;
1, if minx>i{x | o(x, j, t) = 1} = i + 2;
2, if minx>i{x | o(x, j, t) = 1} = i + 3;
3, otherwise.

We enforce 25.6 mph as an upper limit to speed, since the vehicles must
slow down as they approach the toll. At each time step, the speed for a car is
updated just before it initiates movement.

Congestion
Since a driver is far more forward-focused than rearward-focused, we con-

sider congestion to be determined only by the cars immediately in front—in
particular, the nearest five cars. We write congestion for the car located in grid
cell η(i, j, t) as

c(i, j, t) :=
1
5

5∑
k=1

o(i + k, j),

where

o(i, j, t) :=
{

1, if grid cell (i, j) contains a car;
0, otherwise

Sequencing
Cells are updated sequentially as opposed to simultaneously, because cars

make decisions based on the cars in front. Furthermore, in a given column of
our array, that is, one spatial location across four lanes, the car with the largest
speed has the first initiative; the car with the second largest speed moves second,
etc. In the case of a tie, the car closer to the top of the grid moves first.

Movement
Transition Regimes

Transition regimes are regions where traffic comes in from the highway
or leaves to the highway. In these regimes, drivers maneuver in a manner
such that they can optimize travel time but minimize effort. Thus, movement
possibilities in the transition regimes can be described by Figure 3.

The optimal maneuver is to move forward, but a driver will enter a lane to
the right or left if the move minimizes congestion.

In two locations of the transition regimes, there are special considerations.
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Figure 3. Movement in transition regimes: Center lane, far left lane, far right lane

• The transition from highway regime: There must be some way to depict the
arrival of traffic from the highway. We discuss later how we do this.

• The tail end of the transition-to-highway regime: Provided a car has suffi-
cient speed, we eliminate the car from the grid. We also record its TotalTime-
OnGrid variable.

Tollbooth Regime
In the tollbooth regime, drivers no longer veer to the right or left. Instead,

they move forward in line until they reach the tollbooth. In this region, span-
ning the 100 ft in front of the tollbooth, cars move at a maximum rate of one
grid space per temporal element. Once in the tollbooth, they wait two entire
temporal elements solely in the booth (about 4 s) until they move on to the tran-
sition regime. This is implemented by incrementing a car’s TotalTimeInToll
variable (initialized to zero when a vehicle enters the map) every temporal step
that a car is in the booth (for the entire step) and checking if it is greater than 2.
Often in this region, lines will form. As soon as a car emerges from the toll-
booth, all of the cars behind move forward immediately. The dynamics of this
regime are quite a bit different and simpler than the dynamics of the transition
regime.

We illustrate this situation in Figure 4. The red cars in lanes one and four
are stopped, waiting behind cars located in the booth. The green cars ahead
of the toll are transitioning to the highway regime. The yellow car is moving
into the tollbooth, and the blue car is moving further inside the region. The
green car before the toll is just now moving into the tollbooth region. While its
current speed is 25.6 mph, once inside the region, it decelerates to 8.5 mph.
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Figure 4. Movement in the tollbooth regime

Modeling the Incoming Traffic Flow
To make our model more accurate, we use a statistical distribution to predict

incoming flow. Two commonly-used distributions are the Poisson and the
negative exponential. However, the Poisson distribution fits well only for light
traffic [Aston 1966]. The negative exponential distribution is a good fit for
heavy traffic; it is used to model the variations of gap length in a traffic stream
over distance and random arrivals. It has probability density function

f(t) = qe−qt,

where t is the time (s) between arrivals and q is the rate of arrival (cars/s), and
cumulative distribution function

F (t) = 1 − e−qt. (1)

To implement this arrival time into our simulation, we assign it to a site of
entry (a space) into the grid. A random number generator creates a random
fraction F ; using (1), we solve for t = − lnR/q. The value t is assigned to a
“spawn site,” a place where “cars” are created. We use a counter to keep track
of the time between different spawnings of cars. If this counter is greater than
F and the “spawn site” is empty (contains a null car), then a car is created at
the spawning site. Otherwise, the counter is incremented until one of these
two conditions are met. Cars “arrive” in each lane of the simulation using this
method. We use a modified q such in units of car per 2 s per lane.

Results
We simulate for varying values of q, the flow rate of cars per 2 s per lane,

for a 4-lane highway with 4 tollbooths. We let q vary from 0.01 cars/s/lane
(0.02 cars/s overall) to 1 car/s/ lane (2 cars/s overall. Figure 6 outlines a given
time evolution for a small value of q.

The time through which the cars move through the grid (or toll plaza) is an
appropriate measure of congestion. Thus, we plot in Figure 7 the average time
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Figure 6.Time evolution of a simulation, four temporal steps.

getting through the grid versus the flow rate. The average time is obtained
from a simulation accounting for one hour of traffic. We also plot for each flow
value the maximum amount of time that anyone spent getting through the grid.

For q in [0.01,0.37] cars/(2 s)/lane (0.02–0.74 cars/s overall), drivers enjoy
an average time through the grid below 50 s. We consider this an optimal
situation. However, at around a q = 0.36 cars/(2 s)/lane, there appears to be a
boundary layer. For q > 0.37, it takes drivers an average of 2 min or more to
get through the quarter-mile long grid, corresponding to less than 10 mph. We
demonstrate later that by adding more tollbooths, we shift the boundary layer
and lower the average time for larger q. Thus, a good strategy to determine
the number of tollbooths is to estimate the anticipated maximum flow rate and
choose a number of lanes for which q is never beyond the boundary layer.

Congestion is at its worst during rush hour, when toll plazas serve as bot-
tlenecks. But what do these congestion levels mean in total time through the
plaza? Is the number of tollbooths optimal?

The Hiawassee M/L Toll Plaza in Florida uses a 4-tollbooth plaza. In
October 2003, the Eastbound car count 7–8 a.m. was 3403 cars [Orlando–
Orange County Expressway Authority 2003], so cars arrived at a rate of 0.945
cars/s/lane. With our assumption that a car is 17.5 ft long, clearly, four toll-
booths are not enough to handle this heavy demand.

However, EZPass and other such programs allow one to minimize the time
at a tollbooth. If even a small portion of the cars use the EZPass system, the
value of q for which the boundary layer results grows vastly. If we were to
accurately determine an optimal value of tollbooths for a certain value of q for
a highway using such a system, we would have to approach the problem in a
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Figure 7. Average time through grid vs. flow rate.

Figure 8. Maximum time through grid vs. flow rate.

slightly different fashion. In particular, we would have to vary the time drivers
spend at the booth and designate certain lanes as having a quick pass system.

Case 2: More Tollbooths than Lanes

Preliminaries
The situation changes quite a bit if there are more tollbooths than incoming

lanes. Drivers in the far left and right lanes start moving into the new tollbooth
lanes. Hence, we introduce a new scheme, as presented in Figure 9.
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Figure 9. Possible regimes.

Movement in the Expansion Regime
The expansion regime is where the incoming traffic lanes fan out to a greater

number of tollbooth lanes. For the center lanes, movement is identical to the
transition regimes. On the outer lanes, however, movement is slightly different.
The movement possibilities are outlined in Figure 10.

Figure 10. Movement in the expansion regime.

For a driver in the outside lane, the optimal maneuver is to move into one
of the newly-created tollbooth lanes, unless the congestion is less in the current
lane. Another new addition is that the driver will not try to move into one of the
inner lanes—more for psychological reasons than practical reasons. According
to the model, the driver assumes that the outside lanes are the least dense (and
fastest), since they did not exist on the highway. Drivers on the newly created
lanes are allowed to move only forward in our model. While a driver may
move to an outside lane just to move back again, we consider the chance of this
occurring as very slim.

Movement in the Compression Regime
The compression regime is where a greater number of tollbooth lanes col-

lapse onto a smaller number of highway lanes. We have the movement possi-
bilities presented in Figure 11.
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Figure 11. Movement in the compression regime.

A driver in a tollbooth lane that is a highway lane follows the same rules as
in the earlier tollbooth regime. A driver not in a highway lane, however, tries
to move back onto a highway lanes; if this is not possible, they keep driving
forward and trying again until they are forced to stop at the end of the tollbooth
lane. This protocol can provide for some hectic situations.

Results
We simulate our second model for varying values of q for 4 highway lanes

with 5 and 6 tollbooths. The range for q is the same as our first model. Fig-
ures 12–13 show the results for these two cases, for which we take the expansion
and compression regimes to be 125 ft long.

Figure 12. Average time through grid vs. flow rate, for 6 lanes.

The boundary layer is moved to the right as the number of toll lanes in-
creases. Furthermore, the value for q on the right side of the boundary layer
decreases with more toll lanes. Thus, as suggested, one should choose a suffi-
cient number of lanes that correlates to this behavior. If the maximum flow rate
one expects is a certain value, one can run a simulation for a certain number of
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Figure 13. Average time through grid vs. flow rate, for 6 lanes.

tollbooths and choose the least number of tollbooths such that the maximum
flow is to the left of the boundary layer.

However, with an increased number of lanes comes an increased maximum
individual travel time: At times, people become stuck in the toll lanes and have
to wait for an opportune moment to move over. In our model, this is reflected
in the fact that while the four-tollbooth case results in a maximum travel time of
about 3.4 min, the 5- and 6-lane cases sometimes have a maximum individual
travel time near 4 min.

Model Improvements and Discussion
Drivers do not always move in a predictable manner. A probabilistic model

taking into account the unpredictable nature of humans could further improve
our model.

Our model also does not take into account the possibility of accidents. An
accident model would surely improve our model.

While we do take into account the random nature of incoming traffic flow,
we could develop an even better model to approximate the flow rate.

Lastly, our model could include a probabilistic model for the time that a car
waits at a tollbooth.

Conclusion
We develop a quasi-SCA model for toll plaza dynamics that treats time and

space in a discrete manner to capture the motivation and actions of drivers. We
use a negative exponential distribution for the incoming flow rate of cars. We
compute the average waiting time for different traffic flow rates.
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At a certain flow rate, there is a boundary layer at which travel time increases
sharply with flow rate. Thus, an optimal solution to the tollbooth problem is
to choose the minimum number of tollbooths such that the expected rate of
incoming flow corresponds to a point before the boundary layer.
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Summary
Our model determines the optimal number of tollbooths at a toll plaza in

terms of that minimizing the time that a car spends in the plaza.
We treat the toll collection process as a network of two exponential queueing

systems, the Toll Collection system and the Lane Merge System. The random,
memoryless nature of successive car interarrival and service times allows us to
conclude that the two are exponentially distributed.

We use properties of single server and multiple server queuing systems to
develop our Multiple Single Server Queuing System. We simulate our network
in Matlab, analyzing the model’s performance in light, medium, and heavy
traffic for tollways with 3 to 6 lanes. The optimal number of tollbooths is
roughly double the number of lanes.

We also evaluate a single tollbooth vs. multiple tollbooths per lane. The
optimal number of booths improves the processing time by 22% in light traffic
and 61% in medium traffic. In heavy traffic, one tollbooth per lane results in
infinite queues.

Our model produces consistent results for all traffic situations, and its flex-
ibility allows us to apply it to a wide range of toll-plaza systems. However,
the minimum time predicted is an average value, hence it does not reflect the
maximum time that an individual may spend in the network.
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General Definitions
The Network: The point at which the car enters the queue for toll collection to

the point at which the car is able to drive off with current traffic speed. It
consists of two systems of queues.

Toll-Collection System: The point at which cars arrive at the toll-plaza and
form queues to the point at which they exit the booth after toll collection.

Lane Merge System: The point at which cars leave the tollbooth to enter the
queue to merge back into the tollway lanes, to the point at which they can
drive off with current speed.

Single Server Queueing System: A system with one queue and one server.

Multiple Server System: A system with one queue and multiple servers such
that a customer has the freedom to choose any server available.

Arrival rate: The number of cars per minute per lane that arrive to a network
or system.

Departure rate: The number of cars per minute per lane that depart from a
network or system.

Service or processing: The act of toll collection.

Service rate: The number of cars per minute per booth being served.

Merge rate: The number of cars per minute per lane that merge back into the
tollway lanes.

Total time: The time for a car to pass through the network.

Optimal time: The minimum feasible total time.

Idle time: The time interval during which the attendant is not serving anyone.

General Assumptions
• Car arrival times are independent, identically distributed non-negative ran-

dom variables.

• Cars are served first-come-first-served.

• The service times for individual cars are independent, identically distributed
nonnegative random variables with no correlation to the arrival process.

• In the long run, the rate at which cars are served is greater than the rate at
which cars enter the network; otherwise, there would be infinite queues.
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• There is no limit to the number of cars that can enter the network, because
from the point of view of the network, the road length is arbitrarily large.

• Motorists tend to join the shortest queue in vicinity; hence, in the long run,
the queue length is about the same at every tollbooth.

Table 1.

Table of variables.

Variable Descriptions

S The network of the Toll Collection System and the Lane Merge System
S1 The Toll Collection System
S2 The Lane Merge System
λ1 Average car arrival rate per lane to the S1 queue
λ2 Average car arrival rate per lane to the S2 queue
µ1 Average service rate per lane in S1

µ2 Average merge rate per lane in S2

W Total expected time spent by a car in S
W1 Expected time spent by a car in S1

W2 Expected time spent by a car in S2

� Average length of a vehicle and the safety distance in front of it
ν Traffic speed on the road, independent of tollbooth collection
n The number of lanes in a tollway before the toll plaza
m Number of tollbooths in a toll plaza
k Number of lanes in a tollway after the toll plaza

Our Approach
We assume that the cars arrive according to a Poisson process. The arrival

of a car at a time t does not affect the probability distribution of what occurred
prior to t; hence the system is memoryless [Pitman 1993]. A driver’s decision to
drive on a road at a particular time is independent from that of any other driver;
so the time periods between successive arrivals of vehicles are independent
exponential random variables. If the tollbooth attendant is idle, the driver
“goes into service”; otherwise, the car joins the queue to be served.

Similarly, the server processes cars with successive service times also being
independent exponential random variables. From probability theory, we know
that the sum of two exponential random variables with rates λ and µ is another
exponential random variable, with rate λ + µ.

We apply the theory of exponential queueing systems to develop a model
that predicts the value of m that minimizes W .
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General Model
A queueing system often consists of “customers” arriving at random times

to some facility where they receive service. They depart from the facility at the
same rate at which they arrive. The network S consists of two systems, the toll-
collection system, S1, where cars arrive and join the queue and the lane-merge
system, S2, where people join the queue to receive the “service” of merging.

Multiple Single Server Queueing System
We employ queueing theory together with continuous-time Markov chains

to build our Multiple Single Server Queueing System, based on the following
reasoning.

When cars get to a toll barrier, they determine which queue to join. In
theory, they can join the shortest queue. In practice, however, they are unlikely
to change too many lanes to join a shorter queue if there are other cars on the
road. In most cases, they are limited to entering the queue directly in front
of them, or a queue to their immediate left and right. Furthermore, under
the assumption that the queue lengths are approximately the same for all the
queues, they are most likely to join the queue directly ahead.

The process is similar to a single-server queueing system, but the fact that
they have somewhat of a choice in choosing the tollbooth also gives this process
properties of a multiple server queueing system. However, multiple-server
queueing systems allow for only one queue and the freedom to choose any
server that is not occupied. Our system does not fall exactly under either
one of the two categories; hence, we coin the name “Multiple Single-Server
Queueing System” for the systems in our network, which has the following
properties:

• It consists of several parallel single-service queues.

• Each queue has a “super server” that has a processing rate of µ1 × m/n.

In Figure 1, each colored box represents the probability that a car in a lane
uses a tollbooth of that color. The bigger the box, the higher the chance of choos-
ing that tollbooth. Most drivers use the tollbooth right ahead of them, though
a few would choose the tollbooth to the left or right (with equal probability).
The probability that a car uses a tollbooth that farther away is negligible. As
we can see from Figure 1, the total areas of all the colored boxes representing
the probabilities of going through the tollbooths are eventually the same from
lane to lane. This implies that the service rate is the same for every tollbooth.
Hence, in the long run, each lane is processed at the rate µ1 × m/n.

Similarly, the process of waiting in a queue to merge back into the k lanes
of the tollway after paying the toll can also be considered as a Multiple Single-
Server Queueing System with processing rate µ2 × k/m. To allow for more
flexibility in our model, k may or may not equal n.
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Figure 1. Each lane has equal probability over all cars.

Model Development
The total waiting W is the sum of the times to pass through the two systems,

i.e., W = W1 + W2.
Based on the queueing theory equation [Ross 2003]

W =
1

µ − λ
,

and the discussion of service rates, we find

W = W1 + W2 =
1

mµ1

n
− λ1

+
1

kµ2

m
− λ2

.

Derivation of the Service Rates
We assume that on average each tollbooth attendant takes a fixed amount

of time t to collect a toll, so µ1 = 1/t.
For heavy traffic situations, we also take into account driver reaction time

r before stepping on the gas and moving up to the booth. We incorporate this
delay into the service time to get

µ1 =
1

t + r
.

We estimate t ≈ 5.5 s and r ≈ 2.5 s.
Calculating µ2 is a little trickier. We take into account ν, which we consider

to be determined independently from the toll plaza system. This is justifiable,
since whether a toll plaza interrupts a tollway or not, ν varies considerably
depending on different traffic situations. Since ν is in miles per hour, and we’re
interested in cars per minute, we first transform the velocity into meters per
minute. We also consider the fact that the car is going from 0 mph to get up to
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ν, hence we use the average speed of the car during the time that it must catch
up to the tollway traffic. We then divide the velocity by �, which depends on ν,
because the safety distance needed for cars at high speed is much greater than
that for low speeds. Thus, we obtain

µ2 =
ν

2�
.

Since cars from the m lanes of the toll plaza must merge back into the k
lanes of the highway, we calculate the overall merge rate per lane, µ2 × k/m,
as described earlier, to be

k

m

ν

2�
.

Derivation of the Second Arrival Rate
Since drivers join S2 as soon as they depart S1, the rate λ2 is the same as the

departure rate from S1. Now, consider the departure rate from S1. If there are
n lanes in the system and nλ1 ≥ mµ1, then all m servers are busy. Since each
server works at rate µ1, the total departure rate is mµ1. On the other hand, if
nλ1 < mµ1, then only n servers are busy and the total departure rate is nλ1.
Since cars emerging from the tollbooth must merge into k lanes in S2, each of
which has arrival rate λ2, we have

kλ2 = nλ1 =⇒ λ2 =
nλ1

k
.

Final Formula
Based on the discussion above, we get

W = W1 + W2 =
1

mµ1

n
− λ1

=
1

kν

2m�
− nλ1

k

.

Since the problem statement stipulates that under most situations k = n, we
simplify this formula to

W = W1 + W2 =
1

mµ1

n
− λ1

=
1

nν

2m�
− λ1

.

The Range of Feasibility
Our model can calculate the optimal number of tollbooths needed only if

the denominators for both W1 and W2 are greater than zero. Therefore,

m

n
µ1 > λ1 and

n

m

ν

2�
> λ1.
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Hence the feasible range for the number of tollbooths is
(

λ1n

µ1
,

nν

2λ1�

)
.

For a single tollbooth per lane, we set m = n; the resulting W is

W = W1 + W2 =
1

µ1 − λ1
=

1
ν

2�
− λ1

.

The model is still a system of two queues. Though the merge factor n/m is
diminished, the cars must still catch up to traffic speed and may have to wait
in a queue to do so.

Data Analysis
We implement our algorithm for W in Matlab using n = 3, 4, 5, and 6,

corresponding to most tollways. We vary λ1 from 0.5 to 5 cars/minute for
light traffic, from 5 to 10 cars/minute for medium traffic, and from 10 to 15
cars/minute for heavy traffic. We establish the range of feasibility for m for
each traffic situation. We then determine the number that gives minimal W .

Parameter Values
We set µ1 = 11 cars/min for the light and medium traffic; we set µ1 =

7.5 cars/min for heavy traffic, to account for the service time plus the reaction
time of the cars waiting in queue.

To determine µ2, we set ν = 60 mph for light traffic situations, since most
heavily trafficked tollways have speed limits between 50 and 70 mph. We set
ν = 46 mph for medium traffic and ν = 32 mph for heavy traffic. The average
car length is between 3.5 and 5.5 m [Edwards and Hamson 1990], hence we
set car length in our model to 4 m. We set the safety distance to 20 m for light
traffic, 14 m for medium traffic, and 8 m for heavy traffic. The optimal number
of tollbooths for the different levels of traffic and numbers of highway lanes
are shown in Table 2.

Table 2.

Optimal numbers of tollbooths.

Traffic Number of lanes
3 4 5 6

Light 5 7 9 10
Medium 5 9 9 11
Heavy 9 9 11 13



352 The UMAP Journal 26.3 (2005)

Regardless of the traffic level, the optimal number of tollbooths is always
greater than the number of highway lanes. However, for light traffic, the differ-
ence between the average wait for optimal number of tollbooths vs. the average
wait for m = n is only about 2 s.

For medium traffic, though, the differences (≈15 s) are large enough to
conclude that having extra tollbooths would be a wise decision.

For heavy traffic, setting single tollbooth per lane would result in infinite
waiting queues for all situations examined.

Detailed Analysis of a Six-Lane Tollway
We conduct a detailed study for a six-lane tollway. The general trends

observed for this dataset are typical for any number of lanes. We generate
plots for the three traffic levels with number m of tollbooths as independent
variable and W as dependent variable. We keep λ constant for each curve;
hence we produce a set of level curves that show the optimal value for m based
on the λs.

As the traffic gets heavier, the region of feasibility for m gets smaller. This is
because having too few tollbooths causes an infinite waiting time at S1, while
having too many tollbooths causes an infinite wait at S2, due to the influx of
cars processed in S1.

For light traffic, the difference in Wave for m = 5 and m = 18 is merely 2 s.
For medium traffic, a shift from the optimal number m = 10 causes a more
dramatic increase in the time spent in the network. For heavy traffic, the range
of feasibility reduces to a small region centered around the optimal number
m = 13—namely 12, 13, or 14 (Figure 2). The onset of heavy traffic both before
and after the tollbooth excludes more extreme values of m from the feasible
range. The beauty of the results is that the optimal number of tollbooths is the
same for varying arrival rates.

Conclusion
It is better to have more than one tollbooth per lane. But having too many

tollbooths per lane is just as bad. We recommend that for frequently traveled
roads, the number of tollbooths available should be the maximum of all the
optimal tollbooth numbers generated by our algorithm. The number of booths
open can then vary for different traffic flows during the day.

For toll roads that usually have light traffic, having a single tollbooth per
lane reduces the cost of building and running the toll plaza; reduction in waiting
time does not justify more tollbooths.
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Figure 2. Wait vs. number of tollbooths for heavy traffic on a 6-lane tollway, for various arrival
rates.

Strengths of Our Model
• Our model withstands many variations in parameters.

• Given reasonable values for the parameters, the algorithm generates realistic
results for the optimal number of tollbooths.

• When we vary within the range of a specific traffic situation, the optimal
solution is consistent for each in each situation.

• The optimal number of tollbooths differs among traffic levels, reflecting the
fact that varying the number of tollbooths has a significant impact on waiting
time.

• The algorithm, though rich in theory, is very easy to implement and test.

Weaknesses
• We assume that the arrival rate is less than the service rate at each system.

In the long run, this assumption must hold in order to avoid infinite queues;
but there can be intervals during when arrivals overwhelm the service rate.
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Hence, though the average waiting time for the optimal solution may be
small, the maximum waiting time for some cars may be rather large.

• Our model’s range of feasibility is limited by the rates at which the cars are
served at the two systems.

• Our model predicts the optimal tollbooth numbers based on the minimal
time, but this may not be the most cost-effective solution.

• We don’t incorporate the electronic payment passes that many toll systems
use to minimize waiting time.
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Summary
We determine the optimal number of lanes in a toll plaza to maximize the

transit rate of vehicles through the system. We use two different approaches,
one macroscopic and one discrete, to model traffic through the toll plaza.

In our first approach, we derive results about flows through a sequence of
bottlenecks and demonstrate that maximum flow occurs when the flow rate
through all bottlenecks is equal. We apply these results to the toll-plaza system
to determine the optimal number of toll lanes. At high densities, the optimal
number of tollbooths exhibits a linear relationship with the number of toll lanes.

We then construct a discrete traffic simulation based on stochastic cellular
automata, a microscopic approach to traffic modeling, which we use to validate
the optimality of our model. Furthermore, we demonstrate that the simulation
generates flow rates very close to those of toll plazas on the Garden State Park-
way in New Jersey, which further confirms the accuracy of our predictions.

Having the number of toll lanes equal the number of highway lanes is
optimal only when a highway has consistently low density and is suboptimal
otherwise. For medium- to high-density traffic, the optimal number of toll lanes
is three to four times the number of highway lanes. Both models demonstrate
that if a tollway has lanes in excess of the optimal, flow will not increase or
abate.

Finally, we examine how well our models can be generalized and comment
on their applicability to the real world.
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Statement of Problem
We are asked for a model that determines the optimal number of tollbooths

in a toll plaza located on an n-lane tollway. The two criteria that we use for
evaluating optimality are total throughput in number of cars and average transit
time for individual cars to pass through the plaza.

Definitions
Number of highway lanes, n: The number of lanes on the highway entering

and leaving the plaza.

Number of transit lanes, m: The number of tollbooths and lanes in the toll
plaza.

Entry zone: The m-lane region of the toll plaza between the entry tollway and
the tollbooths.

Merge zone: The m-lane region of the toll plaza between the tollbooths and
the exit tollway.

Flow or throughput, q: Number of cars per second which pass through a given
point x in our system.

Backlog B: Number of queued cars waiting to enter the tollbooths or exit the
plaza.

Tollbooth processing time, τi: The number of seconds required, on average,
for a car to pull into, pay, and exit a tollbooth i.

Density ρ(x): number of vehicles per square meter in a given region.

m∗: the optimal number of tollbooth lanes.

Bottleneck capacity, qb: the maximum number of cars per second that can pass
through a given bottleneck b.

Assumptions
• A toll plaza consists of n highway lanes diverging into m toll lanes and

converging back into n highhway lanes. The toll plaza is sufficiently long to
permit cars to reach all of the m tollbooths.

• Each tollbooth controls one lane and can serve at most one car at a time.

• Exit from the tollbooths is not metered.



Two Tools for Tollbooth Optimization 357

• Drivers seek to move through the toll plaza as quickly as possible while
maintaining safety.

• Within the toll plaza, all vehicles move at the safest possible maximum speed
for a given density, since drivers seek to avoid accidents.

Model Development

Motivations
There are two general approaches to modeling traffic motion:

Macroscopic approaches begin with some observations about aggregate traffic
behavior and attempt to approximate traffic behavior as a continuous flow
over some large region or large time period.

Microscopic approaches attempt to model driver and car behavior and use this
information in aggregate as the basis for modeling the large-scale behavior
of traffic.

The microscopic approach often hinges on a large number of parameters
that may be difficult to model accurately. For example, driver decision-making
strategies, driving styles, preferred following distances, and the physical pa-
rameters of individual vehicles are highly variable.

We first pursue the macroscopic approach. Such approaches are tradition-
ally used for modeling traffic behavior over long stretches of highway, and to
model traffic jams, so it may seem that such an approach is inapplicable to a
setting where highway length is not large. However, there are two advantages:

• Properties that vary significantly between drivers and vehicles are averaged
out if we let the system run for a sufficiently long time and it approaches a
steady-state equilibrium.

• At equilibrium, we can use the total throughput of cars through the toll plaza
over a given duration as a metric for the disruption it causes.

We construct a theoretical flow model of the tollbooth plaza to determine
the effect of varying numbers of tollbooth lanes for given numbers of transit
lanes, and use this to predict optimal conditions.

The downside of the macroscopic approach is that traffic flow is not neces-
sarily continuous, so approximations made in the model may not reflect reality.
The best way to check them is to contrast them with real traffic data. As a re-
sult, we eventually construct a full microscopic approach to generate realistic
data to test our continuous model: We design a cellular-automata simulation,
constructed with an independent set of driver behaviors, to verify our macro-
scopic model. To represent the effect of unknown variables, we introduce a
small random component to the simulation.
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Flow in the Plaza
Initial Observations and Conservation of Flow

We begin by defining the flow q of traffic as the number of cars per second
to pass through a perpendicular cross-section across all lanes of the highway,
dx. By definition, flow follows the equation

q = ρv,

where v is the average vehicle speed and ρ is the average vehicle density.
Two bottlenecks limit the flow in every toll plaza: the first is at the tollbooths,

caused by the time required for cars to stop and pay the toll, and the second
occurs when the lanes exiting the tollgates merge back into the highway.

All traffic that enters the plaza must eventually exit the plaza. Treating the
motion of vehicles through the plaza as a continuous flow of traffic, we can
represent this fact with the following lemma.

Lemma. For any given cross-sectional slice dx of the system,∫
all time

(qout − qin) dx = 0.

Using the relation q = ρv, we can arrive at the following relationship, fol-
lowing the method of Kuhne and Michalopoulos [2002, Ch. 5, 5–8]:

∂ρ

∂t
+

∂q

∂x
= 0. (1)

This is the conservation of traffic flow equation given by Kuhne and Michalopou-
los [2002, Ch. 5, 5–8], among others.

Bottlenecking Constraints on Flow
Bottlenecks along the highway restrict the maximum rate of traffic flow, as

described in the following theorem:

Bottleneck Theorem. The flow of vehicles through any system void of sources
and sinks is bounded by the minimum of the bottleneck capacities along the
path.

Proof: Suppose that the flow at some point dx along the highway is in excess
of the maximum of all bottleneck capacities ahead of it, i.e.

q(x) > max{qbottleneck1 , . . . , qbottlenecki
},

where i is the number of bottlenecks ahead ofdx. Since in the steady-state model
all points flow at the same rate, this would mean that max{qbottleneck} = q(x),
which is a contradiction.

This result is used several times in the construction of our model.
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A Queueing Model Based on Flow
Since the rate of flow is constrained by the bottleneck of minimum capacity, it

follows that the throughput is determined by the relative rates of the bottleneck
at the tollbooths and at the point where the highway retreats back to its original
size (i.e., the “merge point”).

This observation reduces the problem to examining throughput solely at
the endpoints of the “problem zone,” without need to consider the behavior of
traffic flow between those points. Thus, we can proceed simply by modeling
the behavior of traffic at these two points.

Calculating Backlogs
We find the number of cars at each of these bottlenecks at any given time, so

as to determine when a backlog occurs. For an arbitrary segment of the m-lane
section of the toll plaza, we integrate the conservation of flow equation (1) with
respect to x over the length of the road segment (with m lanes). This gives the
instantaneous number of vehicles within the segment, B(t):

B(t) =
∫

x

mρ(x, t)dx.

From this we obtain the rate at which the backlog or pileup in the merge zone
is growing:

dB(t)
dt

=
{

qarrival − qdeparture, if qarrival > qdeparture;
0, otherwise, (2)

where qarrival is the rate (in cars/s) at which cars enter the segment and qdeparture
is the rate at which they are exit. It then follows that:

Theorem (Flow Equilibrium). To prevent congestion from building at a bot-
tleneck (i.e., to keep B(t) = 0) while maintaining maximum system throughput,
it must be that

qarrival ≤ qdeparturemax ,

where qdeparturemax is the bottleneck capacity and thus the maximum system
throughput.

Proof : Consider the following three possible cases:

Case 1: Let qarrival > qdeparturemax
. Then by (2), the number of cars building up

in the system will increase at a rate of qarrival − qdeparture > 0.

Case 2: Let qarrival < qdeparturemax
. By (2), the rate of increase in the number of

cars in the system is 0, and system throughput is qarrival.
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Case 3: Let qarrival = qdeparturemax
. Similar to Case 2, a backlog does not grow,

and the system throughput is qarrival. Note that, however, qarrival, and thus
system throughput, is at a maximum while preventing congestion at the
bottleneck; therefore, this is clearly the optimal case.

Applications to Toll Plaza System
Adapting this general result to our model, we define

qini
to be the flow in cars/second entering the system in lane i,

qtollsi
to be the flow or turnover rate of tollbooth i, and

qouti to be the flow leaving the system (at or after the merge point) in lane i.

Our model considers the interaction between the two bottlenecks. Upon
investigation, two observations become apparent:

1. The maximum flow, qmax through a cross-sectional slice of the highway dx
is independent of the road structure before that point. In other words, the
maximum flow capacity is fixed solely by the number of lanes at that point
and not the number of lanes merging or diverging into it.

2. The only cross-sectional slice dx at which the maximal flow can be varied
(by the model) is at the tollbooths; this is done by changing the number of
tollbooths, which directly results in a change in the number of cars that can
be processed per unit time.

With this in mind we apply the Flow Equilibrium Theorem. We divide
the system into two segments, the first from (−∞, xtolls) and the second from
(xtolls, xmerge), where xtolls is the point x along the highway where the tollbooths
are and xmerge is the point where the m lanes of the toll plaza merge into the n
lanes of the highway.

The qarrival of the first segment (into the tollbooths) is simply qin, and qdeparture =
qtolls. For the second segment, qarrival = qtolls and qdeparture = qout.

Since qtolls = m/τ , only the number of tollbooths and their individual
turnover rates τ determine the flow entering the merge zone. By observa-
tion (1), we note that the bottleneck capacity of the merge point, qoutmax , is
independent of m and qtolls; it is merely a property of an n-lane highway.

We are therefore interested in how qtolls affects the flow of cars through the
merge zone. By observation (2), when qtolls > qout the backlog increases at a
rate of

dB(t)
dt

= qtolls − qout.

The backlog continues to grow until the entire merge zone is filled, and then it
spills out into the segment before the tolls. This buildup does not fully dissipate
until qin reduces to below qoutmax , or in other words, until the incoming flow
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rate is below the bottleneck capacity of the tightest bottleneck (such as at the
end of rush hour).

To prevent the occurrence of this effect, let qtolls ≤ qout, which allows traffic
to flow through the merge zone without causing backlog. However, when
qtolls < qout, the merge point is not operating at maximum flow; therefore,
letting qtolls = qout is optimal. Surprisingly, however, we show later that this is
actually a lower bound on qtolls.

From this result, we get

qout = nqoutmax = qtolls =
m∗

τ
,

where m∗ is the optimal number of tollbooths for an n-lane highway. Solving
for m∗, we get

m∗ = nτqoutmax .

Performance When the Number of Tollbooths Exceeds m∗

We now consider toll plaza performance when the number of tollbooths
m exceeds the predicted optimum m∗. This investigation is necessary. For
example, if our model were to predict m∗ slightly above the actual value, a
backlog would build within the merge zone, but it might build so slowly that
by the time its size became critical, the rush-hour mass of vehicles would already
have dissipated.

As previously shown, when m > m∗ and qin > qtollsmax , a backlog builds in
the merge zone at a rate of (qtollsmax−qout). Until the merge zone fills completely
with vehicles (when vehicle density is at a maximum), the tollbooths continue
to process vehicles at their maximum rate, qtollsmax = m/τ . In this case, the
backlog at the tolls grows at a rate of (qin − qtollsmax).

As a result, the effective backlog growth is the sum of the backlog growth
rates at each bottleneck:

d

dt
backlogeffective =

d

dt
backlogtolls +

d

dt
backlogmerge

= (qin − qtollsmax) + (qtollsmax − qout)
= (qin − qout).

Interestingly, this result implies that the total backlog of the system is entirely
dependent on the rate at which vehicles enter and the maximum rate at which
they can leave (i.e., the bottleneck capacity of the tightest bottleneck). Therefore,
as long as the tollbooths do not limit the total flow capacity of the system, the
exact rate at which the tollbooths process vehicles does not affect the system
flow. This line of reasoning leads us to the following theorem:

Theorem (Lower bound on m∗). The optimal number of tollbooths for an
arbitrary n-lane highway is greater than or equal to m∗ = nτqoutmax .
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Maximum Flow on an n-Lane Highway
Garber and Hoel [1999] observe empirically an inverse relationship between

ρ and v, and several models have been proposed to describe this behavior. It is
generally accepted that any such model must exhibit the following properties:

• Flow is zero when density is zero.

• As density increases to some critical value, so does flow.

• Past this critical density the flow begins to decrease.

• Flow cannot decrease beyond some minimum value.

Let vmax be the maximum velocity of cars traveling freely on the highway
(generally the speed limit), and let ρmax be the maximum number of cars (i.e.,
jam-packed) per unit area of highway (a constant).

One of the more popular models, proposed by Greenshield [Garber and
Hoel 1999], establishes a linear relationship between the two:

v = vmax

(
1 − ρ

ρmax

)
⇒ q = ρvmax

(
1 − ρ

ρmax

)
,

where vmax is the maximum speed at which cars tend to travel when flowing
undisrupted along the highway, generally taken as the speed limit.

A second popular model, introduced by Greenberg [Garber and Hoel 1999],
proposes a logarithmic relationship:

v = vmax ln
(

ρ

ρmax

)
⇒ q = ρvmax ln

(
ρ

ρmax

)
. (3)

While accurate in certain cases, these models do not seem to represent effec-
tively the motion of cars through toll plazas, because they both model the flow
as zero when density has reached its maximum. Although density will tend to
some maximum, flow will asymptotically approach but never reach zero, since
some number of cars will still flow out of the system over a long enough time
interval. This discrepancy is a direct result of the limitations inherent in treat-
ing traffic as a continuous flow. Determining the precise relationship between
ρ and v is a relatively complex modeling task beyond the scope of this paper,
so we accept Greenberg’s model with the restriction that if ρ = ρmax, flow will
approach some low constant value instead.

To determine a rough estimate of the maximum flow through the merge
point (or any n-lane highway for that matter), we use Greenberg’s model. To
find the maximum flow qmax, we differentiate (3):

d

dρ
q(ρ) = vmax log

(
ρmax

ρ

)
− vmax = 0

Solving for ρ, we get ρ = ρmax/2. Therefore, flow is maximized for density
ρmax/2, which gives

qmax =
ρmaxvmax

2
.
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Streamlined Flow Model
We made the assumption in the previous section that flow is distributed

uniformly among all lanes—that is, an equal number of cars pass through each
lane per second. However, in real toll plaza systems there are conditions when
this does not apply. For example, on New Jersey’s Garden State Parkway users
are restricted to movement between sets of individual highway lanes, before
and after the tollbooths, by lane dividers. As a result, sets of lanes operate
independently of each other. Moreover, one or more lanes may be reserved for
low-speed vehicles (recreational vehicles or large trucks) or high-speed traffic
(electronic toll collection, motorcycles, buses, or carpools).

To generalize our model, we relax this assumption to account for varying
flows between lanes of traffic. We divide the total flow through the tollbooths,
and the total outgoing flow through the exit, into individual lane flows, so that

qtolls =
m∑

i=1

qtollsi
, qout =

n∑
j=1

qexitj .

As observed in the Bottleneck Theorem, no lane can flow faster than qmax.
However, by conservation of traffic flow (1), total traffic flow through the system
remains the same, even though streams of traffic may move at different rates.

We must also consider what happens when lanes merge towards the exit
of the toll plaza. Whereas in the queueing theory model we were allowed to
consider only the flow at two points—qexit and qtoll—we must now also consider
the flow rate at all points where two or more lanes merge into one.

The flow rate at a merge point can never exceed qmax, the maximum flow
for a single lane. According to the results derived earlier in the basic model,
the rate of flow through each lane equals the rate of the slowest bottleneck
ahead. However, it is the combined rate of two merging lanes that exceeds the
lane bottleneck, not each individual lane, so naively setting qin = qmax would
incorrectly increase the rate of the premerged lane to match the bottleneck.

As a result, each lane can contribute at most a decreased quantity such
that the sum of the two lanes equals the bottleneck capacity. A simple way
to represent this behavior is to allow each to contribute a proportion of flow
relative to their combined size:

q1reduced = qmax
q1

q1 + q2
, q2reduced = qmax

q2

q1 + q2
.

Thus, when both flows would normally overfill the lane into which they
merge, each lane’s contribution to that lane’s flow, qout, will be proportional to
its percentage of the total amount of flow present, without ever exceeding qmax.

This observation lends itself to a simple recursive function in modeling toll
plaza traffic as an aggregate of independent flows. Therefore, predictions of
system behavior with introduction of electronic toll collection lanes and other
flow-monitored lanes are significantly simplified, by applying this model at all
steps of the merging process (i.e., by first merging every set of two lanes, and
then merging the following two, etc.).
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Simulation

Motivations for a Discrete Simulation
To validate the continuous model, we create a discrete simulation using

cellular automata to generate traffic behavior. Whereas our earlier models
approximate car flux as continuous, the cellular automata simulation treats
individual vehicles as distinct entities that behave according to well-defined
simple rules. Since the discrete model is based on an independent set of intu-
itions about the system and how it behaves, any agreement between the two
models will suggest a high degree of accuracy in our modeling efforts.

Overview
The simulation runs on a two-dimensional grid of points, each of which

corresponds to a width and length slightly greater than the average car size.
The simulation takes in parameters that determine the geometry of the toll plaza
as well as a probability, p, that a car enters the toll plaza in a given lane. When
populating the grid, each cell can be one of four types and behaves according
to its corresponding set of rules:

Free: a transient place holder when block is unoccupied.

Barrier: a boundary point of the toll plaza; this cell never changes.

Toll block: a tollbooth.

Car: a cell occupied by a vehicle.

Rules of State Evolution
The rules that create the next generation of cells (next state of the grid) from

time t to t + 1 are:

• All cars travel at a constant speed of 1 forward cell per time step.

• A car can change lanes and move forward on the next step if there is an open
adjacent cell to its side and an open cell along the appropriate diagonal.

• A car can stay in the same lane if the cell ahead is free, if the car in front of
it moves forward on that step, or if it is in front of the toll and its toll delay
has expired.

• As the cells in the entry of the toll plaza are freed by the evolution of the grid,
at each time step new cars arrive in these with probability p, the density of
incoming cars.



Two Tools for Tollbooth Optimization 365

Stochastic State Evolution
We use random variables to make the system nondeterministic. This more

closely represents real-world simulations where exact car path is unpredictable
and also attempts to account for the wide range of parameters relating to driver
psychology, variations in vehicles, and variations in service time in paying the
toll. To generate this effect, we implement the following rules:

1. Each toll processes a car at a random rate each time, with distribution cen-
tered at τ = 3:

p(x) =
{

0.25, x ∈ {2, 4};
0.5, x ∈ {3}.

2. Cars switch lanes at random with some assigned probability, but their deci-
sion is influenced by the desirability of the target lane.

3. The arrival of cars into a lane is a Poisson process with rate λ, a parameter
to the simulation.

Reporting
We run the simulation for 1,000 time steps. It returns total car throughput,

total waiting time, average waiting time, total transit time, and the density of
cars in each section of the system (i.e., before, within, and after the toll plaza).

Sample simulation run
Cars are released at t = 0 and proceed toward the tollbooths. Upon entering

the diverge zone, cars change lanes and spread out to minimize their total wait
time at the tolls.

Depending on the number n of highway lanes and the number m of toll-
booths, traffic eventually reaches an equilibrium flow, or else flow is reduced
by the bottlenecks and backlog begins to grow. In our figures, the color of the
vehicle designates the amount of time spent waiting in the system, with bright
green the least, dark green moderate time, and bright red the most.

The model supports varying traffic density over time; we ran our simula-
tions with arrival densities of 15%, 50%, and 85% percent.

Simulation Sample Images
Simulation sample activity is illustrated in Figure 1.
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(a)
m=5

(b)
m=11

(c) m=13 (d) m=15 (e) m=17 (f) m=19

(g) m=21 (h) m=23

Figure 1. Simulation at step 1000 for n=5.
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Running the Simulation
We ran the simulation for t = 1000 timesteps, with τ = 3 steps, for all possible

tollway sizes from n = 1 to n = 8, and for m = n to 4n (for small n) or to 3n (for
large n). For each highway size, we ran the simulation at 85%, 50%, and 15%
density. We repeated this process 5 times for the sake of statistical significance.
For a timestep of 1 s, a single run of the simulation corresponds to about 17 min
of traffic.

Over each set of conditions, we track the total throughput of cars. We then
compare the throughput achieved using m tollbooth lanes on a given n-lane
tollway over the entire 1000-s period.

Results and Analysis

Model Predictions vs. Simulation Results
To compare further the accuracy of our theoretical model and our discrete

simulation, we compare experimental data collected from the simulation with
our model’s predictions for the corresponding number of highway lanes n. To
do this, we must make the following parameter assumptions.

• The average vehicle length plus its separation distance from the vehicle
ahead of it is approximately 15 ft.

• At high density, vehicles travel in the merge zone on average at 15 mph.

• In correspondence with the simulation, the average processing time at the
tolls is τ = 3 s/car.

Computing the model’s predictions based on these parameters and running the
simulation for from one to seven highway lanes yields the results in Table 1.
The values for m∗ are the minimum values for which adding additional lanes
does not alter performance significantly. [EDITOR’S NOTE: The experimental
graphs used to derive these values are omitted here.]

Figure 3 shows that our flow model is validated as an accurate long-term
predictor of traffic behavior for high density scenarios (p = .85). We believe
that the difference between the continuous model prediction and the observed
value in the simulation stems from uncertainty in the value of the parameter
qmax. Our prediction of qmax = 4 was accurate only for the high-density case.
For the low-density case, we almost never experience the conditions caused
by qmax—clogging at the merge points—and so our model does not apply.
The continuous flow model does not apply when traffic flow has significant
variations in speed, when density cannot be considered a regular flow.

Our flow model accurately predicts the observed optimum to within 3 lanes
for high-density traffic. From this, we see a high level of agreement between
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Table 1.
Experimentally observed optimal number of lanes for various traffic densities vs. predicted

optimal number �m∗� of lanes. There is a rough one-to-four relationship between the number of
highway lanes and the optimal number of tollbooths.

Highway lanes Simulation density ρ �m∗�
.15 .50 .85

1 1 4 5 4
2 2 6 10 8
3 3 9 13 12
4 4 10 16 16
5 5 13 18 20
6 6 14 21 24
7 7 16 25 28

Figure 3. Observed optimal number m∗ of toll lanes for given number n of highway lanes.
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the two models, even though they operated on completely independent as-
sumptions. These results suggest that our model predicts the optimal number
of tollbooths for an arbitrary n-lane tollway fairly accurately.

Total Throughput vs. Average Wait Time
For every simulation that we ran, whenever throughput is higher or lower

for a given pair of (m, n, ρ), average transit time is correspondingly higher or
lower. We conclude that total throughput and average wait time are highly
correlated. As a result, optimizing either of them results in good performance
relative to the other criterion.

Accuracy of Simulation

Sensitivity of Parameters
We examine the effect of changing parameters. Altering the processing

time τ , length of the tollway, length of the merging area, and the probability
distribution for random behavior all affect the absolute throughputs achieved
for different numbers of tollbooths—but do not affect the optimal number of
lanes.

The only parameter with a significant effect on the optimal number of lanes
is length of the merging area when set to an extremely low value, so that cars
couldn’t switch lanes in time to utilize all of the lanes. However, this condition
contradicts an initial assumptions of our model and condition is unlikely to
occur in the real world.

Our simulation is therefore very robust with respect to parameter variation.

Faithfulness to Real-World Behavior
We use the cellular automata simulation to validate the effectiveness of the

flow model; however, this verification is only accurate to the extent that the
cellular automata is a realistic description of real-world traffic flow through
tollbooths.

To validate our simulation, we examine real-world flow rates of the Union
toll plaza of the Garden State Parkway at several peak flow times, where n = 5
and m = 13 [New Jersey Institute of Technology 2001, 11]. Examining the seven
hours of data, we arrive at a throughput of 2393 cars/hr; our model predicts
2530 cars/hr. Our simulation matches the empirical results surprisingly well
for peak density.

According to our simulation, the Garden State Parkway’s performance is
fairly suboptimal. The best results, according to the simulation, are obtained
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for m = 20 tollbooth lanes, enabling an increase in average throughput by
almost a factor of two.

Extensions of Base Model

Electronic Toll Collection
Under electronic fare payment systems such as Fastrack and EZ-Pass, drivers

attach an electronic device to their vehicles, which is scanned automatically as
they pass through a special tollbooth lane with little or no reduction in speed.

Both our model and simulation can analyze inclusion of special “fastlanes.”
In the streamlined-flow model, fastlanes are simply lanes with a much higher
rate of flow qtolli through the tollbooth. Since congestion still occurs later as
a result of the narrow bottleneck caused by merges and qmax, fast progress
may still be impeded by slow merging. This possibility explains the common
practice of having separate fastlane toll lanes running alongside the outside of
the toll plaza, so that merging happens far enough down the road.

Because merge rates are proportional to ratio of the rates of the lanes merging
and the maximum possible rate, we have that

qfastlane-at-mergepoint = qmax

(
qfastlane

qfastlane + qother

)
.

Since qfastlane is potentially much greater than qother, cars in the fastlane flow at a
rate close to the maximum. As a result, users who choose a fastlane still move
through the toll plaza faster than other cars, even when forced to merge with
slower traffic. The more use of fastlanes, the higher overall average throughput,
and the recommended number of toll lanes for regular use can drop.

Final Recommendations
• Our model predicts that the findings in Table 1 provide the best results for

high-density situations. For traffic density at or above 85% of the maximum
bumper-to-bumper density, our model should be used. Lanes can be closed
when density is lower.

• Our model provides a lower bound on the recommended number of toll-
booth lanes. Running more tollbooth lanes than the optimal predicted value
does not hinder throughput.

• The case m = n suffices exactly when a road has consistently low-density
traffic. For medium- and high-density traffic, this case causes suboptimal
performance.
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Model Assessment

Model Strengths
• The discrete and continuous models agree well at peak densities.

• We generate plausible traffic behavior through partially random behavior in
our models. In particular, our models match well effects we observe in the
Union toll plaza of the Garden State Parkway.

• Our model can scale successfully to represent the impact of electronic toll-
taking and variable tollbooth speeds.

Model Weaknesses
• The primary shortcoming of the theoretical model is the assumption that car

flux is continuous. Fractional values of car flux do not realistically represent
low-density traffic.

• Our model is too sensitive to variations in the average amount of time to
process a car at the tolls.

• The simulation accounts for many unknown factors with random choices.
Validation of our model is accurate only insofar as this randomness accurate
reflects driver behavior.

• We don’t consider cost as a component of our solution.
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Summary
We model traffic near a toll plaza with a combination of queueing theory

and cellular automata in order to determine the optimum number of tollbooths.
We assume that cars arrive at the toll plaza in a Poisson process, and that the
probability of leaving the tollbooth is memoryless. This allows us to completely
and analytically describe the accumulation of cars waiting for open tollbooths
as an M|M|n queue. We then use a modified Nagel-Schreckenberg (NS) cellu-
lar automata scheme to model both the cars waiting for tollbooths and the cars
merging onto the highway. The models offer results that are strikingly consis-
tent, which serves to validate the conclusions drawn from the simulation.

We use our NS model to measure the average wait time at the toll plaza.
From this we demonstrate a general method for choosing the number of toll-
booths to minimize the wait time. For a 2-lane highway, the optimal number of
booths is 4; for a 3-lane highway, it is 6. For larger numbers of lanes, the result
depends on the arrival rate of the traffic.

The consistency of our model with a variety of theory and experiment sug-
gests that it is accurate and robust. There is a high degree of agreement between
the queueing theory results and the corresponding NS results. Special cases of
our NS results are confirmed by empirical data from the literature. In addition,
changing the distribution of the tollbooth wait time and changing the probabil-
ity of random braking does not significantly alter the recommendations. This
presents a compelling validation of our models and general approach.

The UMAP Journal 26 (3) (2005) 373–389. c©Copyright 2005 by COMAP, Inc. All rights reserved.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice. Abstracting with credit is permitted, but copyrights
for components of this work owned by others than COMAP must be honored. To copy otherwise,
to republish, to post on servers, or to redistribute to lists requires prior permission from COMAP.



374 The UMAP Journal 26.3 (2005)

Introduction
A toll plaza creates slowdowns in two ways:

• If there are not enough tollbooths, queues form.

• If there are too many tollbooths, a traffic jam ensues when cars merge back
onto the narrower highway.

We use queueing theory to predict how long vehicles will have to wait before
they can be served by a tollbooth. Using cellular automata to model individual
cars, we confirm this prediction of wait time. This vehicle-level model is used
to predict how traffic merges after leaving the toll plaza.

Initial Assumptions
• The optimal system minimizes average wait time. We do not consider the

cost of operating tollbooths.

• Cars arrive at the toll plaza uniformly in time (the interarrival distribution
is exponential with rate λ). We can consider rush hour by varying the arrival
rate λ.

• Cars have a wait time at the tollbooth that is memoryless (exponential
distribution with rate µ). This assumption is confirmed by the study of
tollbooths by Hare [1963].

• Cars are indistinguishable. All cars have the same length and the same
maximum speed.

• The toll plazas are not near on-ramps or exits. We do not consider the
possibility of additional cars merging, only those that were already on the
main road.

• Two-way highways are equivalent to two independent highways. We
consider only divided highways.

Delays Due to Too Few Tollbooths

Tollbooths As an M|M|n Queue
As a vehicle approaches the toll plaza, it has a choice of n tollbooths for

service. Cars tend toward the shortest queue available. We simplify this be-
havior by supposing that all vehicles form a single queue, and that the next car
in line enters a tollbooth as soon as one of the n booths becomes available. A
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real system would be less efficient, and therefore we expect longer times in a
more detailed simulation.

We assume that vehicles arrive uniformly distributed in time. We addi-
tionally suppose that the length of service time is exponentially distributed as
in Hare [1963]. This class of model is called a memoryless arrivals, memoryless
service times, n-server or “M|M|n” queue (Figure 1).

Figure 1. The M|M|n queue. Vehicles arrive at rate λ and are serviced at rate µ.

We define X(t) as the number of vehicles either in the queue or at a tollbooth
at time t. We also define the stationary probabilities pk such that, in steady
state, the probability that the queue has length k is pk. From the input-output
relationship of the M|M|n queue, the stationary probabilities must satisfy

0 = −λp0 + µp1;
0 = λpk−1 − (λ + kµ)pk + (k + 1)µpk+1, k = 1, . . . , n;
0 = λpk−1 − (λ + nµ)pk + nµpk+1, k = n + 1, n + 2, . . . .

The solution to this system is [Medhi 2003]:

p0 =


n−1∑

j=0

ρj

j!
+

ρn

n!(1 − ρ
n )



−1

, pk =




ρk

k!
p0, k = 0, . . . , n;

ρk−npn, k = n + 1, n + 2, . . . ,

where ρ = λ/µ.
Let the random variable W be the time that a vehicle spends in the system

(time in the queue + time in the tollbooth). From Medhi [2003], the distribution
and expected value of W are

P (W = w) =
n−1∑
k=0

(
λ
µ

)k

k!
p0 µe−µw +

(
λ
µ

)n

n!
p0

nµ2

(n − 1)µ − λ

(
e−µw − e−(1−ρ)nµw

)
,

E[W ] =
1
µ

+
pn

nµ(1 − ρ)2
.

This result describes the first part of the general problem: how the cars line up
depending on the number n of tollbooths.

To model the traffic merging after the tollbooths, it is important to describe
how vehicles leave the M|M|n queue. For an M|M|n queue, the interdeparture
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times of the output of the queue are exponentially distributed with rate λ, and
the output process has the same distribution as the input process. Because of
the memoryless nature, interdeparture intervals are mutually independent (see
Medhi [2003] or Bocharov et al. [2004] for proofs of these statements).

We define D as the number of cars departing the tollbooth during an inter-
val ∆t. Then the probability that d cars leave in that time is:

P (D = d) =
e−λ∆t(λ∆t)d

d!
,

where λ is the mean number of cars that arrive at the toll plaza in a time step.
The M|M|n queue provides a simple and well-developed model of the toll-

booth plaza. In particular, the average wait time and the output process are
known, allowing us to verify simulation results.

Limitations of the M|M|n Queue
Though useful, the M|M|n queue is incomplete and oversimplifies the prob-

lem. Even though the M|M|n queue allows us to find the distribution of de-
partures simply, its assumptions prevent it from being a complete solution. By
using a single-queue theory, we assume that any car can go to any open server.
This is overly optimistic, especially when the density is high. We would expect
our predictions to be more valid for low density. Perhaps most importantly,
the M|M|n queue only simulates half of the problem—the waiting times due to
back-ups in front of the tollbooths.

Modeling Traffic with Cellular Automata

Overview
The complex system of traffic can be modeled by the simple rules of au-

tomata. We use cellular automata to model the traffic flow on a “microscopic”
scale. In this scheme, we discretize space and time and introduce cars that each
behave according to a small set of rules.

Cellular automata are well-suited for simulating our specific problem, since
there are a large number of individual vehicles in the toll plaza, all of which
are interacting. Continuous or macroscopic models could not capture this
interaction and its role in causing jams that spontaneously form both before
and after the toll plaza.

We first create a one-lane highway model and then add a delay for the time
to pay the toll. As a one-lane simulation can allow no passing, cars accumulate
behind the stopped car, creating a queue. We then extend this model into a
multiple lane system, and then to a multiple lane system where the number of
lanes is not constant, that is, where the road enters or leaves a toll plaza.
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Single-lane Nagel-Schreckenberg Traffic
Most automata used to simulate traffic are generalizations of the Nagel-

Schreckenberg cellular automata model (NS) [Chowdhury et al. 2000]. The NS
model is a standard tool used to simulate traffic flow and has been shown to
correspond to empirical results [Brilon et al. 1991; Chowdhury et al. 2000; Gray
and Griffeath 2001; Knopse et al. 2004; Rickert et al. 1996; Schreckenberg et al.
1995].

We use this automaton to create a numerical model to confirm the queueing
theory predictions.

In the NS model, a car is represented by an integer position xn and an integer
speed vn. The vehicles are deterministically moved by their velocities, xn →
xn + vn. The system evolves by applying the following procedure (Figure 2)
simultaneously to all (xn, vn).

NS Algorithm

Figure 2. Rules of the NS algorithm.

1. Acceleration. If the vehicle can speed up without exceeding the speed limit
vmax, it adds one to its speed, vn → vn + 1. Otherwise, the vehicle has
constant speed, vn → vn.

2. Collision prevention. If the distance between the vehicle and the car ahead
of it, dn, is less than or equal to vn, that is, the nth vehicle will collide if it
doesn’t slow down, then vn → dn − 1.

3. Random slowing. Vehicles often slow for nontraffic reasons (cell phones,
coffee mugs, even laptops) and drivers occasionally make irrational choices.
With some probability pbrake, we have vn → vn − 1, presuming vn > 0.

We choose the cell size to be 7.5 m to match Nagel and many others [Brilon
et al. 1991; Chowdhury et al. 2000]. Since a typical maximum speed for cars is
30–35 m/s, choosing vmax = 5 makes a single time step close to 1 s. We also use
periodic boundary conditions for simplicity. (We later abandon these boundary
conditions, since open boundary conditions—a Poisson generator and a sink—
are consistent with the M|M|n model.) In addition, research results indicate
that the periodic boundary may oversimplify the distribution of vehicles [Yang
et al. 2004].
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We apply the above algorithm to a random initial state with a given density.
This system was created by assigning each cell a probability of occupation c,
which is the vehicle density parameter. This matches Gray and Griffeath’s
approach [2001].

The NS model produces results similar to those cited as typical by Chowd-
hury [2000]. In Figure 3, the state of the system at time step i is drawn in the ith
column, with a white pixel where there is a vehicle and a black pixel for open
space. Both images show generally smooth flow interrupted by congestion.
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a. Results from the NS model, c = 0.2, p = 0.25. b. Results from Chowdhury et al. [2000].

Figure 3. Typical results from two models.

Properties of and Support for the NS Model
The one-lane NS model is self-consistent, flexible, and matches known em-

pirical data.
Some of the properties of the NS model can be predicted analytically [Nagel

and Herrmann 1993]. We use this information as well as experimental results
to test our model. In the limiting case where the random braking probability
is zero, it is possible for vehicles to “cruise,” moving at their maximum speed
at all times, corresponding to a flux of J = cvmax. This is possible only if there
is sufficient space. Once the “hole density” or the remaining spaces, given by
(1 − c), is smaller than this flux, the lack of free space limits the speed of the
vehicles. This relationship between flux and density is given by:

J(c) = min{cvmax, 1 − c}, (1)

where J is the flux of cars, the number of cars passing a cell in unit time, and
c is the density of cars. We ran our NS automaton with pbrake = 0 for 20 trials
with excellent agreement between our mean and the theory, as seen in Figure 4.

As pretty as this graph is, it indicates only that the model is self-consistent
and can be approximated; it does not show that it actually represents a real
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Figure 4. The flux equation (1) predicts the results of the NS model with very good accuracy.

system. We consult empirical data on vehicle flux (Figure 5b). Clearly, the NS
model is an accurate approximation of the known data.

It is also possible to use mean field theory to describe the NS model. Even
if pbrake �= 0, the case of vmax = 1 can be solved analytically with this technique
[Schadschneider and Schreckenberg 1997]. For our system, with vmax = 5, this
becomes computationally difficult.

Adding Delays
Delays prevent the use of periodic boundary conditions.
To simulate an encounter with a tollbooth, we must add a delay to the

unobstructed system. Simon and Nagel model the NS automaton for a blockage
but only with a fixed delay probability [1998]. We assume that the service time
is exponentially distributed, with a probability of 1 − exp(−µ∆t) that any one
tollbooth completes service in ∆t, and so we use this assumption to describe
the delay in our NS model as well.

Introducing this delay creates an asymmetry in the problem; particles to
the right of the barrier have to loop around to reach the “tollbooth,” whereas
particles on the left will impact it immediately. Because of this, we measure the
flux at both the one-quarter and three-quarter points of the lane (Figure 6).

The fundamental diagrams in Figure 6 confirm our intuition regarding the
interaction of flux and a bottleneck (the tollbooth). The flux at the quarter
point experiences a decline due to congestion at a relatively low vehicle density
compared with the three-quarter point, which is beyond the bottleneck. The
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a. NS model with theory. b. Empirical data from Canadian high-
way [Chowdhury et al. 2000].

Figure 5. Comparison of model with data.

heavy incoming traffic therefore affects the accumulating queue faster than the
vehicles past the tollbooth.

These fundamental diagrams show that the periodic boundary conditions
are inappropriate for this calculation; with periodic boundaries, the input rate
to the queue is limited by the (smaller) flux of vehicles wrapping around from
the right. This is not representative of a true traffic jam; without periodic
boundary conditions, jams cannot affect the flux upstream from them.
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Figure 6. Fundamental diagrams.
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Simulating the Complete System

Multiple Lanes
By adding a new rule to the one-lane automaton, we can model multilane

highways. We use a single-lane model to ensure that our automaton is a proper
representation of the real world, but the actual problem is a multiple-lane one.
Two-lane system studies are less common than single-lane studies, and higher-
lane models even rarer [Chowdhury et al. 2000; Nagel et al. 1998; Rickert et al.
1996]. We extend the rule set of the automaton to describe lane changes, using
the one-lane NS rules with a single additional rule for lane changing (Figure 7).

Figure 7. The multi-lane automaton rule.

4. Merge to avoid obstacles. The vehicle attempts to merge if its forward path
is obstructed (dn = 0). The vehicle randomly chooses an intended direction,
right or left. If that intended direction is blocked, the car moves in the other
direction unless both directions are blocked (the car is surrounded). This
is consistent with the boundaries and tailgating rules proposed by Rickert
et al. [1996].

Changing the Highway Shape
By using the multilane automaton, we can model a multilane highway that

has realistic lane-changing behavior. This still does not, however, model a
transition between highway and a number of tollbooths.

To create the toll plaza, we introduce borders that force the automata to
change lanes to avoid hitting the boundary. The borders outline the edge of
a ramp that moves from the highway onto a wider toll plaza and back again
(Figure 8). This is the only aspect of this model that is not general; by imposing
different boundaries, we could easily model a different problem. To simulate
the wait at the tollbooth, we also add a delay at the center, as in the one-lane
case.

The previous models [Gray and Griffeath 2001; Nagel et al. 1998; Rickert
et al. 1996] assume a roadway of constant width—the number of lanes does
not change. By restricting the geometry of our roadway to represent the toll
plaza (note the “diamond” shape in Figure 8 and introducing the behavior of
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Figure 8. We introduce imaginary borders into the system to narrow and widen traffic.

merging away from obstacles, we have increased the flexibility of the model
without making additional assumptions.

Consistency of M|M|n Queue and NS Model
The M|M|n queue is an idealized system. It predicts a shorter wait time

than a real toll plaza, because it fails to account for inefficiencies in the queue
(Figure 9). The M|M|n queue does, however, predict the correct distribution.
In addition, the stability of the queue is very different from the stability of the
NS model. An M|M|n queue achieves a steady state if λ/µ < n, with λ the
arrival rate, µ the service rate, and n the number of servers [Gross and Harris
1974]. We observe in the NS simulation that traffic in front of the tollbooths
could create a growing backlog even when the corresponding M|M|n queue
would be stable.

Despite these apparent inconsistencies, there is a very strong agreement be-
tween the queueing theory predictions and the observed results. From queue-
ing theory analysis, we know the probability distribution of the number of cars
leaving the tollbooths:

P (D = d) =
e−λ∆t(λ∆t)d

d!
.

This equation provides a good deal of information about the queue, and this
probability can easily be measured in the cellular automata model. We compare
the simulated and theoretical probability distribution in Figure 10, and the two
distributions are very similar: The difference in their means is decreasingly
small and is less than 2% after 104 iterations of the NS model.
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Figure 9. The M|M|n distribution and NS distribution are similar, but the M|M|n has a smaller
mean wait time due to its optimistic assumptions.

Figure 10. The simulated distribution of leaving vehicles is very close to that predicted by queueing
theory.



384 The UMAP Journal 26.3 (2005)

Time Predictions of the Automata Model

The Optimal Number of Tollbooths
The optimal configuration minimizes the wait time; so to determine the

correct number of tollbooths, we need to measure the average time for a vehicle
to enter the toll plaza, wait in line, and then exit out onto the main road again.
We do this by tracking automata and averaging the time that passes between
entering and leaving the system.

Calculating Average Times
The average time required to pass through our system depends on the ar-

rival rate (which controls congestion), the number of lanes, and the number of
tollbooths. We consider the mean service rate to be fixed, at 5 s; Hare uses 9 s
[1963]. However, though changing the service rate does change the average
time, this change does not affect which value of n is optimal.

We fix the number l of incoming lanes and search over the number n of
tollbooths and the arrival rate λ. We calculate the average wait time for a range
of n and λ by using our cellular automata model and averaging over a long
period of time to eliminate transient effects.

What, though, should these ranges be? We presume that n is not larger than
three or four times the number of lanes. We placed this restriction after noticing
that the wait time increases sharply when n is much larger than l. The range of
λ is determined by commonsense restrictions. If λ is the mean number of cars
arriving in a time step, then λ should be no more than the number of lanes of
incoming traffic as this is the physical capacity of the road.

Optimal Results for 2 Lanes
We allow n to range from 2 to 8 and λ from 0 to 2. We plot the average time

against n and λ in Figure 11.
The clear minimum in this graph lies along the line n = 4, even for different

values of λ. This indicates that even for different arrival rates, the optimal
number of tollbooths is 4. This is a very stable solution that does not require
changes with traffic rates, at least for typical values.

Though 4 is the optimal number of booths, 2 is very near optimal and 3 is
very bad. For n = 3, the additional lane adds more traffic jam than throughput.
For small n, when there is one more booth than lanes of traffic, the wait time is
a local maximum.

Optimal Results for 3 Lanes
By varying λ from 0.6 to 2.7 and n from 3 to 9, we find that the minimum

occurs, once again independent of λ, at n = 6 (Figure 12).
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Figure 11. For a 2-lane system, the minimum time occurs for 4 tollbooths.

Figure 12. For a three-lane system, the minimum time occurs when there are six tollbooths.
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Higher Numbers of Lanes
The results so far would suggest the naive solution of always having twice

as many tollbooths as incoming lanes. Unfortunately, the 4-lane case disproves
this guess. For different values of the arrival rate λ, the optimal number of
tollbooths changes, from a low of 6 for small λ. The tollbooth owners could
measure traffic flow, estimate λ, and open or close tollbooths as needed.

Generalizing These Results
To determine the stability of these results, we made calculations with the

probability of random braking changed to 0.1 rather than 0. For each λ, even
though the wait times change, the optimal numbers of tollbooths do not.

This process could be repeated for any required setup; we have illustrated
a general technique for determining the optimal number of tollbooths.

One Tollbooth per Lane
If cars were not allowed to change lanes, the case with one tollbooth per

lane of traffic would just reduce to l independent one-lane models, and this
would be equivalent to our single-lane highway. We know that this is not the
case. Cars move into the lane with the shortest queue.

In our results, the n = l case is typically nonoptimal. The one exception
to is the two-lane highway; here, the time for n = 2 is only barely longer than
for n = 4. However, this is not because n = l is always “bad,” but because
there is usually a better case. As the number of lanes increases, the number of
tollbooths increase significantly. If we consider cost, the n = l case could be
very important, since for low l (l < 5), the n = l + 1 case is a local maximum
and n = l is a local minimum.

Re-examining Assumptions
Though our calculations assume an exponential service probability, using a

Gaussian service distribution does not change the model’s recommendations
significantly.

Conclusions
We build a model of traffic flow near a toll plaza by using cellular automata

modified from the one-lane Nagel-Schreckenberg automaton.

• Our model’s predictions match empirical data on vehicle distribution and
are confirmed by our queueing theory analysis of the problem.
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• Changing the service rate and service distribution of the tollbooths does not
significantly alter the recommendations for the optimal number of booths

• We establish a general technique for determining the optimal number of
tollbooths to put on a given highway.

• Though in general the optimal tollbooth results are complex and depend
on the arrival rate, there are simple cases: a 2-lane highway should have 4
tollbooths and a 3-lane highway should have 6, independent of the amount
of traffic.

• In general, the case of as many tollbooths as lanes is suboptimal.

Strengths and Weaknesses

Strengths
• Consistency. Our queueing theory model and the cellular automata model

agree on the distribution of cars leaving the booths. Both models match the-
oretical results and past empirical results. In addition, under small changes,
like adjusting the probability of braking, the recommendations of the model
do not change significantly.

• Minimal assumptions required. By using the automata, we reduce the
number of parameters and assumptions. For our queueing theory, we as-
sume that the probability of leaving the tollbooth is exponential, but altering
this distribution does not affect the recommendations.

• Flexibility. Our model easily adapts to problems with different geometries,
such as different numbers of lanes or even different boundaries.

• Ease of implementation. A complex problem is simulated using very simple
rules.

Weaknesses
• No closed-form solution. For the complete model, we must actually calcu-

late the simulation.

• Calculation time. To get an accurate average time for vehicles, we need to
average over a number of time steps on the order of 10,000. As the number
of lanes increases, computation slows.
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Judge’s Commentary:
The Outstanding Tollbooths Papers

Kelly Black
Dept. of Mathematics
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Schenectady, NY 12308
blackk@union.edu

Overview of the Problem
The teams were asked to examine the flow of traffic through a toll plaza. One

of the difficulties in this problem is that the traffic flow through a toll plaza is not
actively managed; rather, the traffic through the system is passively managed
by the careful design of the roadway and the toll-collection system. On most
roadways, a toll plaza consists of a long transition to an increased number of
lanes, the collection system (the tollbooths), and a long transition back to the
original number of lanes. Interestingly, only a very small number of entries
suggested adding an active management component to the toll plaza, such as
ways to restrict the way that drivers can change lanes.

In the last paragraph of the problem statement three tasks/questions were
given:

• “Make a model to help determine the optimal number of tollbooths to deploy
in a barrier-toll plaza.”

• “Explicitly consider the scenario where there is exactly one tollbooth per
incoming lane.”

• “Under what conditions is this more or less effective than the current prac-
tice?”

At first glance, it would seem that the considerable power of queueing the-
ory would be readily available for this problem. Unfortunately, this is only true
to a certain extent. The nature of a toll plaza is that multiple lanes expand into
even more lanes into which people can change if they feel it is advantageous.
Once again, people get in the way of good mathematics.
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On second thought, however, the difficulty of the problem should not be a
surprise. As far as we are aware, no state’s Dept. of Transportation has been
able to get this problem right. Moreover, traffic designers often only have one
chance to get it right. The cost of making changes to an existing toll plaza can
be prohibitive.

In the following section, we provide an overview of the kinds of solutions
that were submitted, including some comments on the judges’ reactions. We
also provide an overview of the judging process itself and the challenges that
this particular problem represented to the judges. Finally, some tips and point-
ers are provided in reaction to some of the things that appeared in many of the
team’s submissions.

The Problem at Hand

Modeling a Toll Plaza
The first of the three questions required teams to create a mathematical

model of a barrier-toll plaza. The most common mathematical model treated
the toll plaza as a queue. Unfortunately, the complex nature of the toll plaza
is not easily described as a simple queue. For example, the lanes diverge into
more lanes at the entrance, and drivers are able to change lanes. Also, the
lanes must combine again after the service area, and crowded traffic after the
tollbooth can impact the traffic in the entrance of the toll plaza.

Of the entries that modeled a toll plaza using queueing theory, what set
them apart was how they handled the various subtleties of a toll plaza. For
example, teams had to make decisions on how cars move in the entrance and
exit sections of a toll plaza. Teams also had to decide on how each car is handled
by the tollbooth attendants. For example, some teams assumed that each car
could be handled in the same amount of time. Other teams assumed that the
time required for each car was a random variable with a prescribed probability
distribution. To make this decision even more difficult, the teams had to decide
how to handle the various payment methods available, such as cash, EZ-Pass,
or other remote rapid-payment methods.

Of those teams that assumed that the service time required for each car
varied, some treated the entrance section as a queue and the actual tollbooth
as a separate queue. In this situation, the resulting chain of queues could be
coupled and described if the two probability distributions were similar. For
example, the majority of such entries assumed that the distributions of the
cars entering the system and tollbooth service times were both Poisson with
different parameters.

While the more advanced entries were able to bring together the entrance
and the tollbooths in the plaza, the exit represented a significant difficulty. The
majority of entries briefly discussed the potential problems of the traffic after
the service booths but did not include the effects of the exits in their models.
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In fact, the teams that did explicitly consider the exit areas usually only did so
in the context of a simulation in a computational model.

In addition to the queueing theory approach, a less common approach was
to model the flow of traffic as a fluid. The resulting models were much more
complex than those based on queueing theory. The process of matching the
physical situation to a flow and then converting the results back to what is
happening within a toll plaza represented a substantial difficulty for those
taking this approach.

Besides the construction of a mathematical model, the most popular ap-
proach to this problem made use of simulations based on a computational
model. Such models were usually based on either a cellular automata model
or a highly modified queue making use of a time-stepping scheme allowing for
lane changes. The more advanced approaches also factored the exit areas into
the simulation.

A computational model required a much different approach to the analysis
and discussion of the results. The results are a composite of many runs and
take on a statistical nature. Furthermore, the large number of variables—the
number of lanes before the plaza, the number of lanes in the plaza, the waiting
time, the way cars enter the system, the length of the plaza, and a wide variety
of other factors—make it difficult to reach concrete conclusions about the best
design for a toll plaza. This is especially true given the short time available
to develop the computational model, implement it, decide which situations to
use, run it, and examine the results.

The judges took this into consideration and did not expect a complete ex-
amination. This approach did require a more complete description of the com-
putational model, though, since the number of assumptions that can be incor-
porated was significantly greater. There was also a heightened expectation of
doing more in the way of a sensitivity analysis with respect to some of the
various parameters.

While many different approaches were submitted, the entries that received
the higher ratings examined at least two different models. The most common
combination by far was a simple queue and a computational model. The most
striking aspect of this was that few teams explicitly stated a comparison of
the two results under identical circumstances. Those that did stood out, and
the results of the comparison helped to establish a good benchmark of the
computational model.

One Tollbooth Per Lane
The second question in the problem statement required each team to use

their models for a toll plaza that has one tollbooth for each lane of travel on
the road. This established a sanity check that each team had to examine. Sur-
prisingly, a number of teams did not examine this situation, which resulted in
a penalty for ignoring one of the stated requirements.
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What Is “Best”
The final question required the teams to determine best practice in designing

a toll plaza—to define a way to compare different configurations of a toll plaza.
Each team had to balance the competing costs of each driver’s time, the cost of
operating the toll plaza, and the cost of construction.

One of the most surprising aspects of this year’s competition is that few
teams explicitly defined what they thought would be the cost of operating a toll
plaza. The vast majority of teams simply compared the average waiting time
for the drivers under various circumstances with little comment or justification.
Those teams that looked at a nontrivial cost of operating the tollbooths based
on the cost of lost productivity of the drivers and the cost of operating the
tollbooths certainly stood apart from the others.

The few teams that did examine this part of the problem reported some of
the most interesting results. In fact, in some circumstances the option of not
building a tollbooth is the most satisfactory option to almost everybody except
maybe the tollbooth operators themselves!

Overview of the Judging Process
We give an overview of the judging process, including some general ob-

servations about some of the entries submitted for the competition. In the
subsections that follow we try to provide some insight into what the judges
discussed prior to the actual judging, first impressions of a paper, and some of
the small details that help to make an entry stand out.

First, we try to provide a broad overview of the judging process itself. The
papers are examined in a two-step process. The first round, or triage round, is
the first pass. In this round, judges are able to examine the papers for only a
relatively short time. When a judge begins reading a paper in this first stage,
the question is, “Should the paper be read in closer detail?” If the answer is
“yes” or even “maybe,” then it is passed on to the second stage. Because we try
to give each paper the benefit of the doubt, it is difficult to state what necessary
essence is required to move past this round.

At the most basic level, the quality of the writing and the consistency of the
summary with the rest of the paper is vital in this first stage. It is a really bad
idea to make a judge work too hard on a paper. The easier it is for a judge to
determine how the students interpreted the problem, the approach used, and
the results, the easier it is for the judges to determine the quality of the work.

Entries that remain through the second stage are given much closer, detailed
readings. For example, papers that remain on the final day of judging are read
by as many as eight different judges for at least an hour per entry. During this
time the judges sometimes confer with one another if they are not sure about
an equation, result, or the wording in a section. For the most part, though, each
judge tries to provide an independent review of the student’s work.
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Discussion Before Judging Began
Before the judging began, the judges got together to discuss the problem.

As usual, the problem was nontrivial, and we judges had to ensure that we un-
derstood what was being asked. The judges had to carefully parse the original
question. For example, this year the problem included some very specific tasks
that were given in the last paragraph of the problem, and whether or not an
entry specifically addressed those questions was important.

Additionally, each judge initially read through a set of randomly chosen
papers. In the second stage of the process, this set of papers was adjusted to
ensure that each judge viewed papers with a wide variety of initial scores. The
purpose of this protocol is to make sure that we also took into consideration
how the various teams interpreted the question and how they reacted to the
problem.

After these initial readings, the judges had to agree on what was important
and how to provide a consistent mechanism for comparing different entries.
Each year, the relative importances of the various aspects of a paper are tailored
to the particular problem; but in general, the kinds of things that judges look
for in a paper are relatively consistent. This year the judges decided that the
following aspects were important:

Summary This is the first thing that a judge sees. A summary should provide a
brief overview of the problem, a brief review of the methodologies used, and
an overview of the conclusions. It is a difficult challenge to include all these
things on one page and do it well, but it does provide the first impression.

Assumptions and Justifications In constructing a mathematical representa-
tion of a physical system some simplifications must be made and some sub-
tleties must be left out. The parts of the problem deemed most important—as
well as what is left out of the model—must be made explicit.

Model/Analysis One of the novel aspects of this year’s problem was the close
association between the mathematical model and the analysis of the prob-
lem. The stochastic nature of the problem, as well as the prevalence of entries
making use of both queuing theory and simulation, made it difficult to sep-
arate these two aspects of the problem. In the end, the judges decided not
to treat them separately, so that it would be easier to compare entries whose
balance varied between the different approaches used.

Results/Validation It is not unusual to see many papers that make use of a
variety of approaches and techniques, but this problem resulted in more
entries than usual that employed at least two solution techniques. It was
more important than ever for the teams to be able to compare the different
results as well as interpret the results.

Sensitivity Between the stochastic nature of the problem and the wide use of
simulation, the validation of the results had to include some way to test the
robustness of the conclusions. One of the most important ways to do this
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is to examine what happens after changing the values of certain parameters
or changing the assumptions on what kind of probability distributions to
use. For example, some teams that used queuing theory examined their
conclusions under a variety of assumptions about the time required by an
individual tollbooth attendant to complete one transaction. If a small vari-
ation in the service time resulted in a large change in the average waiting
times, that is an indication that the conclusions may be circumspect.

Strength & Weakness Any mathematical model requires many assumptions
and simplifications and is only good for a restricted situation. It is vital that
the modeler identify the conditions under which the mathematical model
is appropriate. Each team was expected to demonstrate explicitly that they
had done some critical analysis of the model itself and to identify what they
felt was good and bad about the model.

Clarity/Communication One of the key aspects of any problem is to be able to
share the results. The methods employed, the results that are delivered, and
the analysis of both the methods and the results must be clearly described.
This is the filter through which all mathematics is shared.

Communicating Mathematics
As mathematicians, we are engaged in a social exercise that absolutely re-

quires us to share our work with one another, however sharing mathematical
ideas can be extremely difficult. In fact, it is difficult enough that we often try
very hard to avoid putting our students through the difficult learning process
associated with writing and sharing mathematical ideas. We often have our stu-
dents take part in writing proofs or problem solving, but putting it all together
in a formal report or a paper the first time can be an excruciating process.

There are many excellent books and other resources for students that offer a
better introduction than can be expressed here. In fact, from the many excellent
entries it is clear that those resources are being exploited. We focus on just a
few general issues that stand out in this year’s event.

• Some teams presented a narrative of the team’s activities. An entry that lists
how the team approached the problem and chronicles what the team did (or
tried to do) puts the team at a severe disadvantage. In contrast, an entry in the
format of a self-contained report immediately stands out. In such a report,
the problem is restated, including the results; the various methodologies that
are used are clearly stated; the analyses are given; and the results are clearly
stated, including a critical examination of the approach and the results.

• One aspect of writing that even advanced writers struggle with is graphing.
When a plot is provided, it should be clearly introduced and described in
the text, including a proper reference to the figure number. It should be clear
to the reader from the text of the report what to look for in the plot before
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turning to look at the plot. This year’s problem is an excellent example
of the importance of describing plots and figures. Providing a graphical
example of cars moving through a toll plaza over time is difficult and each
team attempted to do this is in many different ways. Furthermore, some
teams provided sequences of figures to demonstrate a particular transition,
and there is a huge burden on the writers to explain what the reader should
be looking for and what the implications are.

In general, when a figure or plot is provided, the text should provide a
detailed explanation of what is in the figure. Also, the caption and labels in
the figure should succinctly describe what the figure is. Of course, the axes
should be labeled and units should be provided. One thing that was different
for this year, however, was that the judges gave teams more leeway in how
discrete vs. continuous functions were displayed. Discrete data should be
displayed as discrete and not with lines drawn between points. This year
was different in that many figures represented the organization of the cars
in a queue that might be discrete according to the model even though the
domain (time) could be continuous.

• Some of the entries included many tables. Almost everything said above for
figures also applies to tables. Tables should be clearly labeled and explained
in detail in the text of the report. The easier you make it for a judge to
determine what is in a table and why it is important, the more likely the
judge will be happy. A happy judge is a higher-scoring judge!

• Finally, a small thing that is very likely to keep an otherwise good paper
from being held back in the early rounds. Some teams have a difficult time
integrating equations and citations within the text of the report. Equations
and citations should be correctly integrated into each sentence using proper
grammar. Some teams that do excellent work make it extremely difficult for
themselves when the equations or citations are set apart from each sentence
and not properly integrated into the flow of the text.

The Little Things
The vast majority of teams do great work, and it is always exciting to see

what the teams are able to accomplish in such a short amount of time. It is also
important to be able to share and express the ideas developed by each team
in a formal report. This final product is the vehicle used to communicate the
team’s ideas and techniques. It is not a narrative of what the team did but
is an opportunity to educate and persuade others to follow up on the team’s
excellent work.

There are a number of simple things that can be done to make an entry easier
to read. Some of these may appear to be trivial, but they make the judges task
easier which in turn makes it easier for the judges to concentrate on the ideas
rather than the way the ideas are expressed:
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Strengths & Weaknesses This aspect of an entry demonstrates whether or not
a team has provided a critical inquiry into the methods and techniques de-
veloped. Including this aspect as a separate section of a report makes it
much easier for the judges to identify easily this important aspect of the
team’s efforts.

Table of Contents Given the growing number of teams that use LATEX, it is
shocking how few entries provide a table of contents. This is a trivial step
that can radically improve the readability of a report.

Citations A paper that makes ample use of citations properly and consistently
integrated into the text is guaranteed to stand out. For example, many papers
included citations when providing the definitions of functions describing the
way cars entered the toll plaza but failed to provide a citation when stating
some of the results that happen to come directly from the relevant literature.

Equation Numbers Number all equations even if they are not explicitly re-
ferred to in the text. This makes it easier for judges to confer when there is
a question about a particular equation.

Units Units are important. Always make sure that the definition of a variable,
parameter, or function includes its units. Also, always check a result to make
sure that the units are correct. This is one of the first checks judges make
when confronted with a result that is not obvious. (Always keep in mind
the difference between a quantity and its rate of change!)

Conclusions
Each year we are amazed at the high quality of the entries. The things that

the teams can accomplish in a weekend are a testament to the quality of the
team’s training and hard work. The teams receiving the higher honors should
be proud to stand out in such an incredible field.

This year the teams that submitted entries for the Tollbooth Problem focused
their efforts on the optimal design of a toll plaza. They had to consider the
number of lanes, the lengths of lane transitions, the times required to collect the
fares, and a wide variety of other factors. Most of the teams made use of either
queuing theory, comparisons to fluid flow, or simulation via a computational
model. The teams that received higher recognition from the judges derived
more than one model and made comparisons among their models.

One aspect that set entries apart was the analysis and critical evaluation
of their models and results. As usual, a sensitivity analysis of the models is
important; but because of the nature of this year’s problem, an even higher
value was placed on this important aspect of the modeling process.

Finally, each team’s entry consists of a written report designed to educate
and persuade. This is a difficult task in itself, but the teams are asked to do this
without the benefit of an outside editing process; they must somehow build
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editing into their efforts themselves. Adding to the difficulties, good writing
is most effective when it does not get in the way of the ideas that the writer is
trying to convey and is not noticed until after the reader looks back and realizes
what has been shared.
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