
Portfolio Presentation

Computational

Thinking
• Using special thinking

patterns and processes to

pose and solve problems

or prepare programs for

computations.

• Simply put, it is a set of

skills that help to set up a

problem in such a way

that a computer can help

you solve it.
Picture credit: www.computationalthinkers.com/product/computationalthinking/

“
“

“
“
“

“
“

“
Four pillars of Computational Thinking

Decomposition Pattern

matching
Abstraction Algorithm

(Automation)

Breaking a

problem down

into smaller,

more

manageable

parts.

Finding

similarities

between items

as a way of

gaining extra

information.

Ignoring certain

details in order

to come up

with a solution

that works for a

more general

problem.

Controlling a

process by

automatic

means,

reducing human

intervention to a

minimum.

Computational Thinking Resources

Video resources:

https://www.youtube.com/watch?v=kdngEhA4I00 (for younger children)

https://www.youtube.com/watch?v=qbnTZCj0ugI (for middle school children)

https://www.youtube.com/watch?v=qpxLusH4quY&list=PLiTx3ehKDhsdqt3F1tR_FSyHwX

pdlp2ox&index=1 (focus on algorithm)

ISTE Toolkit:

https://www.iste.org/explore/Solutions/Computational-thinking-for-all

Code.org CS unplugged classroom activity ready to be used:

https://code.org/curriculum/course3/1/Teacher#Vocab

https://www.youtube.com/watch?v=kdngEhA4I00
https://www.youtube.com/watch?v=qbnTZCj0ugI
https://www.youtube.com/watch?v=qpxLusH4quY&list=PLiTx3ehKDhsdqt3F1tR_FSyHwXpdlp2ox&index=1
https://www.iste.org/explore/Solutions/Computational-thinking-for-all
https://code.org/curriculum/course3/1/Teacher#Vocab

Activity 1.

Solve Sudoku

Decomposition

Step 1.

Step 2.

Step 3.

Step 4.

Work on upper-

right region (2)

Work on lower-

right region (4)

Work on upper-left

region (1)

Work on lower-left

region (3)

For Region 1

Step 1.

Step 2.

Step 3.

Step 4.

That would be 2 and 3.

Look at the numbers

that are missing in

column 1 of the puzzle.

That would be 2.

If there is only one number missing

from all three sets, that number goes

to row 1 and column 1 in region 1.

Look at the numbers

that are missing in

row 1 of the puzzle.

That would be 1, 2.

Look at the numbers

missing in region 1.

That would be 1, 2.

Step 5.

If there is a second number

missing from all three sets,

continue to the next cell and

come back when you have more

information.

For Region 2

Step 1.

Step 2.

Step 3.

Step 4.

That would be 2 and 3.

Look at the numbers

that are missing in

column 3 of the puzzle

That would be 3.

If there is only one number missing

from all three sets, that number goes

to row 2 and column 3 regaion 2.

Look at the numbers

that are missing in

row 2 of the puzzle.

That would be 1, 3.

Look at the numbers

missing in region 2.

That would be 1, 3.

Step 5.

If there is a second number

missing from all three sets,

continue to the next cell and

come back when you have more

information.

Pattern Matching

Step 1.

Look at the numbers

that are missing in

row 2.

That would be 1, 3.

Step 1.

Look at the numbers

that are missing in

row 1.

That would be 1, 2.

For region 1 For region 2

Abstraction

Step 1.

Step 2.

Step 3.

Step 4.

That would be ...

Look at the numbers

that are missing in

column Y of the puzzle.

That would be …

If there is only one number missing

from all three sets, that number goes

to row X and column Y in region N.

Look at the numbers

that are missing in

row X in the puzzle.

That would be 1, 3.

Look at the numbers

missing in region N.

That would be ...

Step 5.

If there is a second number

missing from all three sets,

continue to the next cell and

come back when you have more

information.

Automation (algorithm)

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

For every cell

in a region

For every

region

in this puzzle

Decomposition

“Journey of a thousand miles begins with a single step.”

Lao Tzu

“When eating an elephant, take one bite at a time”

Creighton Abrams

Decomposition

In computing, decomposition is the

process of breaking down a task into

smaller, more-manageable parts.

Decomposition Resources

Divide and ConquerTut, Clap, Jive at barefoot website

Go to http://barefootcas.org.uk to create an account

https://sites.google.com/isabc.ca/computationalthinking/decomposition

https://docs.google.com/document/d/1DMDuomVc5gZ_NSaC3afERx4OuESWweydMICqetin3to/edit
https://www.barefootcomputing.org/resources/decomposition-unplugged-activity-ks1
http://barefootcas.org.uk/

Pattern Recognition (Matching)

Patterns are everywhere. By identifying patterns, we can create

rules and solve more-general problems.

Pattern Resources

Cut Block Logic Puzzles by Queen Mary

University of London (https://goo.gl/1ZUu5S)

https://sites.google.com/isabc.ca/computationalthinking/pattern-recognition

https://www.barefootcomputing.org/concepts-and-approaches/patterns

https://sites.google.com/isabc.ca/computationalthinking/pattern-recognition

Abstraction

• The practice of ignoring certain

details in order to come up with a

solution that works for a more

general problem.

• It is a way of letting go of details to

make a process easier.

Abstraction Resources

https://sites.google.com/isabc.ca/computationalthinking/abstraction

https://code.org/curriculum/course4/5/Teacher

Code.org

https://studio.code.org/s/20-hour/stage/14/puzzle/1 Red Black Mind Meld: https://goo.gl/19QSzO

https://sites.google.com/isabc.ca/computationalthinking/abstraction
https://code.org/curriculum/course4/5/Teacher

Algorithm (Automation)

A process controlled by automatic means and reduce human

intervention to a minimum.

Watch this video:

https://www.youtube.com/watch?v=qpxLusH4quY

Algorithm

(Automation)

• An algorithm is a sequence of

instructions or a set of rules to get

something done.

• Algorithms are written for a human,

rather than for a computer to

understand. In this way, algorithms

differ from programs.

Algorithm example

Flowchart

Algorithm Resources

https://sites.google.com/isabc.ca/computationalthinking/algorithm

https://code.org/curriculum/course4/5/Teacher

Divide and Conquer

https://docs.google.com/document/d/1DMDu

omVc5gZ_NSaC3afERx4OuESWweydMICq

etin3to/edit

Calculate surface area

https://docs.google.com/document/d/1pDf

7DHtGvmFkrPxg0EmY0HAMoQsCoLaYs

u9ZQWmba7g/edit

Sorting algorithm

https://classic.csunplugged.org/

sorting-algorithms/

https://sites.google.com/isabc.ca/computationalthinking/algorithm
https://code.org/curriculum/course4/5/Teacher

Computational Thinking
Unplugged Lesson in Action - Binary Bracelets from code.org

Portfolio Presentation

Problem-solving

Process
• Problem analysis

• Alternative consideration

• Choosing an approach

• Problem decomposition

• Algorithm development

• Algorithm correctness

• Algorithm efficiency

• Reflection

Problem Understanding

Is the step that leads to the identification of the problem characteristics.

For algorithmic problems, it starts by recognizing the input categories of

the problem and the selection of the required output category for each

input category.

Basic strategies

01

02

03

04

Extreme cases

Each input is a subtaskIdentify inputs

If yes, how;

If not, why?

Identify outputs

Input/Output/variable

What are inputs?

• Input is data sent to a computer system from devices such as a keyboard,

mouse, microphone, camera or physical sensor.

• Input devices enable information from the outside world to get into a computer

– without them, we wouldn’t even be able to switch the computer on!

• Some are built in; others are plugged in or wirelessly connected.

What are outputs?

Output is data or information communicated from a computer system to the

outside world via various devices which include:

Activity 6 (a): Input/ Output Examination

Stage A

Stage B

Stage C Presentation and discussion

Read the following article:

For each of them, select a technique learnt in

Stage A to identify input/output for each

problem.

Read the two problem specifications

given by your instructor.

https://codeburst.io/10-steps-to-solving-a-

programming-problem-8a32d1e96d74

Solution Design

Is the major challenge facing novice learners.

The examination of a given problem’s inputs and outputs clarifies the

problem to the problem solver. The next stage is to define the variables

needed to solve the problem.

Basic Strategies

01

02

03

04

How should K-8 incorporate computer science

into their curriculum?

Identify algorithmic patterns
Define problem variables

Stepwise refinement

Variables

A variable can be thought of

as a box that can hold one

value at a time.

Activity 6 (b): Choose problem variables

Stage A

Stage B

Stage C Presentation and discussion

Further analyze the problems

given in Activity 6(a).

Identify variables needed to solve them.

- Compare solutions

- Summarize guidelines for a

teacher to evaluate each learner‘s

investigation of variables

- Come up with variables needed

- Come up with guidelines for a

teacher to evaluate each learner‘s

investigation of variables

Stepwise Refinement

 Is a top-down methodology that first obtains the overview of the structure

of the problem and the relationship among each parts, and then to address

specific and complex issues related to the implementation of subpart.

 refers to the progressive refinement in small steps of a program

specification into a program.

Step-wise

(top-down)

Refinement
• was used first in the paper titled Program

Development by Stepwise Refinement by

Niklaus Wirth, the author of the

programming language Pascal and other

major contributions to software design and

software engineering, in the

Communications of the ACM, Vol. 14 (4),

1971, pp. 221-227.

• Wirth said: "It is here considered as a

sequence of design decisions concerning

the decomposition of tasks into subtasks

and of data into data structures."

Stepwise

• Start with the initial problem statement

• Break it into a few general steps

• Take each "step", and break it further into more detailed steps

• Keep repeating the process on each "step", until you get a breakdown

that is pretty specific, and can be written more or less in pseudocode

• Translate the pseudocode into real code

Stepwise Refinement (Example)

Problem Statement:

Determine the class average for a set of test grades, input by

the user. The number of test grades is not known in advance

(so the user will have to enter a special code -- a "sentinel"

value -- to indicate that he/she is finished typing in grades).

Initial breakdown into steps

 Declare and initialize variables

 Input grades (prompt user and allow input)

 Compute class average and output result

Now, breaking down the "compute" step further, we got:

Compute:

 add the grades

 count the grades

 divide the sum by the count

Revised breakdown of steps

 Declare and initialize variables

 Input grades -- count and add them as they are input

 Compute class average

Breaking the steps into smaller steps
So, now we can break down these 3 steps into more detail. The input step can roughly

break down this way:

loop until the user enters the sentinel value (-1 would be good)

 prompt user to enter a grade (give them needed info, like -1 to quit)

 allow user to type in a grade (store in a variable)

 add the grade into a variable used for storing the sum

 add 1 to a counter (to track how many grades)

Breaking the steps into smaller steps

We could specifically write this as a while loop or as a do-while loop. So one more

refining step would be a good idea, to formulate the pseudo-code more like the actual

code we would need to write. For example:

do

 prompt user to enter a grade (give them needed info, like -1 to quit)

 allow user to type in a grade (store in a variable)

 add the grade into a variable used for storing the sum

 add 1 to a counter (to track how many grades)

while user has NOT entered the sentinel value (-1 would be good)

Breaking the steps into smaller steps

If we look at this format, we realize that the "adding" and "counting" steps should only

be done if the user entry is a grade, and NOT when it's the sentinel value. So we can

add one more refinement:

do

 prompt user to enter a grade (give them needed info, like -1 to quit)

 allow user to type in a grade (store in a variable)

 if the entered value is a GRADE (not the sentinel value)

add the grade into a variable used for storing the sum

add 1 to a counter (to track how many grades)

while user has NOT entered the sentinel value (-1 would be good)

Breaking the steps into smaller steps

This breakdown helps us see what variables are needed, so the declare and initialize

variables step can be now made more specific:

initialize variables:

 a grade variable (to store user entry)

 a sum variable (initialized to 0)

 a counter (initialized to 0)

Compute and print:

 divide sum by counter and store result

 print result

Putting it all together
initialize variables:

a grade variable (to store user entry)

a sum variable (initialized to 0)

a counter (initialized to 0)

grade entry:

do

prompt user to enter a grade (give them needed info, like -1 to quit)

allow user to type in a grade (store in a variable)

if the entered value is a GRADE (not the sentinel value)

add the grade into a variable used for storing the sum

add 1 to a counter (to track how many grades)

while user has NOT entered the sentinel value (-1 would be good)

Compute average:

divide the sum by the counter

print the answer

Variables
Insert the title of your subtitle Here

• Variables are used as placeholders for values such as numbers or words.

• Variables allow for a lot of freedom in programming.

• Instead of having to type out a phrase many times or remember an

obscure number, computer scientists can use variables to reference them.

Variables are memory location used to keep

information!

Variable Resource

https://code.org/curriculum/unplugged

https://www.barefootcomputing.org/concepts-and-approaches/variables

https://code.org/curriculum/unplugged
https://www.barefootcomputing.org/concepts-and-approaches/variables

Code.org variable demo (1)

Code.org variable demo (2)

What is variable?

• A variable is a simple way of storing one piece of information

somewhere in the computer’s memory while a program is running,

and of getting that information back later.

• A variable is an example of a data structure.

• A variable can be numerical, textual or perhaps an indicator of

true/false.

• Programs can store, retrieve or change the values of variables.

Variables used in a graphic user interface

Variables
A variable can be thought of as a box that can hold one value at a time.

Before you can use a variable, you

need to claim a piece of memory

and associate it with a name.

Declaring a variable

Activity 1: Variables Unplugged Activity

(peer teaching)

Stage A

Stage B

Stage C

Stage D

Teach the lesson

https://www.barefootcomputing.org/res

ources/variables-unplugged-activity

or

https://www.barefootcomputing.org/res

ources/scratch-maths-quiz-variables

Download lesson plan at

Prepare ppt

Discussion and reflections

https://www.barefootcomputing.org/resources/variables-unplugged-activity

Activity 2: Kidbots! (peer teaching)

Stage A

Stage B

Stage C

Stage D

Prepare ppt and other materials

Cons and pros

Teach the lesson

https://csunplugged.org/en/topics/

kidbots/unit-plan/

Select one from the 1,2,3,4

Step E. Discussion and reflections

. Design your own activity

Portfolio Presentation

Concept maps
is a two-dimensional, graphic or

schematic diagram illustrating the

interconnections, and often the

hierarchy, of a particular concept

or topic.

How to create concept map? (1)

How to create concept map? (2)

• Fetch – gets the next

program command from

the computer’s memory

• Decode – deciphers what

the program is telling the

computer to do

• Execute – carries out the

requested action

• Store – saves the results

to a Register or Memory

Von Neumann Computer Architecture

Fetch – gets the next

program command from

the computer’s memory

Decode – deciphers what

the program is telling the

computer to do

Execute – carries out the

requested action

Store – saves the results

to a Register or Memory

Activity 3: Pedagogical Examination of

Concept Maps

Stage A

Stage B

Stage C

Stage D

Design a classroom activity that ask

students to create a concept map

on a selected subject and create

evaluation rules

Present your class room activity and

ask your peers to complete the

classroom activity

https://www.nsta.org/publications/

news/story.aspx?id=53174

Read the article below:

. Present the concept maps

created and evaluate them

Main concepts should be

included and the relationship

should be specified
Step E.

.
Discussion and reflections

-how can concept map help

to promote learning

- How CM help assessment

of learning outcomes

Concept Mapping Resource

https://ctl.byu.edu/tip/concept-mapping

http://www.inspiration.com/visual-learning/concept-mapping

https://www.nsta.org/publications/news/story.aspx?id=53174

https://ctl.byu.edu/tip/concept-mapping
http://www.inspiration.com/visual-learning/concept-mapping

Portfolio Presentation

Metaphors
Are used in order to understand

and experience one specific thing

by using an analogy to another

thing, usually a familiar concept.

A variable can be thought of as

a container that can hold one

value at a time.

Data Types

• A variable in Java is designed to hold only one particular type of

data.

• There are eight primitive types built into Java.

• byte, short, int, long variables hold integers.

• float, double variables hold real numbers

• char variable holds a single character from the Unicode character

set.

• boolean variable holds one of the two logical values true or false.

Variable Declaration

int age = 20;

byte nextInStream;

short hour;

long totalNumberOfStars;

float reactionTime;

double itemPrice;

Portfolio Presentation

Classification
is used to classify objects

and phenomena from real life to

support and guide the mental

construction of computer science

concepts.

Declare problem variables
Mapping problem characters to different variables

int float boolean string

Activity 4: Classification of Variable According to Types

Stage A

Stage B

Stage C

Stage D

Sort them into different bins

Cons and pros

Define a variable for each

scenario

Study the pictures in previous

page

Step E. Discussion and reflections

You can simply impress

your audience and add

a unique zing.

Design your own activity

You can simply impress

your audience and add

a unique zing.

Program Control Structure (using concept map)

Sequential: default mode.

Sequential execution of code

statements (one line after

another) -- like following a recipe

Selection: used for decisions,

branching -- choosing between 2

or more alternative paths.

Repetition: used for looping, i.e.

repeating a piece of code multiple

times in a row.

Sequence statements

int number1;

int number2

int total=0;

Scanner input = new Scanner(System.in);

System.out.println("please enter the first number");

number1 = input.nextInt();

System.out.println("please enter the second number");

number2 = input.nextInt();

total = number1+number2;

System.out.println("your answer is" + total);

