
Summer 2002 CISC121 - Prof. McLeod 1

Week 4

• Introduce the Analysis of Complexity, also 
called Algorithmic Analysis, or “where Big O 
Notation comes from”.

• The techniques of algorithmic analysis will be 
applied to the various data structures, searching 
and sorting techniques developed in the rest of 
the course.

• Used to provide understanding as to why one 
algorithm is better than another in terms of its 
expected execution time.
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Analysis of Complexity
• Once correct data structures have been built, 

efficient code is required to manipulate that data 
- sorting, searching, entering, displaying, saving, 
etc.

• “Correct” implies “error free” and “robust”.
• “Efficient” mainly means “minimum running 

time”.
• These days, hardware is not a restriction -

memory and magnetic storage is cheap.  But 
users must be impatient, otherwise why do 
processors keep getting faster?



Summer 2002 CISC121 - Prof. McLeod 3

Analysis of Complexity - Cont.

• As datasets get larger and larger, execution time 
becomes a big issue.

• “Complexity” is how a program actually executes 
- all the steps actually taken that sum up to the 
measured running time of the program - this is 
very complex…

• “Analysis of complexity” is a means of 
simplifying this complexity to the point where 
algorithms can be compared on a simple basis.
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Analysis of Complexity - Cont.
• Measure execution time t, in milliseconds, 
against sample size, n:

• (a) is a faster computer, (b) is a slower one.



Summer 2002 CISC121 - Prof. McLeod 5

Analysis of Complexity - Cont.
• As expected, the actual running time of a program 

depends not only on the efficiency of the 
algorithm, but on many other variables:

- Processor speed & type.

- Bus speed.

- Amount of memory.

- Operating system.

- Extent of multi-tasking.

- …
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Analysis of Complexity - Cont.

• In order to compare algorithm speeds 
experimentally, all other variables must be kept 
constant.

• But experimentation is a lot of work - It would be 
better to have some theoretical means of 
predicting algorithm speed, or at least relative 
speed.

• We want to be able to say that “Algorithm A will 
be faster than Algorithm B, if both are tested 
under the same conditions”.
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Analysis of Complexity - Cont.

• The advantage would be that:
– It would be independent of the type of input.
– It would be independent of the hardware and software 

environment.
– The algorithm does not need to be coded (and 

debugged!).

• An example follows.
• But first, define what a “primitive operation” is.
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Analysis of Complexity - Cont.
• A primitive operation takes a unit of time.  The 

actual length of time will depend on external 
factors such as the hardware and software 
environment.

• Select operations that would all take about the 
same length of time.  For example:
– Assigning a value to a variable.
– Calling a method.
– Performing an arithmetic operation.
– Comparing two numbers.
– Indexing an array element.
– Following an object reference.
– Returning from a method.
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Analysis of Complexity - Cont.

• Each of these kinds of operations would take the 
same amount of time on a given hardware and 
software platform.

• Count primitive operations for a simple method.
• Example - find the highest integer in an array:
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public static int arrayMax(int[] A) {

int currentMax = A[0]; // 3 operations
int n = A.length; // 3 operations
for (int i = 0; i < n; i++)// 2+3n

if (currentMax < A[i]) // 3n
currentMax = A[i]; // 0 to 2n

return currentMax; // 1
} // end arrayMax

• Number of primitive operations:
– Minimum = 3+3+2+3n+3n+1= 9 + 6n
– Maximum = 9 + 8n

Analysis of Complexity - Cont.
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Analysis of Complexity - Cont.

• Or, Best case is 9 + 6n, Worst case is 9 + 8n.
• What is the Average case?
• If the maximum element had exactly the same 

probability of being in each of the array locations 
then the average case would be = 9 + 7n.

• But if data is not randomly distributed, then getting 
the average case is very difficult.

• It is much easier to just assume the worst case 
analysis, 9 + 8n.
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Analysis of Complexity - Cont.

• Consider the case when n gets very large 
(Asymptotic Analysis).

• Then 8n is much greater than 9, so just using 8n 
is a good approximation.

• Or, it is even easier to say that the running time 
grows proportionally to n.

• Or the order is to the first power of n, or just first 
order, or O(n).

• As expected, it makes sense to just ignore the 
constant values in the equation.
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“Big O” Notation

• Mathematical definition of Big O Notation:

Let f(n) and g(n) be functions that map 
nonnegative integers to real numbers.  We say 
that f(n) is O(g(n)) if there is a real constant, c, 
where c > 0 and an integer constant n0, where n0
≥ 1 such that f(n) ≤ cg(n) for every integer n ≥ n0. 
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“Big O” Notation - Cont.
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“Big O” Notation - Cont.

• f(n) is the function that describes the actual time 
of the program as a function of the size of the 
dataset, n.

• The idea here is that g(n) is a much simpler 
function that what f(n) is.

• Given all the assumptions and approximations 
made to get any kind of a function, it does not 
make sense to use anything more than the 
simplest representation.
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“Big O” Notation - Cont.
• For example, consider the function:

f(n) = n2 + 100n + log10n + 1000

• For small values of n the last term, 1000, 
dominates.  When n is around 10, the terms 100n 
+ 1000 dominate.  When n is around 100, the 
terms n2 and 100n dominate.  When n gets much 
larger than 100, the n2 dominates all others.  The 
log10n term never gets to play at all!

• So it would be safe to say that this function is 
O(n2) for values of n > 100.
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“Big O” Notation - Cont.

• Similarly a function like:

20n3 + 10n(log(n)) + 5

is O(n3).  (It can be proved that the function is ≤
35n3 for n ≥ 1.  So c is 35 and n0 is 1.)
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“Big O” Notation - Cont.
3log(n) + log(log(n)) 

• is O(log(n)) since the function is ≤ 4log(n) for n ≥
2.  (c = 4, n0 = 2).

• Note that the Big O notation actually provides an 
infinite series of equations, since c and n0 can 
have any number of values.

• The constants c and n0 are not usually presented 
when an algorithm is said to be “Big O” of some 
function - but there are times when it is important 
to know their magnitude.
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“Big O” Notation - Cont.

• Common big O notations:

– Constant O(1)
– Logarithmic O(log(n))
– Linear O(n)
– N log n O(n(log(n)))
– Quadratic O(n2)
– Cubic O(n3)
– Polynomial O(nx)
– Exponential O(2n)
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“Big O” Notation - Cont.

• How these functions vary with n.  Assume a rate 
of 1 instruction per µsec (micro-second):
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“Big O” Notation - Cont.
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“Big O” Notation - Cont.

• So algorithms of O(n3) or O(2n) are not practical 
for any more than a few iterations.

• Quadratic, O(n2) (common for nested “for” loops!) 
gets pretty ugly for n > 1000.

• To figure out the big O notation for more 
complicated algorithms, it is necessary to 
understand some mathematical concepts.
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Some Math…

• Logarithms and exponents - a quick review:
• By definition:

logb(a) = c,  when  a = bc
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More Math…
• Some rules when using logarithms and exponents 

- for a, b, c positive real numbers:

– logb(ac) = logb(a) + logb(c)
– logb(a/c) = logb(a) - logb(c)
– logb(ac) = c(logb(a))
– logb(a) = (logc(a))/logc(b)
– blog

c
(a) = alog

c
(b)

– (ba)c = bac

– babc = ba + c

– ba/bc = ba - c
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More Math…

• Summations:

• If a does not depend on i:
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More Math…

• Also:
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Still More Math…

• The Geometric Sum, for any real number, a > 0 
and a ≠ 1.

• Also for 0 < a < 1:
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Still More Math…

• Finally, for a > 0, a ≠ 1, and n ≥ 2:
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Properties of Big O Notation

1. If d(n) is O(f(n)), then ad(n) is still O(f(n)), for any 
constant, a > 0.

2. If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) + 
e(n) is O(f(n) + g(n)).

3. If d(n) is O(f(n)) and e(n) is O(g(n)), then d(n)e(n) 
is O(f(n)g(n)).

4. If d(n) is O(f(n)) and f(n) is O(g(n)), then d(n) is 
O(g(n)).
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Properties of Big O Notation – Cont.

5. If f(n) is a polynomial of degree d (ie. 
f(n) = a0 + a1n + a2n2 + a3n3 + … + adnd, then 

f(n) is O(nd).
6. loga(n) is O(logb(n)) for any a, b > 0.  That is to 

say loga(n) is O(log2(n)) for any a > 0 (and a ≠ 1).
7. (log(n))x is O(ny) for x, y > 0.
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“Big O” Notation - Cont.

• While correct, it is considered “bad form” to 
include constants and lower order terms when 
presenting a Big O notation.

• For most comparisons, the simplest 
representation of the notation is sufficient.
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“Big O” Notation - Cont.
• For example, show that 2n3 + 4n2log(n) is really 

just O(n3).
• This could be shown just by looking at the relative 

numeric significance of the terms as we did for an 
earlier example, but it is easier to use the 
properties of Big O notation:
– log(n) can be considered O(n) in this case 

(Rule 7)
– 4n2 is O(n2) (Rule 1)
– O(n2)O(n) is O(n3) (Rule 3)
– 2n3 is O(n3) (Rule 1)
– O(n3) + O(n3) is O(n3) (Rule 2)
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“Big O” Notation – Cont.

• Basically, just look for the highest order term in a 
multi-term expression, in order to simplify the 
notation.
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Analysis of Complexity - Cont.

• The analysis of complexity is mathematical in 
nature.

• So, it is often necessary to offer logical proofs of a 
conjecture or a hypothesis.

• I will offer only a rapid overview of some 
mathematical techniques for justification - a 
complete treatment is beyond the scope of this 
course.
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Simple Justification Techniques

• Proof by Example:
– Sometimes it is sufficient to produce only one example 

to prove a statement true (but not often).
– The more common use of “Proof by Example” is to 

Disprove a statement, by producing a 
counterexample.

– For example, propose that the equation 2i-1 only yields 
prime numbers.  To disprove this proposition, it is 
sufficient to provide the example of i=4 that evaluates 
to 15, which is not prime.



Summer 2002 CISC121 - Prof. McLeod 36

Simple Justification Techniques - Cont.

• Proof by using the Contrapositive:
– For example to justify the statement “if a is true then b 

is true”, sometimes it is easier to prove that if “a is false 
then b is false”.
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Simple Justification Techniques - Cont.

• Proof by using Contradiction:
– To prove that statement “q is true”, propose that q is 

false and then show that this statement leads to a 
logical contradiction (such as 2 ≠ 2, or 1 > 3).
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Simple Justification Techniques - Cont.

• Proof by Induction:
– Very common since algorithms often use loops.
– Used to show that q(n) will be true for 

all n ≥ 1.
– Start by showing that q(n) is true for n=1, and possibly 

for n=2,3,…
– (Induction step) Assume that q is true for some value k, 

where k < n.
– Show that if q(k) is true then q(n) is true.
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Simple Justification Techniques - Cont.

• Example of proof by Induction:
• Prove that: 

• Base case, n=1, is true since 1 = 2/2.
• n=2 is true since 3 = 6/2.
• (Induction step) Assume true for some k < n.  So if 

k=n-1:
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Simple Justification Techniques - Cont.

• And:
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Application of Big O to Loops

• For example, a single “for” loop:

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];

• 2 operations before the loop, 6 operations inside 
the loop.  Total is 2 + 6n.  This gives the loop 
O(n).
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Application of Big O to Loops - Cont.
• Nested “for” loops, where both loop until n:

for (i = 0; i < n; i++) {
sum[i] = 0;
for (j = 0; j < n; j++)

sum[i] += a[i, j];
}

• Outer loop: 1+5n+n(inner loop).  Inner loop = 
1+7n.  Total = 1+6n+7n2, so algorithm is O(n2).
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Application of Big O to Loops - Cont.
• Nested “for” loops where the inner loop goes 

less than n times (used in simple sorts):

for (i = 0; i < n; i++) {
sum[i] = 0;
for (j = 0; j < i; j++)

sum[i] += a[i, j];
}

• Outer loop: 1 + 6n + 7i times, for i = 1, 2, 3, …, 
n-1.
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Application of Big O to Loops - Cont.

• Or:

• Which is O(n) + O(n2), which is finally just O(n2).
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• Nested for loops are usually O(n2), but not 
always!

for (i = 3; i < n; i++) {
sum[i] = 0;
for (j = i-3; j <= i; j++)

sum[i] += a[i, j];
}

• Inner loop runs 4 times for every value of i.  So, it 
is actually O(n), linear, not quadratic.

Application of Big O to Loops - Cont.
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• Binary search is a very efficient technique, but it 
must be used on a sorted searchset (an array, in 
this case):

Another Example - Binary Search
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// returns the location of “key” in A
// if “key” is not found, -1 is returned
public int binSearch (int[] A, int key) {

int lo = 0; //lo,hi, and mid are positions
int hi = A.length - 1;
int mid = (lo + hi) / 2;

while (lo <= hi) {
if (key < A[mid])

hi = mid - 1;
else if (A[mid] < key)

lo = mid + 1;
else return mid;
mid = (lo + hi) / 2;

} // end while
return -1;

} // end binSearch
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Another Example - Binary Search - Cont.

• For the best case, the element matches right at 
the middle of the array, and the loop only 
executes once.

• For the worst case, key will not be found and the 
maximum number of loops will occur.

• Note that the loop will execute until there is only 
one element left that does not match.

• Each time through the loop the number of 
elements left is halved, giving the progression 
below for the number of elements:
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Another Example - Binary Search - Cont.

• Number of elements to be searched progression:

• The last comparison is for n/2m, when the number 
of elements is one.

• So, n/2m = 1, or n = 2m.
• Or, m = log(n).
• So, algorithm is O(log(n)).
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Another Example - Binary Search - Cont.
• Sequential search searches by comparing each 

element in order, starting at the beginning of the 
array.

• It can use un-sorted arrays.
• Best case is when first element matches.
• Worst case is when last element matches.
• So, sequential search algorithm is O(n).
• Binary search at O(log(n)) is better than 

sequential at O(n).
• Major reason to sort datasets!
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A Caution on the Use of “Big O”
• Big O notation usually ignores the constant c.

• For example, algorithm A has the number of 
operations = 108n, and algorithm B has the form 
10n2.

• A is then O(n), and B is O(n2).
• Based on this alone, A would be chosen over B.
• But, if c is considered, B would be faster for n up 

to 107 - which is a very large dataset!
• So, in this case, B would be preferred over A, in 

spite of the Big O notation.
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A Caution on the Use of “Big O” – Cont.

• For “mission critical” algorithm comparison, 
nothing beats experiments where actual times are 
measured.

• When measuring times, keep everything else 
constant, just change the algorithm (same 
hardware, OS, type of data, etc.).
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“Relatives” of Big O Notation

• Big Ω, or “Big Omega”:

Let f(n) and g(n) be functions that map 
nonnegative integers to real numbers.  We say 
that f(n) is Ω(g(n)) if there is a real constant, c, 
where c > 0 and an integer constant n0, where n0
≥ 1 such that f(n) ≥ cg(n) for every integer n ≥ n0.  

• So, Big Ω can represent a lower bound for f(n), 
when Big O represents an upper bound.

• Otherwise, Big Ω behaves in much the same way.
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• Big Θ, or “Big Theta”:

Let f(n) and g(n) be functions that map nonnegative 
integers to real numbers.  We say that f(n) is Θ(g(n)) if 
there are real constants, c1 and c2, where c1,c2 > 0 and an 
integer constant n0, where n0 ≥ 1 such that, c1g(n) ≤ f(n) ≤
c2g(n) for every integer n ≥ n0.

• Big Θ is of interest in asymptotic complexity, since you can 
see that, for a large enough n, if f(n) is O(g(n)) and f(n) is 
Ω(g(n)), then f(n) is also Θ(g(n)).

“Relatives” of Big O Notation - Cont.


