
COSC 220: Computer Science II

Module 1
 Instructor:

Dr. Xiaohong (Sophie) Wang

(xswang@salisbury.edu)

Department of Mathematics & Computer Science

Salisbury University

Spring 2021

mailto:xswang@salisbury.edu

Arrays

1. Array

1.1 Array in C++

1.2 Range-Based for loop

1.3 Processing Array Contents

1.4 Arrays as Function Arguments

1.5 Two-Dimensional Arrays

2. Searching and Sorting Arrays

2.1 Array Search Algorithms

2.2 Array Sorting Algorithms

2

• Partial contents of this note refer to https://www.pearson.com/us/

• Copyright 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved

• Dissemination or sale of any part of this note is NOT permitted

1.1 Array in C++

 Array: variable that can store multiple values

of the same type

 Values are stored in adjacent memory

locations

 Declared using [] operator:

 int tests[5];

3

Data type Name Size

Accessing Array Elements

 Each element in an array is assigned a unique
subscript from 0 to n-1

 Access an element in an array:
array_name[subscript]

0 1 2 3 4

int tests[5];

tests[0] tests[1] tests[2] tests[3] tests[4]

Accessing Array Elements (Cont’d)

 Each array element can be used as a regular variable:
 tests[0] = 79;

 cout << tests[0];

 cin >> tests[1];

 tests[4] = tests[0] + tests[1];

 Arrays must be accessed via individual elements:

 cout << tests; // not legal

Using a Loop to Step Through an Array

 Example – The following code defines an array,
numbers, and assigns 99 to each element:

const int ARRAY_SIZE = 5;

int numbers[ARRAY_SIZE];

for (int count = 0; count < ARRAY_SIZE; count++)

 numbers[count] = 99;

The variable count

starts at 0, which is

the first valid

subscript value

The loop ends when
the variable count

reaches 5, which is

the first invalid

subscript value

The variable
count is

incremented after

each iteration

Array Initialization

 An array can be initialized with an initialization

list:

const int SIZE = 5;

int tests[SIZE] = {79,82,91,77,84};

 The values are stored in the array in the order

in which they appear in the list.

 The initialization list cannot exceed the array

size.

79 82 91 77 84

tests[0] tests[1] tests[2] tests[3] tests[4]

No Bounds Checking in C++

 When you use an array subscript, C++ does not

check whether it is a valid subscript or not

You can use subscripts that are beyond the bounds of

the array

 A common mistake: off-by-one error

Subscripts are between 0 and n-1, not 1 and n

int values[3] = {5, 8, 10};

// Syntax correct, but may corrupt other memory

// locations, crash program, or cause elusive bugs

values[3] = 12;

int numbers[10];

for (int count = 1; count <= 10; count++)

 numbers[count] = 0;

1.2 The Range-Based for Loop

 The range-based for loop is a loop that

iterates once for each element in an array

 Each time the loop iterates, it copies an

element from the array to a built-in variable,

known as the range variable

 The range-based for loop automatically

knows the number of elements in an array

The Range-Based for Loop

 General format of the range-based for loop:

 dataType is the data type of the range variable.

 rangeVariable is the name of the range variable.

This variable will receive the value of a different array

element during each loop iteration.

 array is the name of an array.

 statement is a statement that executes during a loop

iteration.

for (dataType rangeVariable : array)

 statement;

Example

11

#include <iostream>

using namespace std;

int main() {

 // Define an array of integers

 int numbers[] = {10, 20, 30, 40, 50};

 // Display the values in the array

 for (int val : numbers) {

 cout << val << endl;

 }

 return 0;

}

Output:

10

20

30

40

50

1.3 Processing Array Contents

 Array elements can be treated as ordinary

variables of the same type as the array

Each element is a variable

Processing an element is no different than

processing other variables

 When using ++, -- operators, don’t confuse

the element with the subscript:

 tests[i]++; // add 1 to tests[i]

 tests[i++]; // increment i, no

 // effect on tests

Array Assignment

To copy one array to another,

 Don’t try to assign one array to the other:

 newTests = tests; // Won't work

 Instead, assign element-by-element:

 for (i = 0; i < ARRAY_SIZE; i++)

 newTests[i] = tests[i];

Note: Anytime the name of an array is used without brackets and a

subscript, it is seen as the array’s beginning memory address (not

a variable).

In-class practice

 Take 5 integers from user and store these

numbers in an array

 Use a for loop to find the largest element of

this array

 Display this element

 Test you code

14

Question: How to implement this practice using range-based for loop?

Reference code: LargestInteger.cpp

1.4 Arrays as Function Arguments

 To pass an array to a function, use the array name:

 To define a function that takes an array

parameter, use empty [] for array argument:

int tests[5] = {79,82,91,77,84};

showScores(tests);

// function prototype

void showScores(int []);

// function header

void showScores(int scores[])

No size declarator

inside the brackets

No size declarator

inside the brackets

Note: When an entire array is passed to a function, it is not passed by value,

but passed by reference (only the starting memory address is passed).

Arrays as Function Arguments

16

 When passing an array to a function, it is common

to pass array size so that function knows how

many elements to process:

 showScores(tests, ARRAY_SIZE);

 Array size must also be reflected in prototype,

header:
// function prototype

void showScores(int [], int);

// function header

void showScores(int scores[], int size)

of elements

Example

17

#include <iostream>

using namespace std;

void showValues(int [], int); // Function prototype

int main() {

 const int ARRAY_SIZE = 8;

 int numbers[ARRAY_SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};

 showValues(numbers, ARRAY_SIZE);

 return 0;

}

void showValues(int nums[], int size) {

 for (int index = 0; index < size; index++)

 cout << nums[index] << " ";

 cout << endl;

}
Output:

5 10 15 20 25 30 35 40

In-class practice: Array Rotation

 Write a function Rotate that rotates an array

of size n by d elements to the left

 Use array as argument

 In the main function, call the function Rotate

and show the rotated array

 Test your code

18

For example:

Input: [1 2 3 4 5 6 7], n = 7, d = 2

Output: [3 4 5 6 7 1 2]

https://www.geeksforgeeks.org/array-rotation/ Reference code: ArrayRotation.cpp

1.5 Two-Dimensional Arrays

19

 A 2-D array is an array of 1-D arrays

 Use two size declarators in definition:
First declarator is number of rows; second is number

of columns

 Use two subscripts to access element:

const int ROWS = 4, COLS = 3;

int exams[ROWS][COLS];

exams[0][0] exams[0][1] exams[0][2]

exams[1][0] exams[1][1] exams[1][2]

exams[2][0] exams[2][1] exams[2][2]

exams[3][0] exams[3][1] exams[3][2]

columns

r
o
w
s

exams[2][2] = 86;

2D Array Initialization

 Two-dimensional arrays are initialized row-by-row:

 Some array elements without initial values will be
set to 0 or NULL

84 78

92 97

const int ROWS = 2, COLS = 2;

int exams[ROWS][COLS] = {{84, 78}, {92, 97}};

int exams[ROWS][COLS] = {{84}, {92, 97}};

exams[0][1] is automatically set to 0

Passing Two-Dimensional Array to Function

 When a 2-D array is passed to a function, the

parameter type must contain a size declarator for

the columns

The size declarator for rows is optional (use empty [])

 Use array name as argument in function call:

const int COLS = 2;

// Prototype

void getExams(int [][COLS], int);

// Header

void getExams(int exams[][COLS], int rows)

Here COLS is a global constant

getExams(exams, 2);

Use Nested Loop to Step through 2D Array

#include <iostream>
using namespace std;

int sumOfArray(int n[][2], int row) {
 int total = 0;
 for (int i = 0; i < row; i++) {
 for (int j = 0; j < 2; j++) {
 total += n[i][j];
 }
 }
 return total;
}

int main() {
 int num[3][2] = {{3, 4}, {9, 5}, {7, 1}};
 cout << "The sum is: " << sumOfArray(num, 3);
 return 0;
}

 What is the output of the following program?

Output:

The sum is: 29

https://www.programiz.com/cpp-programming/passing-arrays-function

2. Searching and Sorting Arrays

 2.1 Array Search Algorithms

 2.2 Array Sorting Algorithms

23

2.1 Array Search Algorithms

24

 Search: locate an item in a list of data

 Two algorithms we will examine:

Linear search

Binary search

https://web.ics.purdue.edu/~cs154/lectures/lecture011.htm

Linear search

 Process

 Compare target x with each element in an array in

turn

 If x matches with an element, return the index of

this element

 If x does not match with any elements, return -1

25

10 51 4 18 6 31 13 5 23 64

0 1 2 3 4 5 6 7 8 9

6

return 4

6

C++ implementation

26

int linearSearch(int arr[], int size, int value)

{

 int index = 0; // Search index

 int position = -1; // Location of the value

 bool found = false; // Search flag

 while (index < size && !found)

 {

 if (arr[index] == value) // Value is found

 {

 found = true; // Set the flag

 position = index; // Record the location

 }

 index++; // Search the next

 }

return position; // Return the position

}

Linear Search - Tradeoffs

 Benefits:

Easy algorithm to understand

Array can be in any order

 Disadvantages:

 Inefficient (slow): for array of N elements,

examines N/2 elements on average for value in

array, N elements for value not in array

Binary search (Example)

28

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9

Value = 6

1 2 3 4 5 6 7 8 9 10

L= 0 1 2 3 M = 4 5 6 7 8 H = 9

5
6 > 5

Take 2nd half

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 L = 5 6 M = 7 8 H = 9

6 < 8

Take 1st half
8

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4
L = 5

M = 5 H = 6 7 8 9

Found 6

Return index 5
6

Process of binary search

 Step 1: find the middle element, middle

 Step 2: compare middle with value

 If value < middle, drop the second half

 If value > middle, drop the first half

 If value == middle, the search is finished

 Repeat above steps. If no element left,

value is not in the array

29

C++ implementation

30

int binarySearch(int array[], int size, int value)
{
 int first = 0, // First array element
 last = size - 1, // Last array element
 middle, // Mid point of search
 position = -1; // Position of search value
 bool found = false; // Flag

 while (!found && first <= last)
 {
 middle = (first + last) / 2; // Middle point
 if (array[middle] == value) // If value = middle
 {
 found = true;
 position = middle;
 }
 else if (array[middle] > value) // If value < middle
 last = middle - 1; // Search lower half
 else
 first = middle + 1; // If value > middle
 } // Search upper half
 return position;
}

Binary Search - Tradeoffs

 Benefits:

Much more efficient than linear search. For array of
N elements, performs at most log2N comparisons

 Disadvantages:

Requires that array elements be sorted

1 3 5 8 10 15 18 20

10 15 18 20 After 1st search: 𝟖 ×
𝟏

𝟐
= 𝟒

18 20 After 2nd search: 𝟖 × (
𝟏

𝟐
)𝟐= 𝟐

18 After 3rd search: 𝟖 × (
𝟏

𝟐
)𝟑= 𝟏

Linear search VS binary search

32

+ No need to sort elements

Linear search Binary search

- Need to sort elements first

Only equality comparisons Equality & ordering comparisons

Sequential access to the data Random access to the data

- Search is inefficient (slow) + Search is efficient (fast)

In-class practice

33

 Search Insert Position

• Given a sorted array in ascending order and a

target value

• Use binary search algorithm to return the index if

the target is found. If not, return the index where

it would be if it is inserted in order

• You may assume no duplicates in the array

Example :

Input: [1,3,5,6], 5

Output: 2

Input: [1,3,5,6], 2

Output: 1

https://gist.github.com/hyfrey/3803948 Reference code: InsertPosition.cpp

2.2 Array Sorting Algorithms

34

 Sort: arrange values into an order
Alphabetical

Ascending numeric

Descending numeric

 Two algorithms considered here:
Bubble sort

Selection sort

Bubble Sort (Example)

 Sort an array in ascending order

7 2 3 8 9 1

First pass:

7 > 2, swap

2 7 3 8 9 1

7 > 3, swap

2 3 7 8 9 1

… …
9 > 1, swap

2 3 7 8 1 9

The largest value 9 is in the correct position

Second pass:

2 3 7 8 1 9

2 < 3, no swap

2 3 7 8 1 9

… …
8 > 1, swap

2 3 7 1 8 9

The 2nd largest value 8 is

in the correct position

Note: the 2nd pass will not involve the

last element bcz 9 is the largest

Bubble Sort

Third pass:

2 3 7 1 8 9

2 < 3, no swap

2 3 7 1 8 9

… …
7 > 1, swap

2 3 1 7 8 9

The 3rd largest value 7 is

in the correct position

Note: the 3rd pass will not involve the

last two elements bcz they are sorted

Fourth pass:

2 3 1 7 8 9

2 < 3, no swap

2 3 1 7 8 9

3 > 1, swap

2 1 3 7 8 9

Bubble Sort

Fifth pass:

2 1 3 7 8 9

2 > 1, swap

1 2 3 7 8 9

• There are (n-1) passes. n is the number of elements in the array

Pass 1 2 … n-2 n-1

of compares n-1 n-2 … 2 1

In total (n-1)+(n-2)+ ... +(2)+(1) = n(n-1)/2 comparisons.

Bubble Sort

Process:

Compare 1st and 2nd elements

• If out of order, exchange them to put in order

Move down one element, compare 2nd and 3rd

elements, exchange if necessary. Continue

until end of array

Pass through array (one element less) again,

exchanging as necessary

Repeat until the last pass

C++ Implementation

39

void bubbleSort(int array[], int size) {

 int maxElement;

 int index;

 for (maxElement = size - 1; maxElement > 0; maxElement--) {

 for (index = 0; index < maxElement; index++) {

 if (array[index] > array[index + 1]) {

 swap(array[index], array[index + 1]);

 }

 }

 }

}

void swap(int &a, int &b) {

 int temp = a;

 a = b;

 b = temp;

}

Hold the subscript of the last element to be compared

Used as an array subscript in one of the loops

Reference parameters

Bubble Sort - Tradeoffs

 Benefit:

Easy to understand and implement

 Disadvantage:

Inefficient: slow for large arrays

• Too much unnecessary swaps

Question: How many swaps for bubble sort in the worst case?

n(n-1)/2 when the array is reversely sorted

Selection Sort

 Concept for sort in ascending order:

Locate smallest element in array.

Exchange it with element in position 0

Locate next smallest element in array.

Exchange it with element in position 1.

Continue until all elements are arranged in

order

Selection Sort - Example

 Array numlist contains:

1. Smallest element is 2. Exchange 2 with

element in 1st position in array:

11 2 29 3

2 11 29 3 11 2 29 3

Example (Continued)

2. Next smallest element is 3. Exchange 3 with

element in 2nd position in array:

3. Next smallest element is 11. Exchange 11

with element in 3rd position in array:

2 11 29 3 2 3 29 11

2 3 29 11 2 3 11 29

C++ Implementation

44

void selectionSort(int array[], int size) {

 int minIndex, minValue;

 for (int start = 0; start < (size - 1); start++) {

 minIndex = start;

 minValue = array[start];

 for (int index = start + 1; index < size; index++) {

 if (array[index] < minValue) {

 minValue = array[index];

 minIndex = index;

 }

 }

 swap(array[minIndex], array[start]);

 }

}

Selection Sort - Tradeoffs

 Benefit:

More efficient than Bubble Sort, since

fewer exchanges/swaps

 Disadvantage:

May not be as easy as Bubble Sort to

understand

Question: How many comparisons for selection sort?

Question: How many swaps for selection sort in the worst case?

In total (n-1)+(n-2)+ ... +(2)+(1) = n(n-1)/2 comparisons.

(n-1) when the array is reversely sorted

In-class practice

 For an array with n elements, the bubble sort

needs n-1 passes. However, if the array

elements are in order in the midway, there is

no need to execute the subsequent passes.

 Write code to implement the above optimized

bubble sort algorithm.

 Test you code.

46 Reference code: OptBubbleSort.cpp

Recursion Function
 A recursive function is one that calls itself

 Assume the input argument is 2:
 countDown(2) outputs 2..., then it calls countDown(1)

 countDown(1) outputs 1..., then it calls countDown(0)

 countDown(0) outputs Blastoff!, then returns to
countDown(1)

 countDown(1) returns to countDown(2)

 countDown(2) returns to the calling function

47

void countDown(int num){

 if (num == 0) // stop condition

 cout << "Blastoff!";

 else{

 cout << num << "...\n";

 countDown(num-1); // recursive call

 }

}

What Happens When Called?

third call to
countDown
num is 0

countDown(1);

countDown(0);

// no

// recursive

// call

second call to
countDown
num is 1

first call to
countDown
num is 2 output:

2...

1...

Blastoff!

return

return

return

Solving Problems with Recursion

 Two important steps:

Define the recursive function

Define the stop condition

 Example: factorial calculation

n! = n*(n-1)*(n-2)*...*3*2*1 if n > 0

n! = 1 if n = 0

Define the recursive function:

n! = n * (n-1)!

Define the stop condition:

0! = 1 (base case)

Recursive Factorial Function
#include <iostream>
using namespace std;

int factorial(int); // Function prototype

int main(){
 int number;
 cout << "Enter an integer value to display its factorial: ";
 cin >> number;

 cout << "The factorial of " << number << " is " << factorial(number);
 return 0;
}

int factorial(int n){
 if (n == 0)
 return 1; // Base case
 else
 return n * factorial(n - 1); // Recursive case
}

Enter an integer value to display its factorial: 5

The factorial of 5 is 120

Example code: Factorial.cpp

In-class practice

 The Fibonacci numbers are the numbers in

the following integer sequence
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …

 In mathematical terms, the sequence Fn of

Fibonacci numbers is defined as

Fn = Fn-1 + Fn-2

where:

F0 = 0 and F1 = 1

 Use recursive function to calculate and display

the first 10 Fibonacci numbers

 Test your code

51 Reference code: Pr20-6.cpp

Application: The Towers of Hanoi

 The game uses three pegs and a set of discs,

stacked on one of the pegs

 The object of this game is to move the discs from the

first peg to the third peg

 Here are the rules:

 Only one disc may be moved at a time

 A disc cannot be placed on top of a smaller disc

 All discs must be stored on a peg except while being moved

Moving Three Discs

The Towers of Hanoi

 Algorithm
To move n discs from peg A to peg C, using peg B

as a temporary peg:
If n > 0 Then
 Move n – 1 discs from peg A to peg B, using
 peg C as a temporary peg.

 Move the remaining disc from the peg A to peg C.

 Move n – 1 discs from peg B to peg C, using
 peg A as a temporary peg.

End If

The Towers of Hanoi

 C++ Implementation

Refer to “Pr20-10.cpp”

55

Reference

 The teaching materials of this course refer to:

 Professor Xiaohong (Sophie) Wang. COSC 120 teaching materials

• Salisbury University

 Textbook:

• Starting Out with C++: From Control Structures through Objects, by

Tony Gaddis, Pearson (9th Edition)

• Instructor materials of the above textbook (All rights reserved)

56

