
COSC 220: Computer Science II

Module 2
 Instructor:

Dr. Xiaohong (Sophie) Wang

(xswang@salisbury.edu)

Department of Mathematics & Computer Science

Salisbury University

Spring 2021

mailto:xswang@salisbury.edu

Pointers

1. Pointer Variables

2. Relationship between Arrays and Pointers

3. Pointer Arithmetic

4. Pointers as Function Parameters

5. Dynamic Memory Allocation

6. Returning Pointers from Functions

2

• Partial contents of this note refer to https://www.pearson.com/us/

• Copyright 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved

• Dissemination or sale of any part of this note is NOT permitted

Challenges

1. Pointer "seems" the most challenging concepts in

C/C++

2. "seems" means "it looks different, but it is not if you

pay attention to detailed concepts

3. The keys to understand it are:

i. understanding of variables and data types

ii. understanding of operators' context

For example, *, &, what do those operator do?

They mean different things depend on where they are used.

iii. understanding of static vs. dynamic concepts
3

Variable Review

1. What is a variable? A variable

• is a block of memory

• has an address (used to locate it in memory)

• has a name (used by a programmer to locate it in the

memory easily)

• has a restriction on its content (what type of information

are allowed to store in there)

• has a size (how big the block of memory is)

• has a set of operation rules (what operations are allowed

to performed on it)

4

Variable Review

2. When are the name, size, operation rules of a

variable defined?

• when a variable is defined, for example,

 int age;

 A block of memory (starts at location 10010000) now has a name

"age"

 The data type of the variable is "int"

 "int" determines the content of the block (integer value only), the size

of the block (4 bytes depends) and operations (+,-,/,*)

5

Age(10010000)

6

 Each variable is stored at a unique address

http://www.c-jump.com/bcc/c155c/MemAccess/MemAccess.html

Operator context

Operators mean different things depends where it is being used

• What is the meaning of "/"?

When you use it between two integer variables (or values)?

When you use it between two variables (or values) when one of them is not

integer?

 When you use it before or after another "/" or " * " ("//","/*", "*/")?

 What is the meaning of "*"

 When you use it between two variables of int, float, double (or numbers)?

 When you use it before or after "/" ("/*", "*/")?

 What is the meaning of "&"?

When you use it in the prototype or header of a function: void foo(int &x)?

When you use it as "&&" or "&": (age > 10 && age <=20 or x & y: x and y

are integer variables)

7

Big pictures about pointer

1. Pointer is a data type

2. When a variable is defined as a pointer variable of certain type:

 a block of memory is associated with this variable

 the content of the variable is the address to another memory location used to

store a value of that certain type)

 the size of the block is whatever the size to contain a memory address

 the set of operation rules to perform on a pointer variable: &, ++,--, *

3. To make things more complicated, "*" has different meanings when it is associated

with a pointer variable depending where it is being used

• int *ptr; or int* ptr; or int * ptr; // define a pointer variable "ptr"

• *ptr = 10; // put value from the rhs of the assignment operator (10) in pointee

memory. "*" mean dereference here

• cout << *ptr; // retrieve the value in the pointee (10). "*" mean dereference here

8

Where there is a pointer

variable, there has to be a

pointee of that pointer variable.

1. Pointer Variables

9

 Each variable is stored at a unique address

Question: The value of a variable can be accessed through variable name.

 How to access the address of a variable?

http://www.c-jump.com/bcc/c155c/MemAccess/MemAccess.html

Address Operator

10

 Use address operator & to get address of a

variable:
 int iii = 255;

 cout << &iii; // prints address 90000000

 // in hexadecimal

 A variable’s address is the address of the first byte

allocated to that variable

 Do not confuse address operator with reference
Address operator is used only with variable name

& symbol is used together with data type when defining

a reference variable

 void doubleInt(int &num){

 num *= 2

}

Pointer Variables

 Pointer variable : Often just called a pointer,
it's a variable that holds an address
 Itself is a variable

 Its value is the address of another variable. It
"points" to the data

https://www.geeksforgeeks.org/pointers-c-examples/

Something Like Pointers: Arrays

 When we pass an array as an argument to a function,
we actually pass the array’s beginning address
 const int SIZE = 5;

int numbers[SIZE] = {1, 2, 3, 4, 5};

showValues(numbers, SIZE);

The values parameter, in

the showValues function,

points to the numbers array.

Something Like Pointers: Reference Variables

 When we use reference variables. For example:

 Then call it with this code:

void getOrder(int &donuts) {

 cout << "How many doughnuts do you want? ";

 cin >> donuts;

}

int jellyDonuts;

getOrder(jellyDonuts);

The donuts parameter, in the

getOrder function, receives the

address of the jellyDonuts

variable (create an alias)

Pointer Variables

 Pointer variables are yet another way using a

memory address to work with a piece of data.

 Pointers are more "low-level" than arrays and

reference variables.

 Your code has to specify that the value should

be stored in the location referenced by the

pointer variable.

Pointer Variables

 Definition:

dataType is the data type that the pointer points to

 Example:

Read as: “intptr can hold the address of an int”

Spacing in definition does not matter:

dataType *pointer_name;

int *intptr;

int * intptr; // same as above

int* intptr; // same as above

Pointer Variables

 Assigning an address to a pointer variable:

Memory layout:

 It is a good habit to initialize pointer variables.

Using special value nullptr if initialization address

is unknown

nullptr represents address 0

num intptr

25 0x4a00

address of num: 0x4a00

int *intptr;

intptr = #

int *ptr = nullptr;

Example

The Indirection Operator

 The indirection operator (*) dereferences

a pointer

& : get the address of a variable

* : get the value at an address that the

pointer points to

Output 25.

int x = 25;

int *intptr = &x;

cout << *intptr << endl;

*intptr = 100;

cout << *intptr << endl;

Output 100.

2. Relationship between Arrays and Pointers

19

 Array name is starting address of array

 int vals[] = {4, 7, 11};

 cout << vals; // displays 0x4a00

 cout << vals[0]; // displays 4

4 7 11

starting address of vals: 0x4a00

Arrays and Pointers

 Array name can be used as a constant

pointer:

 int vals[] = {4, 7, 11};

 cout << *vals; // displays 4

 Pointer can be used as an array name:

 int *valptr = vals;

cout << valptr[0]; // displays 4

cout << valptr[1]; // displays 7

cout << valptr[2]; // displays 11

Pointers in Expressions

Given:

What is valptr + 1?

 It means (address in valptr) + (1 * size of an int)

 It points to the next element in the array

Must use () as shown in the expressions

Question: What is the difference between *(valptr + 1) and *valptr + 1 ?

cout << *(valptr+1); //displays 7

cout << *(valptr+2); //displays 11

int vals[]={4,7,11}, *valptr;

valptr = vals;

Array Access

 Array elements can be accessed in many ways:

Array access method Example

array name and [index] vals[2] = 17;

pointer to array and [index] valptr[2] = 17;

array name and offset

arithmetic

*(vals + 2) = 17;

pointer to array and offset

arithmetic

*(valptr + 2) = 17;

Note: No bounds checking performed on array access, whether using array name or a pointer

Example
#include <iostream>
using namespace std;

int main(){
 const int NUM_COINS = 5;
 double coins[NUM_COINS] = {0.05, 0.1, 0.25, 0.5, 1.0};
 double *doublePtr; // Pointer to a double
 int count;

 doublePtr = coins;

 cout << "Output values using index with pointer: \n";
 for (count = 0; count < NUM_COINS; count++){
 cout << doublePtr[count] << " ";
 }
 cout << "\nOutput values using offset with array name: \n";
 for (count = 0; count < NUM_COINS; count++){
 cout << *(coins + count) << " ";
 }
 return 0;
}

Output values using index with pointer:

0.05 0.1 0.25 0.5 1

Output values using offset with array name:

0.05 0.1 0.25 0.5 1

3. Pointer Arithmetic

 Operations on pointer variables:

Operation Example
int vals[]={4,7,11};

int *valptr = vals;

++, -- valptr++; // points at 7

valptr--; // now points at 4

+, - (pointer and int) cout << *(valptr + 2); // 11

+=, -= (pointer
and int)

valptr = vals; // points at 4

valptr += 2; // points at 11

- (pointer from pointer) cout << valptr–val; // difference

//(number of ints) between valptr

// and val

Example

25

#include <iostream>
using namespace std;

int main(){
 const int SIZE = 8;
 int set[SIZE] = {5, 10, 15, 20, 25, 30, 35, 40};
 int *numPtr = nullptr;
 int count;

 numPtr = set;

 cout << "The numbers in set are: \n";
 for (count = 0; count < SIZE; count++){
 cout << *numPtr << " ";
 numPtr++;
 }
 cout << "\nThe numbers in set backward are: \n";
 for (count = 0; count < SIZE; count++){
 numPtr--;
 cout << *numPtr << " ";
 }
 return 0;
}

The numbers in set are:

5 10 15 20 25 30 35 40

The numbers in set backward are:

40 35 30 25 20 15 10 5

4. Pointers as Function Parameters

26

 A pointer can be a parameter

 Works like reference variable to allow change to

argument from within function

 Requires:

1) asterisk * on parameter in prototype and heading

 void getNum(int *ptr); //ptr is pointer to an int

2) asterisk * in body to dereference the pointer

 cin >> *ptr;

3) address as argument to the function

 getNum(&num); //pass address of num to getNum

Reference Variable VS Pointer

 Reference variable as

parameter

 Pointer as parameter

void swap(int &x, int &y)

{

 int temp;

 temp = x;

 x = y;

 y = temp;

}

int num1 = 2, num2 = -3;

swap(num1, num2);

void swap(int *x, int *y)

{

 int temp;

 temp = *x;

 *x = *y;

 *y = temp;

}

int num1 = 2, num2 = -3;

swap(&num1, &num2);

In-class practice

 Recall the bubble sort algorithm in Module 5

 Use pointers as function parameters to
implement the bubbleSort() and swap()

functions

 Test your code

28 Reference code: PtrBubbleSort.cpp

5. Dynamic Memory Allocation

29

 Static memory allocation: the compilation

process creates an executable file in which the

memory requirements for each variable and

object are defined

 Dynamic memory allocation: A program can

allocate storage from additional memory

resource, heap, for a variable while it is

running

http://faculty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/index.html

Static Allocation VS Dynamic Allocation

30

Static Allocation Dynamic Allocation

• Performed at static or

compile time

• Performed at dynamic or

run time

• Assigned to run time

stack

• Assigned to heap (for

dynamic variables)

• Size must be known at

compile time

• Size may be unknown at

compile time

• First in last out • No particular order of

assignment

• It is best if required size

of memory known in

advance

• It is best if we don't know

how much memory

require

https://www.researchgate.net/figure/Difference-between-static-and-dynamic-allocation_fig2_265166374

Dynamic Memory Allocation

 Allocate storage for variables while program

is running

 Return address of newly allocated variable

 Use new operator to allocate memory:

 double *dptr = nullptr;

 dptr = new double;

new returns address of memory location if it is

successful or 0 (nullptr) if not

The returned address is stored in a pointer

The memory allocated for the variable is on the

heap as opposed to the stack

Note: Pointers enable us to access and operate dynamically created variables

Dynamic Memory Allocation

32

 You can use new to dynamically allocate an array:

double *arrayPtr;

cout << "How many real numbers? ";

cin >> count;

arrayPtr = new double[count]; //count is a variable!

 You can use subscript or offset notation to access the
array elements.

 for (int i = 0; i < count; i++)
 arrayPtr[i] = i * i;

or

 for (int i = 0; i < count; i++)

 *(arrayPtr + i) = i * i;

Note: If not enough memory available to allocate, C++ throws an exception

and terminates the program

http://faculty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/index.html

Stack VS Heap

 Stack contains “local” variables

Created by standard declarations

• E.g.: int i = 10; or char b = ‘B’;

Get deleted from the stack as the function terminates.

This is called leaving “scope”

 Heap is dynamic

The total pool of unused system resources

Exist outside the stack, reserved by the program

management within the OS kernel

 If you don’t free your memory, it’s unusable until the

program terminates!

33 http://faculty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/index.html

Dynamic memory lifetime

34

void myFunction(){

 int arr[100];

 // . . .

 return arr;

}

• What is the lifetime of arr?

Why?

• The array does not exist

outside the function

• Probably have compiler warning

• The address returned will be

nonsense

void myFunction(){

 int* arr = new int[100];

 // . . .

 return arr;

}

• What is the lifetime of arr? Why?

• The array will remain in place

and reserved after the function

finishes

• The index operator (i.e. []) actually

does some pointer arithmetic

• Arr[i] actually means *(arr+i)

 http://faculty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/index.html

Releasing Dynamic Memory

 Use delete to free dynamic memory:

 delete fptr; // Delete one element

 Use delete [] to free dynamic array:

 delete [] arrayPtr; // Delete an array

 Only use delete with dynamic memory!

 Failure to release dynamically allocated memory

can cause a program to have a memory leak.

 Only delete pointers that created with new.

Otherwise, unexpected problems could result.

Example

36

#include <iostream>
#include <iomanip>
using namespace std;

int main(){
 double *sales = nullptr, total = 0.0, average;
 int numDays, count;

 cout << "How many days do you want to process:";
 cin >> numDays;
 sales = new double[numDays];
 cout << "Enter the sales amount for each day. \n";
 for (count = 0; count < numDays; count++){
 cout << "Day " << (count + 1) << ": ";
 cin >> sales[count];
 }

 for (count = 0; count < numDays; count++)
 total += sales[count];

 average = total/numDays;

 cout << fixed << showpoint << setprecision(2);
 cout << "\nTotal sales: $" << total << endl;
 cout << "Average sales: $" << average << endl;

 delete [] sales;
 sales = nullptr;
 return 0;
}

Example (cont’d)

 Output

37

How many days do you want to process:5

Enter the sales amount for each day.

Day 1: 898.63

Day 2: 652.32

Day 3: 741.85

Day 4: 852.96

Day 5: 921.37

Total sales: $4067.13

Average sales: $813.43

In-class practice

 Dynamically create an integer array using
new operator

Ask user input the number of elements and their

values

 Calculate and output the maximum value of

the array

 Release the allocated memory at the end of

your program

 Test your code

38 Reference code: MaxArray.cpp

6. Returning Pointers from Functions

 Functions can return pointers

 Example: return a pointer to locate the null

terminator that appears at the end of a string

39

data_type * function_name(parameter list)

{

 body of the function

}

char *findNull(char *str){

 char *ptr = str;

 while (*ptr != '\0')

 ptr++;

 return ptr;

}

Variable-length array

 makeArray function creates a specific-length

array and return its address

40 http://faculty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/index.html

int* makeArray(int len){

 int* myArr = new int[len];

 for (int i = 0; i < len; i++){

 *(myArr + i) = 0;

 }

 return myArr;

}

Example

41

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
int *getRandomNumbers(int);

int main(){
 int *numbers = nullptr;
 numbers = getRandomNumbers(5);
 for (int count = 0; count < 5; count++)
 cout << numbers[count] << endl;
 delete [] numbers;
 numbers = nullptr;
 return 0;
}

int *getRandomNumbers(int num){
 int *arr = nullptr;
 if (num <= 0)
 return nullptr;
 arr = new int[num];
 srand(time(0)); //Use time(0) as the seed of generator
 for (int count = 0; count < num; count++)
 arr[count] = rand();
 return arr;
}

Reading textbook

 Chapter 9

42

Reference

 The teaching materials of this course refer to:

 Professor Xiaohong (Sophie) Wang. COSC 120 teaching materials

• Salisbury University

 Textbook:

• Starting Out with C++: From Control Structures through Objects, by

Tony Gaddis, Pearson (9th Edition)

• Instructor materials of the above textbook (All rights reserved)

43

