
COSC 220: Computer Science II 

Module 3 
Instructor:  

Dr. Xiaohong (Sophie) Wang 

(xswang@salisbury.edu) 

 

Department of Mathematics & Computer Science 

Salisbury University 

Spring 2021 

mailto:xswang@salisbury.edu


Content 

1. Structured Data  

1.1 Abstract Data Types 

1.2 Array of Structures 

1.3 Structures as Function Arguments 

1.4 Pointers to Structures 

1.5 Enumerated Data Types 

2. Classes 

2 

• Partial contents of this note refer to https://www.pearson.com/us/ 

• Copyright 2018, 2015, 2012, 2009 Pearson Education, Inc., All rights reserved 

• Dissemination or sale of any part of this note is NOT permitted  



1.1 Abstract Data Types 

 An abstract data type (ADT) is a new data type 

created by the programmer 

Compared with primitive data types, such as int, 

bool, char, etc.  

 

 An ADT specifies 

 the primitive data types it contains 

operations that can be performed on these data types 

What does “abstract” mean here? 



Abstract Data Types 

 Abstraction: a definition that captures general 

characteristics without details 

 For example 

A student has attributes such as studentID, 

name, yearInSchool, gpa, etc. 

ADT enables us to define a new data type named 

Student that represents all the students 

• Each variable of this Student data type represents a 

student (an instance of the Student category) 

 

How to define an abstract data type? 



Combining Data into Structures 

 Structure:  

C++ allows you to group multiple member variables 

together into a single item known as structure 

 General Format:   

 

 

 

 
 Must have ; after closing } 

 StructName commonly begin with uppercase letter 

 Multiple members of same type can be in comma-separated list: 

 string name, address;  

struct StructName 

{ 

 dataType1 memberName1; 

 dataType2 memberName2; 

 . . . 

}; 



Example 

struct Student 

{ 

  int studentID; 

  string name; 

  short yearInSchool; 

  double gpa; 

}; 

structure tag 

structure members 



Defining Variables 

 To define structure variables, use StructName 

as data type name: 

 

studentID 

name 

yearInSchool 

gpa 

Mike 

Student Mike, Mary; 

studentID 

name 

yearInSchool 

gpa 

Mary 

Student data type structure variables 

Note: Each structure variable is an instance that contains all the member variables. 



Accessing Structure Members 

 Use the dot (.) operator to refer to member variables 

(or members) of struct variables: 

 

 
 

 

 

 To display the contents of a struct variable, must 

display each member separately, using the dot operator 

Student stu1; 

cin >> stu1.studentID; 

getline(cin, stu1.name); 

stu1.yearInSchool = 2; 

stu1.gpa = 3.75; 

Note: With the dot operator, you can use member variables just like regular variable. 

cout << stu1; // won’t work 

cout << stu1.studentID << endl; 

cout << stu1.name << endl; 

cout << stu1.yearInSchool; 

cout << " " << stu1.gpa; 



Example 

9 

#include <iostream> 

#include <cmath> 

using namespace std; 

 

const double PI = 3.14159; 

 

struct Circle{ 

    double radius, diameter, area; 

}; 

 

int main(){ 

    Circle c; 

 

    cout << "Enter the diameter of a circle: "; 

    cin >> c.diameter; 

    c.radius = c.diameter / 2; 

    c.area = PI * pow(c.radius,2.0); 

 

    cout << "The radius of the circle is: " << c.radius << endl; 

    cout << "The area of the circle is: " << c.area << endl; 

    return 0; 

} 

Output: 

Enter the diameter of a circle: 10 

The radius of the circle is: 5 

The area of the circle is: 78.5397 



Initializing a struct variable 

 struct variable can be initialized when defined: 
Student s = {11465, "Joan", 2, 3.75}; 

 

 Can also be initialized member-by-member after 

definition: 

 s.name = "Joan"; 

 s.gpa = 3.75; 

 



1.2 Array of Structures 

 An array of structures is an array that contains 

multiple same-type structures 

 

 

 

 

 Individual structures are accessible using 

subscript notation 

 Members within a structure are accessible using 

dot notation 

    bookList[5].title 

struct BookInfo{ 

    string title, author, publisher; 

    double price; 

} 

 

BookInfo bookList[20]; 



1.3 Structures as Function Arguments 

12 

 May pass members of  struct variables to 

functions 

  
struct Rectangle{ 

    double length, width, area; 

}; 

 

double multiply(double x, double y){ 

    return x * y; 

} 

 

Rectangle box = {3.0, 4.0}; 

box.area = multiply(box.length, box.width); 



Structures as Function Arguments 

13 

 May pass entire struct variables to functions: 

  
struct Rectangle{ 

    double length, width, area; 

}; 

 

void showRect(Rectangle r){ 

    cout << r.length << endl; 

    cout << r.width << endl; 

    cout << r.area << endl; 

} 

 

Rectangle box = {3.0, 4.0, 12.0}; 

showRect(box); 



Structures as Function Arguments 

14 

 Can use reference parameter if function needs to modify 

contents of structure variable 
struct Rectangle{ 
    double length, width, area; 

}; 
 
void rectArea(Rectangle &r){ 

    cout << "Enter the box length and width: "; 
    cin >> r.length >> r.width; 
    r.area = r.length * r.width; 

} 
 

int main(){ 

    Rectangle box; 
    rectArea(box); 
    cout << "The box length is: " << box.length << endl; 

    cout << "The box width is: " << box.width << endl; 
    cout << "The box area is: " << box.area << endl; 
} 

Enter the box length and width: 3.0 4.0 
The box length is: 3 
The box width is: 4 
The box area is: 12 



In-class practice 

 Programming challenges 1 (Page 659) 

Write a program that uses a structure named 
MovieData to store the following information 

about a movie: 

• Title 

• Director 

• Year Released 

• Running Time (in minutes) 

The program should create two MovieData 

variables, store values in their members, and pass 

each one, in turn, to a function that displays the 

information about the movie in a clearly formatted 

manner. 

15 Reference code: spc11-1.cpp 



1.4 Pointers to Structures 

16 

 A structure variable has an address 

 A pointer to structure is a variable that can 

hold the address of a structure: 

Student *stuPtr; 

 Can use & operator to assign address: 

stuPtr = &stu1; 

 Structure pointer can be a function parameter 



Accessing Structure Members via Pointer 

 Must use () to dereference pointer variable 

As the dot operator “.” has higher precedence than 

the indirection operator “*” 

cout << (*stuPtr).studentID; 

 

 Can use structure pointer operator “->” to 

eliminate () and use clearer notation 

cout << stuPtr->studentID; 



Example 
#include <iostream> 
#include <string> 
using namespace std; 
 
struct Student{ 
    string name; 
    int idNum, creditHours; 
    double gpa; 
}; 
 
void getData(Student *);  //Function prototype 
 
int main(){ 
    Student freshman; 
    getData(&freshman); 
 
    cout << "\nThe student's information: \n"; 
    cout << "Name: " << freshman.name << endl; 
    cout << "ID Number: " << freshman.idNum << endl; 
    cout << "Credit Hours: " << freshman.creditHours << en
dl; 
    cout << "GPA: " << freshman.gpa << endl; 
    return 0; 
} 



Example (continue) 
void getData(Student *s){ 
    cout << "Input student name: "; 
    getline(cin, s->name); 

    cout << "Input student ID number: "; 
    cin >> s->idNum; 
    cout << "Input student credit hours: "; 
    cin >> s->creditHours; 
    cout << "Input student GPA: "; 
    cin >> s->gpa; 
} 

Input student name: Frank Smith 
Input student ID number: 4876 
Input student credit hours: 12 
Input student GPA: 3.9 
 
The student's information: 
Name: Frank Smith 
ID Number: 4876 
Credit Hours: 12 
GPA: 3.9 



Dynamically Allocating a Structure 

 Can use a structure pointer and the new 

operator to dynamically allocate a structure 

20 

struct Circle { 

    double radius, diameter, area; 

}; 

 

Circle *cirPtr = nullptr; 

cirPtr = new Circle; 

cirPtr -> radius = 10; 

cirPtr -> diameter = 20; 

cirPtr -> area = 314.159; 



1.5 Enumerated Data Types 

21 

 An enumerated data type is a programmer-defined 

data type. It consists of values known as 

enumerators, which represent integer constants.  

 Example: 
 
enum Day { MONDAY, TUESDAY, 

           WEDNESDAY, THURSDAY, 

           FRIDAY }; 

 

The identifiers MONDAY, TUESDAY, WEDNESDAY, 
THURSDAY, and FRIDAY are enumerators. They 
represent the values that belong to the Day data type.  

Note: The enumerators are not strings and aren’t enclosed in quotes. They are identifiers. 



Enumerated Data Types 

 Once you have created an enumerated data 

type in your program, you can define variables 

of that type. Example: 
 
    Day workDay; 

 

 We may assign any of the enumerators 
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, 

or FRIDAY to a variable of the Day type. 

Example: 
 
      workDay = WEDNESDAY;  



Enumerated Data Types 

 An enumerator is an integer named constant 

 Internally, the compiler assigns integer values to 

the enumerators, beginning at 0. 

enum Day { MONDAY, TUESDAY, 

           WEDNESDAY, THURSDAY, 

           FRIDAY }; 

In memory... 

MONDAY    = 0 

TUESDAY   = 1 

WEDNESDAY = 2 

THURSDAY  = 3 

FRIDAY    = 4 



Example 

 Using the Day declaration, the following 

code... 

 
cout << MONDAY << "  "  

     << WEDNESDAY << "  “ 

           << FRIDAY << endl; 

 

...will produce this output: 

 
0 2 4 



Assigning an integer to an enum Variable 

 You cannot directly assign an integer value to an 

enum variable. This will not work: 

workDay = 3; // Error!  

 Instead, you must cast the integer: 

workDay = static_cast<Day>(3);  

 

 However, you CAN assign an enumerator to an 

int variable.  

This following code assigns 3 to x. 

int x; 

x = THURSDAY; 

 



2. Classes 

2.1 Procedural and Object-Oriented Programming 

2.2 Introduction to Classes 

2.3 Constructors 

2.4 Destructors 

2.5 Overloading Constructors 

2.6 Copy Constructors 

2.7 Operator Overloading 

26 



2.1 Procedural and Object-Oriented Programming 

 Procedural programming focuses on the process/actions 

that occur in a program 

 Object-Oriented programming is based on the data and 

the functions that operate on it. Objects are instances of 

ADTs that represent the data and its functions 

https://www.alphansotech.com/procedural-vs-object-oriented-programming 



Procedural and Object-Oriented Programming 

Procedural Programming Object-Oriented Programming 

• Program is divided into 

parts called functions 

• Program is divided into parts 

called objects 

• Top down design • Object focused design 

• Limited code reuse • Code reuse 

• Complex code • Complex design 

• Global data focused • Protected data 

• Less secure • More secure 

28 https://www.slideshare.net/HarisBinZahid/procedural-vs-object-oriented-programming 



Classes and Objects 

 class: A class is a code template for creating 

objects. It specifies the attributes (member 

variables) and behaviors (member functions) that 

a particular type of objects may have 

 object: An object is an instance of a class. It has 

all the attributes and behaviors defined in the 
class 

A Class is like a 

template and objects 

are built from the 

template 

https://javatutorial.net/java-objects-and-classes-tutorial 



Encapsulation and Data Hiding 

 Imagine the “simple” 

interface to drive a 

vehicle: it “hides” very 

complex functionality 

from the user 

 The interfaces are public 

members (attributes & 

functions) 

 The information is hided 

in private members 

30 

 Encapsulation: combine data and code into a single object 

 Data hiding: hide data from code that is outside the object 

 Public interface: data and functions of an object that are 

available outside of the object 

http://faculty.salisbury.edu/~jtanderson/teaching/cosc220/sp20/index.html 



2.2 Introduction to Classes 

31 

 Class declaration: 

 

 
 

The declaration statements are for the variables 

(attributes) and functions (behaviors), which are 

members of that class 

The members of a class are private by default, 

i.e. these private members can’t be accessed by 

code outside the class 

class ClassName 

{ 

    declaration; 

    // ... More declarations; 

}; 

How to define members that can be accessed from outside the class? 

Example: 
class Rectangle { 

    double width; 

    double length; 

}; 



Access Specifiers 

 Used to control access to members of the class 
public:  can be accessed by functions outside of 

the class 

private:  can only be called by or accessed by 
functions that are members of the class 

Can be listed in any order and appear multiple times 

class ClassName 

{ 

    private: 

        // Declarations of private members 

    public: 

        // Declarations of public members 

}; 

Access specifiers are followed by 

a colon then followed by one or 

more member declarations 



Example 

Two private member 

variables (attributes), which 

can be accessed ONLY by the 

member functions in this class 

1. Five public member 

functions (behaviors), which 

can be called from 

statements outside the class. 

2. They are only declarations. 

The implementation of 

member functions will be 

introduced later. 

Note: You may understand encapsulation, data hiding, public interface from this example.  



Defining a Member Function 

 When defining a member function: 

Put prototype in class declaration 

Define function outside (after) the class declaration, 
using class name and scope resolution operator (::) 

 

 

  void Rectangle::setWidth(double w) 

 { 

  width = w; 

 } 

  ... 

 int Rectangle::getWidth() const 

 { 

  return width; 

 } 

ReturnType ClassName::functionName(ParameterList) 



Inline Member Functions 

35 

 Member functions can be defined 

 in class declaration (inline member functions) 

after the class declaration (regular member functions) 

 Inline appropriate for short function bodies: 

 

 
 

 Code for an inline function is copied into program 

in place of call – larger executable program, but 

no function call overhead, hence faster execution 

int getWidth() const 

{ 

      return width;  

} 



Accessors and Mutators 

 Mutator: a member function that stores a value 

in a private member variable, or changes its 

value in some way 

 Accessor: function that retrieves a value from a 

private member variable. Accessors do not 

change an object's data, so they should be 
marked const. For example:  

Note: const appearing after the parentheses in a member function declaration 

specifies that the function will not change any data in the calling object 



Defining an Instance of a Class 

 An object is an instance of a class 

 Object definition:  

 
 

 Access members using dot operator: 

 r.setWidth(5.2); 

 cout << r.getWidth(); 

 Compiler error if attempt to access private 

member using dot operator 

ClassName objectName; 

Rectangle r; 



Example 

 Program 13-1 

Refer to “Pr13-1.cpp” 

38 



Pointer to an Object 

 Can define a pointer to an object. The pointer 

holds the address of this object. 

Rectangle myRectangle; 

Rectangle *rectPtr = nullptr; 

rectPtr = &myRectangle; 

 

 Pointer can access public members using “->” 

operator: 

rectPtr->setLength(12.5); 

cout << rectPtr->getLength() << endl; 



Dynamically Allocating an Object 

 We can also use a pointer to dynamically 

allocate an object. 



In-class practice 
 Define a Car class that contains  

 3 private attributes (member variables) named make, model, 

and year 

 3 public behaviors (member functions) named setMake, 

setModel, and setYear to set the values of above 3 attributes 

 3 public behaviors named getMake, getModel, and 

getYear to return the values of above 3 attributes 

 In the main program,  

 create a Car object named myCar 

 ask the user to input the make, model, and year of this car 

 call setMake, setModel, and setYear functions to store the 

input information 

 call getMake, getModel, and getYear to return these 

information and print it out 

 Test your code 
41 Reference code: Car.cpp 



Separating Specification from Implementation 

 Place class declaration in a header file that 

serves as the class specification file. Name the 

file ClassName.h. For example, Rectangle.h 

 Place member function definitions in class 

implementation file named ClassName.cpp. For 

example, Rectangle.cpp. File should 

#include the class specification file 

 Programs that use the class must #include the 

class specification file, and be compiled and 

linked with the class implementation file 



Example: Rewrite Pr13-1 to Pr13-4 

43 

// Specification file for the Rectangle 
class. 
#ifndef RECTANGLE_H 
#define RECTANGLE_H 
 
class Rectangle{ 
   private: 
      double width; 
      double length; 
   public: 
      void setWidth(double); 
      void setLength(double); 
      double getWidth() const; 
      double getLength() const; 
      double getArea() const; 
}; 
 
#endif 

Rectangle.h 

// Implementation file for the Rectangle class. 
#include "Rectangle.h"   // Enclosed in " ", not in < > 
#include <iostream>      // Needed for cout 
#include <cstdlib>         // For the exit function 
using namespace std; 
 
void Rectangle::setWidth(double w){ 
   if (w >= 0) 
      width = w; 
   else{ 
      cout << "Invalid width\n"; 
      exit(EXIT_FAILURE); 
   } 
} 
 
void Rectangle::setLength(double len){ 
   … … 
} 
... ... // Other functions 

Rectangle.cpp 

Note: #ifndef checks whether the given token has been defined earlier in the file or in 

an included file; if not, it includes the code between the #define and #endif statements 

https://www.cprogramming.com/reference/preprocessor/ifndef.html 



Example (Cont’d) 

44 

// This program uses the Rectangle class, which is declared in the Rectangle.h file.  
// The Rectangle class's member functions are defined in the Rectangle.cpp file.  
// This program should be compiled with those files in a project. 
#include <iostream> 
#include "Rectangle.h"  // Enclosed in " ", means the “.h” file is in current directory 
using namespace std; 
 
int main() { 
   Rectangle box;     // Define an instance of the Rectangle class 
   double rectWidth;  // Local variable for width 
   double rectLength; // Local variable for length 
 
   // Get the rectangle's width and length from the user. 
   cout << "This program will calculate the area of a\n"; 
   cout << "rectangle. What is the width? "; 
   cin >> rectWidth; 
   cout << "What is the length? "; 
   cin >> rectLength; 
   … … 
} 

Note: Include class’s header file in both implementation file and the main program file. 

Main program 



Example (Cont’d) 

 Steps of creating an executable file 

45 



2.3 Constructors 

 A constructor is a member function that is 

automatically called when an object is created 

 Purpose is to initialize attributes of an object 

 Constructor function name is same as the class 

name 

 Has no return type 

 ClassName::ClassName(ParameterList) 

{ 

    // Statements; 

} 



Example (Rectangle class) 

47 

// Specification file for Rectangle class 
// This version has a constructor. 
#ifndef RECTANGLE_H 
#define RECTANGLE_H 
 
class Rectangle 
{ 
   private: 
      double width; 
      double length; 
   public: 
      Rectangle();      // Constructor 
      void setWidth(double); 
      void setLength(double);     
      double getWidth() const 
         { return width; } 
      double getLength() const 
         { return length; } 
      double getArea() const 
         { return width * length; } 
}; 
#endif 

Rectangle.h 

// Implementation file for the Rectangle class. 
// This version has a constructor. 
#include "Rectangle.h"    
#include <iostream>      // Needed for cout 
#include <cstdlib>         // Needed for the exit function 
using namespace std; 
 
Rectangle::Rectangle() 
{ 
   width = 0.0; 
   length = 0.0; 
} 
 
void Rectangle::setWidth(double w){ 
   if (w >= 0) 
      width = w; 
   else{ 
      cout << "Invalid width\n"; 
      exit(EXIT_FAILURE); 
   } 
} 
… … 

Rectangle.cpp 



Default Constructors 

 A default constructor is a constructor that 
takes no arguments. 
 

 If you write a class with no constructor at all, 
C++ will write a default constructor for you, 
one that does nothing. 
 

 A simple instantiation of a class (with no 
arguments) calls the default constructor: 

 Rectangle r; 



Passing Arguments to Constructors 

 To create a constructor that takes arguments: 

 Indicate parameters in the constructor declaration: 
 
 

Use parameters in the constructor implementation: 
 

 

 

 

Pass arguments to the constructor when you create 
an object 
 

Rectangle(double, double); 

Rectangle::Rectangle(double w, double len) 

{ 

   width = w; 

   length = len; 

} 

Rectangle r(10, 5); 



Example 

50 

// Specification file for Rectangle class 
// This version has a constructor. 
#ifndef RECTANGLE_H 
#define RECTANGLE_H 
 
class Rectangle { 
   private: 
      double width; 
      double length; 
   public: 
      Rectangle(double, double); //Constructor 

      void setWidth(double); 
      void setLength(double); 
       
      double getWidth() const 
         { return width; } 
      double getLength() const 
         { return length; } 
      double getArea() const 
         { return width * length; } 
}; 
#endif 

Rectangle.h 

// Implementation file for the Rectangle class. 
// The constructor accepts arguments. 
#include "Rectangle.h"    
#include <iostream>       
#include <cstdlib>        
using namespace std; 
 
Rectangle::Rectangle(double w, double len) { 
   width = w; 
   length = len; 
} 
 
void Rectangle::setWidth(double w) { 
   if (w >= 0) 
      width = w; 
   else 
   { 
      cout << "Invalid width\n"; 
      exit(EXIT_FAILURE); 
   } 
} 
… … 

Rectangle.cpp 



Example (Cont’d) 

51 

// This program calls the Rectangle class constructor. 
#include <iostream> 
#include <iomanip> 
#include "Rectangle.h" 
using namespace std; 
 
int main() { 
   double houseWidth,   // To hold the room width 
               houseLength;  // To hold the room length 
 
   // Get the width of the house. 
   cout << "In feet, how wide is your house? "; 
   cin >> houseWidth; 
 
   // Get the length of the house. 
   cout << "In feet, how long is your house? "; 
   cin >> houseLength; 
    
   // Create a Rectangle object. 
   Rectangle house(houseWidth, houseLength ); 
       … … 
}  

Main program 



Using Default Arguments with Constructors 

 A constructor may have default arguments 

 The default value is listed in the parameter list of 

the function’s declaration or the function header 

52 

Rectangle::Rectangle(double w, double len = 12.0) 

{ 

   width = w; 

   length = len; 

} 

Rectangle house(houseWidth); 

When only one argument is 

passed to the constructor 
function, the default 12.0 will 

be assigned to len 



More About Default Constructors 

 If a constructor has default arguments for all its 
parameters, it can be called with no explicit 
arguments. Then it becomes the default constructor. 
For example: 
 

 

 

 

 

 In this case, the constructor can be called with no 
argument: 

  Rectangle r; 

 

Rectangle::Rectangle(double w = 10.0, double len = 12.0) 

{ 

   width = w; 

   length = len; 

} 



In-class practice 

 Programming challenges 3 (Page 808) 
 Write a class named Car that has the following member variables: 

• yearModel – an int that holds the car’s year model 

• make – a string that holds the make of the car 

• speed – an int that holds the car’s current speed 

 In addition, the class should have the following constructor and 

other member functions: 
• Constructor – Accept the car’s year model and make arguments to 

initial yearModel and make member variables; assign 0 to speed 

• Accessor – return the values of yearModel, make, and speed 

• accelerate – add 5 to the speed each time it is called 

• brake – subtract 5 from the speed each time it is called 

 Demonstrate the class in a program that creates a Car object, 

then call the accelerate function 5 times. After each call to the 

accelerate function, get the current speed of the car and 

display it. Then, call the brake function 5 times. After each call to 

the brake function, get the current speed of the car and display it 

54 Reference code: spc13-3.cpp 



2.4 Destructors 

55 

 A destructor is a member function that is 

automatically called when an object is destroyed 

 Destructors perform shutdown procedures when 

the object goes out of existence.  

For example: to free memory that was dynamically 

allocated by the class object 

 Destructor name is ~ClassName, e.g., 

~Rectangle 

 Has no return type; takes no arguments 

 Only one destructor per class, i.e., it cannot be 

overloaded 



Example (ContactInfo.h) 

56 

#ifndef CONTACTINFO_H 
#define CONTACTINFO_H 
#include <cstring> // Needed for strlen and strcpy 
 
class ContactInfo { 
private: 
 char *name; // The contact's name 
 char *phone; // The contact's phone number 
public: 
 ContactInfo(char *n, char *p)   // Constructor 
 { // Allocate enough memory for the name and phone number. 
   name = new char[strlen(n) + 1]; 
   phone = new char[strlen(p) + 1]; 
   // Copy the name and phone number to the allocated memory. 
   strcpy(name, n); 
   strcpy(phone, p); } 
 
 ~ContactInfo()         // Destructor 
 { delete [] name; 
   delete [] phone; } 
 
 const char *getName() const 
 { return name; } 
 
 const char *getPhoneNumber() const 
 { return phone; } 
}; 
#endif  



2.5 Overloading Constructors 

57 

 A class can have more than one constructor 

 

 Overloaded constructors in a class must 

have different parameter lists: 

 Rectangle(); 

Rectangle(double); 

 Rectangle(double, double); 



Example 

58 

class InventoryItem { 
private: 
    string description; // The item description 
    double cost;        // The item cost 
    int units;          // Number of units on hand 
public: 
    InventoryItem(){    // Constructor #1 (default constructor)  
        description = ""; 
        cost = 0.0; 
        units = 0; } 
 
    InventoryItem(string desc){    // Constructor #2 
        description = desc; 
        cost = 0.0; 
        units = 0; } 
         
    InventoryItem(string desc, double c, int u){   // Constructor #3 
        description = desc; 
        cost = c; 
        units = u; } 
   … …  
}; 



Member Function Overloading 

 Non-constructor member functions can also 

be overloaded 

 Must have unique parameter lists 

 

 

 
void setCost(double c){ // cost stored in double 

    cost = c; 

} 

 

void setCost(string c){ // cost stored in a string 

    cost = stod(c); 

} 
stod function converts the 

string to a double 



2.6 Operator Overloading 

 Operator overloading: redefine how standard 

operators (=, +, etc.) work when used with 

class objects 

The operands are objects 

 

 An example of overloaded operators: 

Floating-point division: 5.0 / 2 = 2.5 

 Integer division:  5 / 2 = 2 



Operator Overloading 

 The name of the function for the overloaded 

operator is operator followed by the operator 

symbol, e.g., 

 operator+ to overload the + operator, and 

 operator= to overload the = operator 

 Prototype for the overloaded operator goes in 

the declaration of the class that is overloading 

it 

 Overloaded operator function definition goes 

with other member functions 



The this Pointer 

 this: a built-in pointer that every class has  
available to a class’s member functions 

always points to the instance (object) of the class 

whose function is being called 

 is passed as a hidden argument to all non-static 

member functions 

 Assume student1 and student2 are two 
StudentTestScores objects (page 835) 

 
 When run the above line, this pointer points to student1  

 
 When run the above line, this pointer points to student2  

 

cout << student1.getStudentName() << endl; 

cout << student2.getStudentName() << endl; 

Here getStudentName is a member function of StudentTestScores class 



Overloading the = Operator 

 Define a member function called = operator 
function 

 
Prototype: 

   

return 

type [1] 

function 

name 

parameter for 

object on right 

side of operator 

const SomeClass operator=(const SomeClass &right); 

[1] https://www.linuxtopia.org/online_books/programming_books/thinking_in_c++/Chapter08_014.html 



Overloading the = Operator 

 Define a member function called = operator 

function 

= operator function implementation 

64 

// Overloaded = operator 

const SomeClass SomeClass::operator=(const SomeClass &right){ 

    if (this != &right){  //left and right objects are not same 

        value = new int; 

        *value = *(right.value); 

        } 

     return *this;   // dereference the this pointer, giving 

}                    // us the actual object that received the  

                     // assignment   



Overloading the = Operator 

 Invoke the = operator function 

 

 

 

 
 Operator can be invoked as a member 

function: 

  object2.operator=(object1); 

 

65 

SomeClass object1(5); 

SomeClass object2; 

object2 = object1; 

object1.setVal(13); 

cout << object1.getVal() << endl;   

cout << object2.getVal() << endl; 

Output: 

13 

5 

object2 = object1; 
Same as: 

Example code: OperatorOverloading.cpp 



Returning a Value 
 Overloaded operator can return a value 

 

class Point2d 

{ 

private: 

   int x, y; 

... 

public: 

  double operator-(const point2d &right) 

  { return sqrt(pow((x-right.x),2) 

    + pow((y-right.y),2)); } 

}; 

 

Point2d point1(2,2), point2(4,4); 

 

// Compute and display distance between 2 points. 

cout << point2 – point1 << endl; // displays 2.82843 



Notes on Overloaded Operators 

 Can change meaning of an operator 

 Can NOT change the number of operands of 

the operator 

 Only certain operators can be overloaded.  

Can NOT overload the following operators: 

 ?:    .    .*    ::    sizeof 

Overloading prefix/postfix ++ operator (page 849) 

Overloading relational operators (page 852) 

Overloading << and >> operators (page 854) 

Overloading [] operator (page 858) 

 



Reading textbook 

 Chapter 11, 13, 14 

68 



Reference 

 The teaching materials of this course refer to: 
 

 Professor Xiaohong (Sophie) Wang. COSC 120 teaching materials  

• Salisbury University 

 

 Textbook: 

• Starting Out with C++: From Control Structures through Objects, by 

Tony Gaddis, Pearson (9th Edition) 

• Instructor materials of the above textbook (All rights reserved) 

69 


