
Open Source Software Peer Review Practices:
A Case Study of the Apache Server

Peter C. Rigby
Software Engineering Group

University of Victoria
Victoria, BC, Canada

pcr@uvic.ca

Daniel M. German
Software Engineering Group

University of Victoria
Victoria, BC, Canada

dmg@uvic.ca

Margaret-Anne Storey
Software Engineering Group

University of Victoria
Victoria, BC, Canada
mstorey@uvic.ca

ABSTRACT
Peer review is seen as an important quality assurance mech-
anism in both industrial development and the open source
software (OSS) community. The techniques for perform-
ing inspections have been well studied in industry; in OSS
development, peer reviews are less well understood. We ex-
amine the two peer review techniques used by the success-
ful, mature Apache server project: review-then-commit and
commit-then-review. Using archival records of email discus-
sion and version control repositories, we construct a series
of metrics that produces measures similar to those used in
traditional inspection experiments. Specifically, we measure
the frequency of review, the level of participation in reviews,
the size of the artifact under review, the calendar time to
perform a review, and the number of reviews that find de-
fects. We provide a comparison of the two Apache review
techniques as well as a comparison of Apache review to in-
spection in an industrial project. We conclude that Apache
reviews can be described as (1) early, frequent reviews (2)
of small, independent, complete contributions (3) conducted
asynchronously by a potentially large, but actually small,
group of self-selected experts (4) leading to an efficient and
effective peer review technique.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: [Metrics]; K.6.3 [Software
Management]: [Software development; Software mainte-
nance; Software process]

General Terms
Management, Measurement

Keywords
Peer review, Inspection, Open source software, Mining soft-
ware repositories (email)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

1. INTRODUCTION
Over the years, inspections (formal peer reviews) have

been perceived as a valuable method to improve the quality
of a software project. Inspections typically require periodic
group reviews. Developers are expected to prepare for the
meeting by studying the artifact under review, and then they
gather to discuss it [6].

In practice, adoption remains low as developers and or-
ganizations complain of the time commitment required for
inspection (and the corresponding cost) and the difficulty in-
volved in scheduling them [10]. This problem is compounded
by tight schedules in which it is easy to ignore peer reviews.

Given the difficulties with adoption of inspection tech-
niques in industry, it is surprising that a group of mostly
volunteer developers, such as those in the open source soft-
ware (OSS) Apache HTTP server project (the focus of this
paper), have embraced code review as one of their most
important quality control techniques [8]. These developers
have produced a mature, successful [16] product with defect
densities similar to those found in industry [14, 22].

Very little is known in the scientific literature about how
peer reviews are conducted in OSS. There are experience
reports [13, 21], descriptions at the policy level [4, 14], and
empirical studies that assess the level of participation in peer
reviews [1, 12]. However, many of the questions traditionally
asked about inspection techniques have not been answered
for OSS.

Our goal is to determine empirically the parameters of
Apache peer review and to compare them to those found
in traditional inspections. By understanding these parame-
ters, we expand what is known about OSS and can identify
techniques from Apache peer review that might be valuable
and transferable to industry. We have chosen to examine a
single project because space limitations would not allow us
to provide sufficient depth and detail with multiple projects.

The organization of this paper is modeled on Mockus et al
[14] and has the following sections. Section 2 discusses the
background and policy of the Apache peer review techniques
and introduces our research questions. Section 3 describes
our methodology and data extraction techniques. Section
4 answers our research questions using archival data and
provides a comparison of the two Apache review techniques
based on efficiency and effectiveness. Section 5 provides a
comparison of Apache review to an industrial inspection pro-
cess in terms of efficiency. In sections 6 and 7 we summarize
our results, propose a preliminary theory of OSS peer re-
view, and discuss necessary case study replications. The
final section discusses contributions and conclusions.

541

2. BACKGROUND AND POLICY
The Apache server project was started by a group of glob-

ally distributed server administrators who volunteered to
share fixes to the original code base of the NCSA server [8].
Since the original developers were all volunteers who had
never met in a face-to-face manner, it would seem natural
that they would examine each other’s code before including
it in their own local server. As the project evolved, a shared
version control repository was created and a trusted group
of developers controlled access to this repository [8]. In the
Apache project, trusted developers, or core-group members,
are developers who have shown their competence and have
been given voting and commit privileges. The review tech-
nique, known as review-then-commit (RTC), was formalized
and accepted as Apache policy1: before any code can be
added to the shared repository (i.e., committed) it must re-
ceive a positive review by at least three core-group members.
Interestingly, a similar phenomenon sometimes occurs when
a new developer joins an industrial project. Any code writ-
ten by this new developer must be reviewed by his or her
mentor before it can be released to other developers on the
project.

Reviewing all code before it is committed can become a
very onerous, time consuming process. This frustration is
illustrated through an email quotation from one of the core
developers of the Apache project in 19982.

This is a beta, and I’m tired of posting bloody
one-line bug fix [contributions] and waiting for
[reviews] ... Making a change to apache, regard-
less of what the change is, is a very heavyweight
affair.

After a long, heated email discussion, a new style of review
was accepted as Apache policy, namely commit-then-review
(CTR). CTR is used when a trusted developer feels confi-
dent in what he or she is committing. RTC is now only used
when core-group members are less certain of their contribu-
tion (e.g., it is complex) or when contributions are made by
non-core developers (i.e., developers without commit privi-
leges). According to Fielding, one of the founding members
of the Apache project, Apache developers are expected to
review all commits and report issues to the mailing list [14].
However, other core developers involved in the policy debate
in 1998 are less convinced that this post-commit review will
happen in a volunteer environment; one developer dubs the
policy “commit-then-whatever”.

A third style of review, used only by core-group members,
is to develop a “lazy consensus” around their contribution.
With this type of review, a contribution is submitted for
review, but includes a date (e.g., two days) at which time
the developer will commit the contribution provided there
are no complaints. This review type is based on “silence
implying consent”.

Regardless of the review type used, there are two impor-
tant policies when conducting a review. First, a contribu-
tion must be small, independent, and complete. Reviewers
do not want to review half-finished contributions or contri-
butions that involve solutions to unrelated problems. Large
contributions can take longer to review, which can be prob-
lematic for volunteer developers. Second, if any core-group
1The chief source of information pertaining to Apache policy
is the Apache website apache.org March 2007
2All quotations and references to email discussion come from
manual examination of the Apache developer mailing list.

member feels that a contribution is unacceptable, he or she
can place a veto on it and the contribution will either not be
committed or, in the case of CTR, removed from the shared
repository.

In summary, Apache’s review policies create two barri-
ers to “buggy” code. The first barrier is to require signif-
icant changes and changes from non-core developers to be
reviewed before being committed (RTC). The second barrier
is to require reviews of committed contributions (CTR). For
the latter process to be effective, developers must examine
the commit mailing list to ensure that unacceptable contri-
butions are fixed or removed.

2.1 Research Questions
We base our research questions upon those that have been

asked and answered in the past for inspection techniques
(e.g., Porter et al. [18]). Where necessary, adaptations have
been made to the questions to deal with the available data
and aspects that are unique to the Apache project and its
polices. In this section, we provide the rationale behind
each question and what, if anything, is known about OSS
peer review.

Q1. Frequency and Activity: Are developers able to main-
tain an adequate level of review during times of increased
development activity?
Apache review policies enforce a review around the time
of commit. As development activity increases, as there are
more contributions and commits, are developers able to main-
tain an adequate level of peer review? This concern is espe-
cially relevant in the case of CTR where an ignored commit
becomes part of the product without ever being reviewed
(i.e., “commit-then-whatever”). To address this concern, we
correlate review frequency to development activity.

Q2. Participation: How many reviewers respond to a re-
view? How much discussion is there during a review? What
is the size of the review group?
In his experience-based analysis of the OSS project Linux,
Raymond coined Linus’s Law as “Given enough eyeballs, all
bugs are shallow” [21]. It is important to gauge participation
in the peer reviews to assess the validity of this statement.
RTC policy states that three reviewers should be involved
in each review, while CTR contributions are supposed to be
reviewed by the core-group. Research into the optimal num-
ber of inspectors has indicated that two reviewers perform
as well as a larger group [18, 24]. Previous OSS research has
found that there are on average 2.35 reviewers who respond
per review for Linux [12]. We have have found a similar
result for Apache [23], as have Asundi and Jayat [1]. One
problem with the previous metrics is that reviewers who
do not respond (i.e., they may find no defects) will not be
counted as having performed a review. We measure the size
of the review group at monthly intervals. Our assumption
is that if a developer is performing reviews, he or she will
eventually find a defect and respond.

Q3. Size: Why is the size of the artifact under review so
small?
Mockus et al. [14] found that the size of a change for the
Apache project was smaller than for the proprietary projects
they studied, but they did not understand why. We provide
a discussion relating Apache policy and practice to the size
of the review and compare Apache to an industrial project
based on the size of the contribution.

542

We want to understand whether the small change size is
a necessary condition for performing an Apache style of re-
view.

Q4. Review Interval: What is the calendar time to per-
form a review?
The review interval, or the calendar time to perform a re-
view, is an important measure of review effectiveness [18].
The speed of feedback provided to the author of a contri-
bution is dependent on the length of the review interval.
Interval has also been found to be related to the timeliness
of the project. For example, Votta [11] has shown that 20%
of the interval in a traditional inspection is wasted due to
scheduling. We create a measure of interval and compare
Apache to an industrial project.

Q5. Defects: How many reviews find defects?
The number of defects found in a review is a common but
limited measure of review effectiveness [7, 10, 18]. There
have been estimates of the number of defects found and fixed
in OSS projects (e.g., [4, 5]). Using automated checkers,
Reasoning Inc. [22] concluded that the Apache project has
a defect density comparable to proprietary software. Mockus
et al. [14] found that this was accomplished without a pol-
icy requiring substantial code reviews before a release. They
comment that this result “may indicate that fewer defects
are injected into the code, or that other defect-finding ac-
tivities such as inspections are conducted more frequently
or more effectively”. The measure of defects in this case was
the number of defects reported in the Apache bug database.
Neither study determined how many of these defects are dis-
covered through peer review. We measure the proportion of
reviews that find defects.

3. METHODOLOGY AND DATA SOURCES
Apache developers rarely meet in a synchronous manner,

so almost all project communication is recorded [8]. The
Apache community fosters a public style of discussion, where
anyone subscribed to the mailing list can comment. Discus-
sions are usually conducted on a mailing list as an email
thread. A thread begins with an email that includes, for
example, a question, a new policy, or a contribution. As
individuals reply, the thread becomes a discussion about a
particular topic. If the original message is a contribution,
then the discussion is a review of that contribution. We ex-
amine the threaded reviews on the developer and commit
mailing lists. We also examine commit logs to determine
who performed a review. One advantage of this archival
data is that it is publicly available, so our results can be
easily replicated.

The most important forum for development-related dis-
cussion is the developers’ mailing list. All contributions
that require discussion must be sent to this list. There were
84,784 email messages and 23,409 threaded discussions on
the developer mailing list between January 1997 and Octo-
ber 2005. We examine discussions pertaining to peer review.

RTC. From 1997 on, all contributions that are reviewed
before being committed (RTC) have an email subject con-
taining the keyword “[PATCH]”. This original message be-
comes the contribution, and all replies to this message be-
come reviews and discussion pertaining to the contribution.
There were 2,603 contributions and 9,216 replies to these
contributions. We eliminated contributions in which there
was no response or only the author responded, as these con-
tributions are likely not reviewed. This approach eliminates

583 contributions, reducing the number of RTC contribu-
tions to 2,020.

CTR. Since the version control system automatically be-
gins each commit email subject with “cvs [or svn] commit:”,
all replies that contain this subject are reviews of a com-
mit. In this case, the original message in the review thread
is a commit recorded in the version control mailing list; all
responses still go to the developer mailing list. There were
2,647 commits that received at least one reply and 9,833
replies to these commits. We eliminated 210 commits be-
cause only the author replied; thereby reducing the number
of commits we examined to 2,437. Although CTR was used
prior to 1997, it did not become an official Apache policy
until 1998.

Limitations of the data. The data can be divided into
two sets: contributions that receive a response and contri-
butions that do not. In this paper, we limit our examination
to contributions that receive a response, because when a re-
sponse occurs, we can be sure that an individual took inter-
est in the contribution. If there is no response, we cannot be
certain whether the contribution was ignored or whether it
received a positive review (i.e., no defects were found). Our
measurements would be skewed by ignored contributions, so
we cannot include these data. For example, since an ignored
contribution has no reviewers, if we include these data, we
drastically reduce the number of reviewers per contribution,
even though these contributions do not actually constitute
reviews. Furthermore, we assume that contributions that re-
ceived a positive review will use the same or fewer resources
as contributions that receive a negative review. For exam-
ple, we expect the review interval to be shorter when no
defect is found than when one is found. In summary, we
are forced to use a sample of Apache reviews (the sample is
not random). We suggest that our sample is the important
and interesting section of the data (i.e., it is the data that
received a response). We also suggest that using “reviews”
that do not receive a response would significantly reduce the
usefulness of our data.

Within the set of reviews that received a response (i.e.,
the data we have sampled), we make an additional assump-
tion that a reply to a contribution is a review. We selected
a random sample of these data: 100 RTC and 100 CTR re-
views. This random sampling indicated that less than 5% of
the contributions contained discussions unrelated to review
(e.g., policy discussions or indications that the contribution
was not interesting and would not be reviewed). Thus, we
feel that our assumption is reasonable.

We recognize that at least two important questions can-
not be answered using the given data. First, since we cannot
differentiate between ignored and positively reviewed contri-
butions, we cannot address the exact proportion of contri-
butions that are reviewed. Second, although we do provide
the calendar time to perform a review (interval), we cannot
address the amount of time it takes an individual to per-
form the review. However, in Lussier’s [13] experience with
the OSS WINE project, he finds that it typically takes 15
minutes to perform a review, with a rare maximum of one
hour.

Additional data sources. There are two additional
data sources. The first, manual examination, involves read-
ing the review thread. These data provide useful qualitative
evidence in the form of quotations as well as an opportunity
to categorize the contributions, such as when random sam-

543

pling is used to determine how many contributions contained
defects.

The second type involves looking at the commit log to
determine who was involved in an RTC review. Apache pol-
icy requires developers to describe the changes made in each
transaction to the version control system. This description,
the commit log, includes information such as who submitted
and who reviewed the contribution. According to Fielding
[14], developers create a complete commit log more than 90%
of the time. There were 2,373 commits that had at least one
reviewer named in the commit log. Since all these contribu-
tions have been reviewed-then-committed and accepted, we
refer to them as RTCA. The main limitation of these data
is that we do not have the associated review thread, thereby
limiting the metrics we can calculate with RTCA data.

Extraction Tools and Techniques. We created scripts to
extract the mailing list and version control data into a database.
An email script extracted the mail headers including sender,
in-reply-to, and date headers. The date header was normal-
ized. Once in the database, we threaded messages by follow-
ing the references and in-reply-to headers3. Unfortunately,
the references and in-reply-to headers are not required in
RFC standards, and many messages did not contain these
headers. When these headers are missing, the email thread
is broken, resulting in an artificially large number of small
threads. For CTR and RTC, we reduced the number of
broken threads from 18.3% and 15% to 7.7% and 1.8%, re-
spectively4.

4. ARCHIVAL DATA RESULTS
In this section, we present results related to our research

questions. Since each question requires a different metric,
we describe the metric and discuss any limitations of it in
the section in which it is used. Although the metrics may
be unfamiliar to readers, they are designed to produce sim-
ilar measures to those used in traditional inspection experi-
ments.

4.1 Frequency and Activity
Q1: Are developers able to maintain an adequate level of

review during times of increased development activity?
We want to understand if developers can maintain a suffi-
cient level of peer review during times of increased devel-
opment. We measure the relationship between development
activity and reviews. We examine the frequency as the num-
ber of reviews per month.

For RTC, review frequency is measured in two indepen-
dent ways: by counting how many reviews received at least
one reply and by counting how many commit logs contain
the name of at least one reviewer in the “reviewer” field. For
CTR, we count the number of commits that receive at least
one reply.

Figure 1 provides a box and whiskers plot of each review
type. The bottom and top of the box represent the first
and third quartiles, respectively. Each whisker extends 1.5
times the interquartile range. The median is represented
by the bold line inside the box. Our data are not normally

3For more information see RFC 2822 – Internet Message
Format
4A detailed description of our technique is available at
helium.cs.uvic.ca/thread

RTCA RTC CTR

0
20

40
60

80
R

ev
ie

w
s

pe
r

m
on

th

Figure 1: Number of reviews per month

distributed, so we report median values. The per month
medians are 18, 16, and 19 for RTCA, RTC, and CTR re-
spectively. We assume that commit activity is related to
development activity. In order to determine the relation-
ship between commit activity and the the review types, we
conducted Spearman correlations – a non-parametric test.
The only correlation above 0.50 is between the number of
CTR contributions and the number of commits (r = 0.69)5.
This correlation indicates that the number of CTRs changes
proportionally to the number of commits. Therefore, when
there is more code to be reviewed, there are more CTR re-
views. This finding suggests that as the number of commits
increases, CTR does not become, as one Apache developer
feared, “commit-then-whatever”. The number of RTCA con-
tributions was weakly correlated with commits (r = 0.14),
suggesting that the number of accepted contributions is only
weakly related to commit activity. Surprisingly, the number
of RTC contributions and the number of RTCA contribu-
tions was only moderately correlated (r = 0.37). These last
two results suggest that the Apache group is very conserva-
tive in the contributions it accepts and is not influenced by
high volumes of submissions. By reviewing a contribution
around the time it is committed, Apache developers reduce
the likelihood that a defect will become embedded in the
software.

4.2 Participation
Q2: How many reviewers respond to a review? How much

discussion occurs during a review? What is the size of the
review group?
It is simple to count the number of people that come to an
inspection meeting. Ascertaining this metric from mailing-
list-based reviews is significantly more difficult.

The first problem is that developers use multiple email
addresses. These addresses must be resolved to a single in-
dividual. We use Bird et al.’s [2] tool to perform this reso-
lution.

The remaining problems relate to the data available for
each review type. RTCA provides a record of core-group
members who performed a review. This measure does not

5All reported correlations are statistically significant at p <
0.001

544

RTCA RTC CTR

1
2

5
10

20
R

ev
ie

w
er

s
pe

r
re

vi
ew

 (
lo

g)

Figure 2: Number of reviewers per contribution

usually include developers who contributed reviews but are
not part of the core-group. In contrast, RTC and CTR in-
clude all reviewers. However, it is only possible to count
reviewers who respond to a contribution. So if an individual
performed a review and did not find any issues or found the
same issue as other reviewers, this individual would not be
recorded as having performing a review. To overcome the
latter limitation, we assume that if an individual is perform-
ing reviews over a long enough period of time, he or she will
eventually be the first person to find an issue and will re-
spond to a contribution (if a reviewer never responds, the
reviewer is not helping the software team). We define the
review group on a monthly basis as all individuals who
responded to a review within a given month (i.e., number of
reviewers per month). In summary, we have three metrics
to gauge participation in reviews: the number of develop-
ers per review (roughly equivalent to the number of people
who actively participate in an inspection – see Figure 2), the
number of emails per review (the amount of discussion per
review – see Figure 3), and the review group or the number
of people who performed at least one review in a given month
(roughly equivalent to the pool of reviewers who participate
in inspections – see Figure 4).

Examining RTCA contributions, 50% of contributions are
reviewed by only one individual and 80% are reviewed by two
(see Figure 2). Apache policy states that three core-group
members must review an accepted contribution. These re-
sults indicate that this policy is not always followed. Since
only core-group members are recorded as reviewers in the
commit log, RTCA has fewer recorded reviewers than RTC.

Figures 2 and 3 show that RTC has slightly more review-
ers and messages in the discussion than CTR. For 80% of the
contributions, RTC has three individuals and six messages,
while CTR has two individuals and five messages. The me-
dian for RTC is two individuals and two messages, while the
median for CTR is one individual and two messages. In-
terestingly, CTR has a larger number of responses from the
author of the contribution than RTC. For CTR, the author
and reviewer are often the only discussants (although others
may be watching the discussion).

The review group (the potential number of reviewers, see
Figure 4) is much larger than the number of reviewers per re-

RTC CTR

1
2

5
10

20
50

10
0

M
es

sa
ge

s
pe

r
re

vi
ew

 (
lo

g)

Figure 3: Number of messages per review

RTC CTR Committers

0
10

20
30

40
G

ro
up

 s
iz

e
(in

di
vi

du
al

s
pe

r
m

on
th

)

Figure 4: Review group

view – for RTC the median is 14, while for CTR the median
is 15. The size of this review group is close to the number
of core-group members found by Mockus et al. [14]. Devel-
oper expertise and specialization may account for the review
group being much larger than the number of reviewers per
contribution. In Fogel’s [9] experience, developers often de-
fer to an individual who has worked in a given area and
proven his or her competence. In previous work, we have
seen high levels of core-group (i.e., expert) participation in
Apache reviews [23], as have Asundi and Jayat [1].

Although there are relatively few discussions with more
than 15 messages and eight participants, there are rare threads
with as many as 90 messages and 20 participants. Manual
examination of larger threads revealed that some messages
had nothing to do with the contribution. Instead, the contri-
bution had started a debate on a larger issue. For example,
one 89-message thread regarding a trivial contribution con-
tained the entire debate on whether the CTR policy should
be formally accepted.

545

RTCA RTC CTR

1
10

10
0

10
00

10
00

0
S

iz
e

of
 c

on
tr

ib
ut

io
ns

 (
lo

g)

Figure 5: Size of contributions

4.3 Size
Q3. Why is the size of the artifact under review so small?

The size of the artifact under review is a common measure
in the inspection literature [18]. Mockus et al. [14] found
that changes to Apache were smaller than changes to the in-
dustrial projects they examined, but they could not explain
why this was the case. We examine the size of changes that
are reviewed. The change size is measured by summing the
number of added and deleted lines.

Figure 5 shows the size of contributions for Apache re-
views. RTC had the largest contribution size. The median
number of changed lines was 25, and 80% of the contri-
butions had less than 106 changed lines. RTC accepted,
RTCA, contributions were smaller, with a median of 17,
and 80% with less than 71 changed lines. The size differ-
ence between RTC and RTCA is consistent with our man-
ual examination of contributions; often neophytes submitted
contributions that contained solutions to multiple problems.
These contributions were broken down into their compo-
nents before being accepted. CTR had a slightly smaller
contribution size with a median of 15 changed lines, and 80%
of CTR contributions had less than 70 lines changed. These
small contribution sizes are consistent with the Apache pol-
icy to review only small, complete, independent contribu-
tions.

4.4 Review Interval
Q4. What is the calendar time to perform a review?

Porter et al. [20] define review interval as the calendar time
to perform a review. The full interval begins when the au-
thor prepares an artifact for review and ends when all defects
associated with that artifact are repaired. The pre-meeting
interval, or the time to prepare for the review (i.e., reviewers
learning the material under review), is also often measured.
Figure 7 provides a pictoral representation of review inter-
val.

RTC. For every contribution submitted to the mailing
list, we determine the difference in time from the first mes-
sage (the “[PATCH]”) to the final response (the last review
or comment). Figure 6 shows the cumulative logarithmic
distribution of the review intervals. The bottom line in the
figure represents the full review interval for RTC. The figure

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.0001 0.001 0.01 0.1 1 10 100

P
ro

po
rt

io
n

of
 R

ev
ie

w
s

(A
cc

um
 %

)

Days (log)

Interval RTC
First reply RTC

Interval CTR
First reply CTR

Figure 6: Review intervals. RTC takes longer than
CTR

shows that 80% of the contributions are reviewed in less than
3.8 days and that 50% are reviewed in less than 19 hours.
We also determine the time to the first response. This time
is roughly equivalent to what is traditionally called the pre-
meeting time. The preparation time for the contributor is
negligible, since it is a single command to create a diff. This
first-response time is slightly less than one day for 80% of
the contributions and has a median of three hours. Only 9%
of the RTC reviews last for more than one week, indicating
that initially ignored contributions are rarely reviewed.

CTR. Since the contribution is committed before it is
reviewed, we need to know not only the time between the
commit and the last response (the full CTR review interval,
see Figure 6), but also the time between the commit and the
first response. This first response indicates when the issue
was discovered; the ensuing discussion may occur after the
problematic contribution is removed. Ideally, the amount
of time defective, unreviewed code is in the system should
be short. The first review happens very soon after a com-
mit: 50% of the time it occurs within 1.7 hours and 80%
of the time it happens within 11 hours. The discussion or
full interval of the review lasts longer, with a median value
of 8.9 hours. In 80% of cases, the discussion lasts less than
1.7 days. Only 5% of issues are found after one week has
passed. Like RTC, this final result indicates that if a change
is not reviewed immediately, it will likely not be reviewed.

The data indicates that reviews, discussion, and feedback
happen very quickly. The following quotation from a mailing
list discussion in January 1998 supports these findings.

I think the people doing the bulk of the commit-
ting appear very aware of what the others are com-
mitting. I’ve seen enough cases of hard to spot
typos being pointed out within hours of a com-
mit.

4.5 Defects
Q5. How many reviews find defects?

We know from previous work that Apache likely has defect
rates that are comparable to those in industry [14, 22]. We
measure how many reviews find defects.

Ideally, we would be able to use the traditional measure of
the total number of defects found during review. Since this
information is based on discussion, it is subjective and must

546

be recorded manually. Unfortunately, Apache developers do
not record the number of defects found in a review. We use
random sampling to manually determine how many reviews
contain at least one defect. The language used in the reviews
makes it apparent whether at least one defect was found;
however, without being actively involved in the review, it is
difficult to determine how many defects in total were found
per review (the traditional measure of defects).

We categorized reviews as containing a defect or not con-
taining a defect. We further categorized defects as being at
the source code level or being abstract. Abstract defects in-
cluded architectural and design issues. A single review could
contain both a source and an abstract defect.

RTC. From a random sample of 100 reviews, we found
that 51% contained at least one defect. Of the reviews that
did contain defects, 84% contained a source code defect, 63%
of reviews contained an abstract defect, and 47% contained
both types of defects.

CTR. In a random sample of 100 reviews, 66% contained
at least one defect. Of the reviews that did contain defects,
64% contained a source code defect, 62% contained an ab-
stract defect, and 30% contained both types of defects.

A common question is, “do these defect results imply that
half of the data on which these previous figures are based
really has nothing to do with defects, but is some other kind
of discussion?” Not all reviews are expected to find defects,
especially when the review is of a very small artifact, such as
in the case of Apache (see Section 4.3). Of the 200 threads
we examined, it was rare that a thread did not qualify as
a review. An example of a review that did not qualify as a
“true” review, is the policy discussion referenced in Section
4.2.

Since the contribution sizes are very small (see Section
4.3), one would expect that the discussion would remain
very localized. However, our findings indicate that a large
proportion of the reviews that found defects discussed the
abstract or global implications of the contribution. One ex-
planation for this finding is the lack of “code ownership” ex-
hibited by Apache developers (i.e., Apache developers have
a holistic view of the system) [14].

Interestingly, while manually examining the reviews, it
became apparent that the fix for a defect was discussed im-
mediately and a new solution was usually proposed and im-
plemented. The new implementation sometimes came from
one of the reviewers.

4.6 Comparison of RTC to CTR
The goal of a software process is to produce high qual-

ity software in a timely manner. Review techniques can be
compared based on their effectiveness (e.g., how many de-
fects they find) and efficiency (e.g., how long it takes to find
and remove those defects). We compare RTC to CTR based
on these two metrics.

The main reason for adopting a CTR policy is that RTC
slows down development by increasing the review interval.
The frustration with RTC is apparent in the policy discus-
sion regarding the acceptance of CTR in January of 1998
(see Section 2).Our first hypothesis relates to the efficiency
of the review techniques. We hypothesize that CTR has a
shorter review interval than RTC.

With CTR, the contribution is committed before it is re-
viewed, so if no issues are found in review, the interval is
zero (i.e., the author does not have to wait for the review

before committing the contribution). In this case, it is obvi-
ous that CTR has a shorter interval than RTC – using the
median value, RTC is 19 hours slower than CTR (see Section
4.4). However, if an issue is found, a discussion must occur
and the contribution must be fixed or removed. In this case,
the median interval for CTR is 8.9 hours. To determine if
there is a statistically significant difference between the two
review types, we run a Kolmogorov-Smirnov test with the
null hypothesis that RTC and CTR have the same interval
(i.e., the two distributions are not statistically significantly
different). Since p < 0.001, we reject the null hypothesis
and conclude that CTR has a shorter interval than RTC –
using the median value, CTR is 2.2 times faster than RTC.
In both cases, CTR has a shorter interval than RTC.

We have determined that CTR is more efficient than RTC.
However, if CTR finds fewer defects than RTC, it is a less
effective review technique. We hypothesize that CTR finds
fewer defects than RTC.

Ideally, we would compare the number of reviews that
do not find defects to the number of reviews that do find
defects. However, this comparison would produce a result
biased in favor of CTR because Apache policy requires RTC
reviewers to respond with positive reviews, while only neg-
ative responses are required for CTR (see Section 2). We
create an unbiased measure by calculating the number of
reviews that have a question from the reviewer, but do not
contain a defect. Since asking a question always requires the
reviewer to send a message, there should be no bias towards
either review technique. From our manual examination of
reviews (see Section 4.5), we know that for RTC there are
51 reviews that find defects to 7 reviews with questions and
no defects found, while for CTR the ratio is 66 to 9.

We perform a Chi-squared test on the defect counts, with
the null hypothesis being that RTC finds the same number
of defects as CTR. Since p = 0.80, we conclude that there
is no statistically significant difference between the number
of defects found for the two review techniques. Although
we cannot reject the null hypothesis and we do not have an
exact measure of the number of reviews that do not find
defects, the evidence that we have supports the conclusion
that RTC and CTR find a similar number of defects.

In summary, we have found that while CTR has a shorter
review interval than RTC, the two techniques likely find the
same number of defects. Although these results indicate
that, in the Apache project, CTR is a superior review tech-
nique to RTC, we must remember the different contexts in
which they are used by the project (see Section 2). CTR is
only used when a trusted, core-group member feels confident
in what they are committing, while RTC is used when the
core-group member is less certain or by developers without
commit privileges. In an industrial environment, RTC could
be applied to new hires, incurring a longer review interval,
while CTR could apply to developers who have shown that
they are competent. An experiment controlling for other
variables (e.g., developer expertise, complexity of artifacts
under review) may lead to CTR being used in a wider con-
text.

5. COMPARISON OF APACHE PEER RE-
VIEW TO INSPECTION AT LUCENT

Siy has provided us with the data collected from an inspec-
tion experiment conducted at Lucent Technologies. These

547

Figure 7: The typical stages involved in a peer re-
view. One Lucent inspection is the equivalent of
5.5 Apache reviews. The median pre-meeting inter-
val is 10 days for Lucent and 19 hours for Apache
RTC. Asynchronous reviews reduce the amount of
time lost to scheduling and allow for more detailed
discussions.

data have been used in a number of studies [20, 19, 18]. The
software is a compiler that consists of 55 kLOCS of C++;
the most recent version of Apache is written mostly in C
and is 110 kLOCS6. Although the projects are not identical,
we feel that a preliminary comparison is appropriate.

The number of defects does not provide a useful compari-
son between projects. Weller [25] reports a 7 to 1 difference
in the number of discovered defects in two separate projects
using the same inspection technique – different projects us-
ing distinct techniques are likely to produce even more dis-
similar results. For example, a more complex project will
likely have higher levels of defects regardless of the review
technique used. As a result, we cannot comment on the
effectiveness of the Apache review techniques compared to
those used at Lucent.

Interval is likely less affected by project differences (e.g.,
code complexity and developer skill level), since the time
a developer spends performing the review is always much
smaller than the actual review interval regardless of the tech-
nique (e.g., no developer [except perhaps the author] spends
days or weeks solely working on an inspection).

We must first normalize the size of the artifact as the
difference is substantial. Lucent inspections have a median
artifact size of 265 Non-Comment Source Lines (NCSL). In
Section 5, we measure size as the number of lines changed
in a contribution. To provide a fair comparison, we must
only look at source code and count the total number of non-
comment lines involved in the review. We also include diff
context, as the reviewer will likely examine this as well. For
RTC contributions, we found a median size of 48 NCSLs.
Normalizing for the size of the artifact, we find that one Lu-
cent contribution is 5.52 times the size of an RTC contribu-
tion. We cannot be certain that Apache reviews include the
time to fix the defect, so we must compare the full Apache
review interval as calculated in Section 4.4, 19 hours or .8
days, to pre-meeting at Lucent, 10 days (instead of the 15
days it takes to perform the review and fix all the defects at
Lucent). Combining the two results we have the following:

6See http://www.koders.com Accessed September 2007

for an RTC to cover the same amount of code as a Lucent
inspection, we must perform 5.5 RTCs, which takes 4.4 days.
Therefore, RTC is 56% faster than Lucent inspection.

Given the many differences between these projects and
the difficulties in comparing effectiveness, we do not want
to make strong claims about the efficiency of the Apache
review techniques. However, we suggest that the differences
in review interval are not unreasonable. First, while keeping
the number of defects constant, Perry et al. [17] were able
to reduce the inspection interval by 25% simply by conduct-
ing asynchronous inspections (i.e., by eliminating the time
wasted in scheduling meetings, the middle section in Figure
7). Apache reviews are also conducted asynchronously. Sec-
ond, Apache reviews likely reduce the time required for the
preparation stage (the first section in Figure 7). As noted
by Mockus et al. [14], Apache developers do not have “code
ownership” (i.e., they work in many different sections of the
software). This lack of “code ownership” increases the likeli-
hood that reviewers will already be familiar with the section
of the artifact related to the contribution under review. Fur-
thermore, frequent, small contributions require developers to
constantly review changes and thus keep up-to-date with the
activities of their peers. This familiarity with the software
should reduce the amount of extra preparation necessary
to conduct a review. Fourth, through manual examination,
we found that the discussion usually switches from defect
finding to defect fixing (the last section in Figure 7). Occa-
sionally, one of the reviewers would provide a fix to a con-
tribution under review. This group problem solving could
lead to a decrease in the time to fix defects. The new solu-
tions created within the review are immediately re-reviewed
before being incorporated into the software product.

6. TOWARDS A THEORY OF OSS
PEER REVIEW

This case study allowed us to investigate our research
questions and report results for each. The research ques-
tions addressed

• the review process, policies, and structure,

• the frequency of reviews and relationship between the
frequency of reviews and development activity,

• the level of participation in reviews and the size of the
review group,

• the size of the artifact under review,

• the review interval (i.e., the calendar time to perform
a review), and

• the number of reviews that find defects.

Case studies can provide an excellent background from
which to develop new theories. One cannot generalize from
a single case, but the findings of a single case study can in-
form the selection of future case studies as well as the design
of controlled experiments. In this section, we restate some
of our case study findings as components of a theory, and
suggest why each component may lead to a successful peer
review technique. The following statement encapsulates our
understanding of how Apache code review functions.

548

(1) Early, frequent reviews (2) of small, independent, com-
plete contributions (3) conducted asynchronously by a poten-
tially large, but actually small, group of self-selected experts
(4) leads to an efficient and effective peer review technique.

We dissect this statement below, showing the evidence
that we have gathered, how this evidence is related to ex-
isting literature, and the evidence that needs be obtained
through future work.

1. Early, frequent reviews
The longer a defect remains in an artifact, the more embed-
ded it will become and the more it will cost to fix. This
rationale is at the core of the 30-year-old Fagan inspection
technique [7]. We have seen comparatively high review fre-
quencies for Apache in Section 4.1. Indeed, the frequencies
are so high that we consider Apache review as a form of“con-
tinuous asynchronous review”. We have also seen a short
interval that indicates quick feedback (see Section 4.4).

2. of small, independent, complete contributions
Breaking larger problems into smaller, independent chunks
that can be verified is the essence of divide-and-conquer.
Morera and Budescu [15] provide a summary of the findings
from the psychological literature on the divide-and-conquer
principle. Section 4.3 illustrates the small contribution size
in Apache, as does the work of Mockus et al. [14], and
Section 5 provides a comparison of contribution sizes with
an industrial project. The policy discussion in Section 2
provides support for the idea that Apache developers will
review only independent, complete solutions.

Although there are many advantages to small contribu-
tions, one potential disadvantage is fragmentation. Indus-
trial development may require assurances that all aspects
of a product have been reviewed before a release. A sys-
tem for tracking these small contributions would make this
accountability possible and eliminate concerns about unre-
viewed code: “commit-then-whatever”.

3. conducted asynchronously by a potentially large,
but actually small, group of self-selected experts
The mailing list broadcasts the contribution to a potentially
large group of individuals. A smaller group of reviewers,
approximately 15, performs reviews periodically. An even
smaller group of reviewers, between one and two, actually
participates in any given review (see Section 4.2). Small
contribution sizes coupled with self-selection should allow
the number of individuals per review to be minimized. The
larger a contribution, the more likely it is to require a broad
range of expertise. It is possible to increase the level of ex-
pertise in a group by adding more individuals to the review
[24]. Optimizing the number of reviewers based on the com-
plexity and size of a contribution could lead to overall cost
savings.

Two papers [1, 23] indicate that a large percentage of re-
view responses are from the core group (i.e., experts). Field-
ing [8], Raymond [21], and Fogel [9] discuss how OSS de-
velopers self-select the tasks they work on. One risk with
self-selection is that it is possible that no one will review
the contribution. If self-selection of reviews were used in
industry, a review that was not naturally selected could be
assigned to a developer.

In a large or poorly modularized project a broadcast mech-
anism would likely become too busy (i.e., developers would
be interested in a small proportion of the information). One

possible solution is to limit the broadcast to developers work-
ing on related modules. However, the advantage of a broad-
cast is that developers outside of the core-group can con-
tribute when the core-group is lacking the required expertise
for a particular problem.

4. leads to an efficient and effective peer review
technique
We have shown that Apache review is efficient in Section 5.
Although we were unable to compare Apache review to in-
spection in terms of effectiveness, we found, through random
sampling in Section 4.5, that CTR and RTC both find de-
fects. Given that previous research has shown that Apache
has a comparable defect density to industrial software [22,
14], it is reasonable to assume that peer reviews play a part
in this success.

The number of defects found is a limited measure of effec-
tiveness [10]. Apache reviews provide opportunities for the
other benefits of peer review, such as education of new de-
velopers, group discussion of fixes to a defect, and abstract
or wandering discussions. With traditional inspections, the
discussion centers around defects. A good mediator does
not allow reviewers to start discussing anything but defects
[26]. In contrast, asynchronous reviews ease the time con-
straints placed on the review meeting, allowing for a more
open discussion.

7. REPLICATIONS
As discussed in the introduction, we chose to examine a

single project in order to provide sufficient depth and detail.
As a result, the most pressing area of our future work is
replication of this case study. Without replication, the case
study and any theory derived from it may be only applicable
to the original case (i.e., to Apache). Yin [27] identifies two
types of case study replications: literal replications and con-
trasting replications. The purpose of a literal replication is
to ensure that similar projects produce similar results. For
example, Subversion has adopted an Apache style of review,
and it would serve as an excellent literal replication [9]. Con-
trasting replications should produce contrasting results, but
for reasons predicted by the theory. For example, a recent
study at Cisco used an RTC technique, but assigned review-
ers to particular contributions [3]. This Cisco case would
be an ideal contrasting replication for testing the efficacy of
allowing reviewers to self-select the artifacts they feel com-
petent to review. By performing both types of replications,
the theory is tested and strengthened.

8. CONCLUSION
We have described two lightweight review techniques: CTR

and RTC. We are unaware of any paper that has empirically
examined a CTR style of peer review. With the exception
of policy and review participation, we are unaware of any
paper that has empirically examined an OSS RTC style of
peer review.

This study advances our understanding of the Apache de-
velopment process. We provide a theory and study method-
ology that have the potential to advance our understanding
of OSS review in particular and peer review in general. It
is possible that aspects of this theory could be incorporated
into industry. For example, dividing reviews into smaller,
independent, complete pieces may reduce the burden placed
on any individual reviewer and divide the often unpleas-

549

ant review task into more manageable chunks that can be
conducted periodically throughout the day. These changes
might result in industrial developers taking a more positive
view of peer review. Lussier provides an example of an OSS-
style RTC technique being successfully modified for use in
an industrial setting [13].

It is unlikely that any peer review technique will be clearly
superior in all environments. As an example, further ex-
perimentation may find that although RTC and CTR have
significantly shorter intervals when compared to inspection,
formal inspection finds more defects than either RTC or
CTR. An optimal process may be created by performing
faster reviews early in the development process and by for-
mally inspecting critical sections of code infrequently before
major releases. Combinations that incorporate the most
successful aspects of various software processes, regardless
of their origin, are more likely to produce high quality soft-
ware in a timely manner.

9. ACKNOWLEDGMENTS
The authors would like to thank Harvey Siy for provid-

ing inspection data from the Lucent inspection experiments
and for his feedback on an earlier draft of the paper, Laura
Cowen for checking our statistical analyses, Chris Bird for
allowing us to use his email name aliasing tool, and Laura
Young for providing editorial support. Rigby would also like
to acknowledge support from an NSERC CGSD.

10. REFERENCES
[1] J. Asundi and R. Jayant. Patch Review Processes in

Open Source Software Development Communities: A
Comparative Case Study. HICSS, 0:166c, 2007.

[2] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and
A. Swaminathan. Mining email social networks. In
Proceedings of the 2006 International Workshop on
Mining software repositories, pages 137–143, 2006.

[3] J. Cohen. Best Kept Secrets of Peer Code Review.
Smart Bear Inc., Austin, TX, USA, 2006.

[4] T. Dinh-Trong and J. Bieman. The FreeBSD Project:
A Replication Case Study of Open Source
Development. IEEE Transactions on Software
Engineering, 31(6):481–494, 2005.

[5] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and
B. Chelf. Bugs as deviant behavior: a general
approach to inferring errors in systems code. In Proc.
of the 18th ACM symposium on Operating Systems
Principles, pages 57–72, 2001.

[6] M. Fagan. A history of software inspections.
Springer-Verlag, Inc., New York, NY, USA, 2002.

[7] M. E. Fagan. Design and Code Inspections to Reduce
Errors in Program Development. IBM Systems
Journal, 15(3):182–211, 1976.

[8] R. T. Fielding and G. Kaiser. The Apache HTTP
Server Project. IEEE Internet Computing, 1(4):88–90,
1997.

[9] K. Fogel. Producing Open Source Software. O’Reilly,
2005.

[10] P. M. Johnson. Reengineering inspection. Commun.
ACM, 41(2):49–52, 1998.

[11] J. Lawrence G. Votta. Does every inspection need a
meeting? SIGSOFT Softw. Eng. Notes, 18(5):107–114,
1993.

[12] G. Lee and R. Cole. From a Firm-Based to a
Community-Based Model of Knowledge Creation: The
Case of the Linux Kernel Development. Organization
Science, 14(6):633–649, 2003.

[13] S. Lussier. New tricks: how open source changed the
way my team works. Software, IEEE, 21(1):68–72,
2004.

[14] A. Mockus, R. Fielding, and J. Herbsleb. A Case
Study of Open Source Software Development: The
Apache Server. Proceedings of the 22nd International
Conference on Software Engineering, pages 262–273,
2000.

[15] O. Morera and D. Budescu. A Psychometric Analysis
of the Divide-and-Conquer Principle in Multicriteria
Decision Making. Organizational Behavior and Human
Decision Processes, 75(3):187–206, 1998.

[16] Netcraft. Web server survey.
http://news.netcraft.com/archives/2006/04/06/

april_2006_web_server_survey.html, Accessed
September 2006.

[17] D. Perry, A. Porter, M. Wade, L. Votta, and
J. Perpich. Reducing inspection interval in large-scale
software development. Software Engineering, IEEE
Transactions on, 28(7):695–705, 2002.

[18] A. Porter, H. Siy, A. Mockus, and L. Votta.
Understanding the sources of variation in software
inspections. ACM Trans. Softw. Eng. Methodol.,
7(1):41–79, 1998.

[19] A. Porter, H. Siy, C. Toman, and L. Votta. An
experiment to assess the cost-benefits of code
inspections inlarge scale software development.
Software Engineering, IEEE Transactions on,
23(6):329–346, 1997.

[20] A. A. Porter, H. P. Siy, and J. Lawrence G. Votta.
Understanding the effects of developer activities on
inspection interval. In Proc. 19th International
Conference on Software Engineering, pages 128–138,
1997.

[21] E. S. Raymond. The Cathedral and the Bazaar.
O’Reilly and Associates, 1999.

[22] Reasoning, Inc. Apache defect and metric reports.
http://www.reasoning.com/downloads.html, 2003.

[23] P. C. Rigby and D. M. German. A preliminary
examination of code review processes in open source
projects. Technical Report DCS-305-IR, University of
Victoria, January 2006.

[24] C. Sauer, D. R. Jeffery, L. Land, and P. Yetton. The
Effectiveness of Software Development Technical
Reviews: A Behaviorally Motivated Program of
Research. IEEE Trans. Softw. Eng., 26(1):1–14, 2000.

[25] E. F. Weller. Using metrics to manage software
projects. Computer, 27(9):27–33, 1994.

[26] K. E. Wiegers. Peer Reviews in Software: A Practical
Guide. Addison-Wesley Information Technology
Series. Addison-Wesley, 2001.

[27] R. K. Yin. Case Study Research: Design and Methods,
volume 5 of Applied Social Research Methods Series.
Sage Publications Inc., 2 edition, 1994.

550

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

