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ABSTRACT Considering thé influence of thé upper-boundary on wave breaking in a Bous-
sinesq environment, we compare ultra-high résolution numerical simulations of a topo-
graphically forced polar Stratospheric vortex using: 1) a rigid upper-boundary condition
(following Dritschel and Saravanan, 1994) and 2) a vertical sponge (preventing spurious
reflection of upward propagating waves). In 1) both local (to thé forcing) and remote break-
ing is evidencedfor weak forcing while only local breaking is observedfor sufficiently strong
forcing. In 2) remote breaking is absent and local breaking, which occurs for sufficiently
strong forcing, has quite a différent character to that seen in 1). Compressibility effects are
also discussed.

RÉSUMÉ Considérant l'influence de la limite supérieure sur le déferlement des ondes dans
un environnement de Boussinesq, nous comparons, dans le cas d'une topographie forcée
pour un tourbillon circumpolaire stratosphérique, des simulations numériques en utilisant :
1) des conditions rigides pour les limites supérieures verticals (voir Dritschel et Saravanan,
1994) et 2) une couche éponge (empêchant toute réflexion indésirable des ondes de propaga-
tion ascendantes). En 1) les deux déferlements local (dû au forçage) et éloigné sont mis en
évidence pour un forçage faible, toutefois, on observe seulement un déferlement local pour
un forçage suffisamment fort. En 2) le déferlement éloigné est absent tandis que le déferle-
ment local, qui se présente lors d'un forçage suffisamment fort, possède une caractéristique
différente que celle vue en 1). Les effets de compressibilité sont aussi discutés.
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1 Introduction
This study is primarily motivated by the 1994 work of Dritschel and Saravanan
(hereafter DS). DS used a three-dimensional quasi-geostrophic contour dynamics/
surgery numerical model to study the response of a barotropic vortex to topographic
forcing of varying amplitude. The main result of DS was that for either Boussinesq
or compressible flow two regimes of wave breaking exist, namely, local wave break-
ing occurring near the lower boundary for strong topographic forcing and remote
wave breaking occurring at the upper levels for weaker topographic forcing. Local
wave breaking is due directly to the topography, is not very sensitive to the upper
boundary condition (in the sense that when the domain height is halved the local
breaking is preserved) and apparently has a shielding effect on the upper levels.
Remote wave breaking is due to vertical transport of wave activity from the bottom
to the top of the model, is sensitive to the upper boundary condition (in the sense that
when the domain height is halved remote breaking vanishes) and is coupled with the
compressibility effect when compressibility is involved. It is the upper boundary
condition sensitivities, for Boussinesq flow in particular, that we set out in Section 3
to investigate by replacing the model's rigid lid with a vertical sponge. We mainly
focus on a Boussinesq fluid in order to accentuate the influence of the upper bound-
ary condition when that influence is important. In Section 4 we expand the discus-
sion to include density effects.

This study is also motivated by the 1990 work of Fyfe and Held who, using a
barotropic pseudo-spectral numerical model, illustrated a mechanism by which
horizontally-propagating planetary waves spontaneously break even in the absence
of a so-called "critical layer" (a similar mechanism for vertically-propagating inter-
nal waves was described by Dunkerton, 1981). It is our intention, in a future study, to
consider the spontaneous breakdown of vertically propagating planetary waves
using the ultra-high resolution model of DS. To do so, however, requires the imple-
mentation and testing of a vertical sponge, hence the present study.

2 Three-dimensional quasi-geostrophic contour dynamics/surgery

We now briefly introduce some of the ingredients of the numerical model. A much
more detailed account is contained in DS.

a Quasi-geostrophic potential vorticity
For inviscid fluids we have conservation of quasi-geostrophic potential vorticity
(see Pedlosky, 1987 or Andrews et al., 1987):

P o ^ ^ (1)
po dz V N£ d J

in every infinitesimal layer of fluid when advected by the geostrophic velocity
field u = —d\\i/dy and V = dyi/dx [\y(x,y,z,t) is the geostrophic streamfunc-
tion, po(z) is the background density, /0 = 2Q. is the (constant) Coriolis parameter
and N0(z) the background Brunt-Vaisala frequency]. Here we consider a Boussi-
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Fig. 1 Plan view of the initial vortex (bold solid line) where q is equal to 5.2-rr inside and 3.6TT outside
the bold solid line. Also shown is the topographic forcing function —for\(x, y) (shaded). The cen-
tre of the plot is the "North Pole" and lines of "latitude" and "longitude" are dotted.

nesq fluid with constant density stratification and Brunt-Vaisala frequency given by
No = Vs2/cpTo (To = 210 K) and we non-dimensionalize with the time, vertical-
and horizontal-length scales, S = 4n//o = 1 day, H = RT0/g f*s 6.14 km and
L = NQH //o ^ 902 km, respectively. From here on all variables are nondimen-
sional except when circumflexed. Numerical solutions are obtained by vertically
discretizing into n layers (ranging from 20 to 66 depending on the particular exper-
iment) of equal thickness with all dynamical variables (i.e., q and velocity) residing
at the mid-layer levels. We deal with the horizontal discretization in Subsection c.

b Initial and boundary conditions
The geometry is a polar-cap /-plane, meaning that the fluid is unbounded horizon-
tally with the centre of the domain (r = V*2 + y2 = 0) corresponding to the North
Pole. The initial condition is a barotropic cylindrical polar vortex, i.e.,

(2)

(see Fig. 1) and the top (z — ZT) and bottom (z = ZB) kinematic boundary conditions
are:
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/0
2 3\|/ f 0 at z = zT

- (3)
^o 3 z I —/oT|U, y) 3Xz = zB.

In this study ZB — 12 km (nominally the tropopause) and ZT ranges from 48 to
144 km, depending on the particular experiment. In polar coordinates, the topo-
graphic shape (see Fig. 1) is given by r)(r, 0) — r|o/i (Kr) J(r) cos 0 where T)o is
the topographic amplitude (ranging from 0.04 to 0.60 depending on the particular
experiment), K = 1.6/r0 with r0 = 3 and J(j) is the taper function:

1 for r =£ 5

= { cos ( n 1 for 5 < r =£ 7.5 (4)

0 for 7.5 < r.

c Contour dynamics/surgery
Unlike the usual approach to horizontal discretization, contour dynamics "divides
space into a finite number of dynamic regions and discretizes the contours sepa-
rating distinct regions of vorticity" (Dritschel, 1989). Contour dynamics exploits
the fact that if vorticity is materially-conserved and piecewise-uniform then the in-
stantaneous vorticity contour configuration completely determines the velocity field
(e.g. see the Green function calculation in Eq. (18) of DS). Further, the velocity
field at the contour positions is all that is required to evolve the system forward
in time. Specifically, contour positions x = (x,y) are changed on the basis of the
horizontal velocity field u = (w, V) via the particle equation,

I-
In a sense, the dimension of the mathematical system is reduced by one, allowing
for extended (in time) high resolution (in space) simulations. Space and time reso-
lution is pushed further with the algorithms of contour surgery which dynamically
control regions of extreme and fast-growing curvature. For more on the contour
dynamics/surgery technique and applications the interested reader is referred to
Dritschel, 1988; Dritschel, 1989; Polvani and Plumb, 1992; Waugh, 1993; Dritschel
and Saravanan, 1994.

d Vertical sponge
In the region of the vertical sponge (i.e., zs ^ z =£ ZT) the velocity field is adjusted
with a "forcing" velocity Up and a "restoring" velocity UR:

dx
— = U + Up + UR With
dt

 r (6)
u r = |i(z, t)k x ubt and uR = — a(z)- i

where k and i are unit vectors in the vertical and radial directions, respectively, and

administrator



Contour Model of the Polar Stratospheric Vortex /193

ubt is the barotropic component of u. It is important to note that both the "forcing"
and "restoring" velocities are by design irrotational and as such neither introduces
any external vorticity into the system. The magnitude \i(z, t) of Up is determined
by:

[ (uF+uR)-Vqd%= [ ^ l - f p o ^ l t y - i f o W , (7)
J2L Jm. Po oz { A?0

2 dz J

where ^ is some region enclosing the contour, \j/ is a prescribed equilibrium
streamfunction and a(z) is a "Newtonian damping" coefficient defined as

aT\e e j- ior zs - z - zT ( g )

0 for Z < T . S .

In words, Eq. (7) equates the advection of q by UF + UR to the damping of vertical
gradients of any temperature anomalies (i.e., jj(y—M')) that arise. The equilibrium
streamfunction \j/(jt, y,z) is taken to be the initial state streamfunction. In Eq. (8)
note that a[(zr + Zs)/2] & aTe~l and a(zr) ^ 017-. Here we take the bottom of
the vertical sponge to be at is = 48 km (nominally the stratopause) and after
considerable experimentation, to be described next, set ZT = 72 km (giving about
a four scale height vertical sponge) and a r = 1.6.

1 VERTICAL SPONGE SENSITIVITY EXPERIMENTS

The vertical sponge thickness, zj- — z$, and maximum relaxation rate aT (hereafter
relaxation rate) quoted above have been determined by trial and error using a verti-
cal sponge under a weak forcing condition (i.e., % = 0.15). The rationale for the
weak forcing, at this stage, is that since there is no wave breaking (and the
response is nearly linear) the simulations are relatively easy to interpret and eco-
nomical. Consider Fig. 2, which for a range of relaxation rates shows the total
wave activity (or pseudomomentum) density (hereafter total wave activity) when
zT= 120 km (giving about a twelve scale height vertical sponge). Wave activity is
a useful diagnostic for monitoring the mean-square amplitude of wavy disturbances
relative to a circularly symmetric basic flow (see DS Appendix B for a full defini-
tion). In the aT = 0 (no vertical sponge) simulation we see initial upward propaga-
tion which after apparent multiple boundary reflections leads to a complicated and
unsteady vertical structure. On the other hand, when 1.6 =s aT =s 3.2 the boundary
reflections are largely brought under control. As seen in Fig. 3, dropping the top of
the vertical sponge to Zj = 72 km (giving about a four scale height thickness and a
much reduced computational load) does not seriously compromise the absorbing
ability of the vertical sponge. It is on the basis of these experiments, and others
with larger topographic amplitudes (see Table 1 for a summary of all experiments
conducted), that we have selected fr = 72 km and aT = 1.6 as our main vertical
sponge parameters.



194 / John Fyfe and Xiaohong Wang

Fig. 2 Total wave activity density normalized by t\l for a range of relaxation rates aT with zT= 120 km
(i.e., zT ~ 19.5) and T)0 = 0.15. Where applicable the vertical sponge bottom is indicated by the
horizontal dashed line. Note the nonlinear wave activity scale.

3 Main experimental results

Consider Table 1 which summarizes the various experiments conducted (over 50 in
total). The main set of experiments to be discussed (in bold-type in Table 1) build
upon the Boussinesq rigid upper-boundary experiments of DS, where T|o = 0.45 or
T|o = 0.6. The plan here is to contrast wave breaking seen with and without a vertical
sponge.

a Rigid upper-boundary
Here we consider two sets of experiments: rigid upper-boundary at 1) z = 48 km
(low rigid upper-boundary) and 2) I = 72 km (high rigid upper-boundary). In sub-
sequent subsections we introduce a vertical sponge in the region 48 km < z ^ 72

administrator
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km, and so in a sense the present experiments can be considered as limiting vertical
sponge cases with 1) corresponding to aT -> °o and 2) corresponding to aT -4 0.

1 LOW RIGID UPPER-BOUNDARY (<BL)

Consider Fig. 4 (a) and (b) which show perspective views of a weakly forced (here-
after SXQ.45' ®£ standing for "Boussinesq low rigid upper-boundary" and the sub-
script indicating the topographic amplitude) and strongly forced (hereafter SX0 60)
vortex, respectively. These are DS's 34 and 36 experiments respectively, using their
nomenclature. To t = 5 the <BL0A5 and <BL0 60 vortices are very similar with the lower
(upper) contours moving southward in the positive y-direction (x-direction). At t =
10 (not shown) lower-level breaking has just begun in the <B£0A5 simulation but is
quite advanced in the £C060 simulation. By t = 15 upper-level contour deformations
dominate the 3X0 45 simulation while lower-level breaking dominates the SL0 60 sim-
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TABLE 1. Summary of Boussinesq experiments performed, where iT is the dimensional domain height
(km), n is the total number of levels, ns is the number of levels in the vertical sponge (where
applicable), aT is the relaxation rate (where applicable) and T)o is the topographic amplitude.
The main set of experiments is in bold type and the identifying labels are in parentheses.

u
48
60
72
96

120
144

60
72

96
120

n

20
26
30
42
54
66

26
30

42
54

"s

0
0
0
0
0
0

6
12

23
35

Tlo = 0.15

Rigid upper boundary
0.0
0.0
0.0
0.0
0.0
0.0

Vertical sponge
0.8, 1.2, 1.6
0.4, 0.8, 1.2, 1.6
2.0, 2.4, 2.8, 3.2
1.6
0.4, 0.8, 1.2, 1.6
2.0, 2.4, 2.8, 3.2

n0 = 0.45

0.0 («£045)
0.0
0.0 («#„«)
0.0
•
•

0.8, 1.2, 1.6
0.8, 1.2
1.6 («5045), 2.8
•
•

n0 = o.6o

0.0 CBLBJ
0.0
0.0 (2W060)
0.0
•
•

0.8, 1.2, 1.6
0.8, 1.2
16 ( a y 28
•
•

ulation. At t = 15 the upper-level contours in the $-Co.45 simulation are stretched way
out [see the plan view of the top contour (dotted) in Fig. 5(a)] while the lower-level
contours are filamented [see the plan view of the bottom contour (solid) in Fig. 5(a)].
At t = 15 the upper-level contours in the 2-£.0.60 simulation are relatively quiescent
[see the plan view of the top contour (dotted) in Fig. 5(b)] while the lower-level con-
tours are broken and dramatically deformed [see the plan view of the bottom contour
(solid) in Fig. 5(b)]. Here, the strong lower-level breaking evidently shields the
upper-level contours from the dramatic deformations seen in the corresponding
SX045 contours (as suggested by DS). Our vertical sponge experiments to come will
test which aspects of this picture are artifacts of the rigid upper-boundary condition
and which are not.

Another way to look at these simulations is through height-time cross-sections of
total and relative wave activity (see Fig. 6). Relative wave activity is the component
of the total wave activity which is due to motions relative to the centroid of the vor-
tex. In either the <BL0A5 or $L0 60 cases we see an accumulation of total wave activity
at the top of the domain up to t ~ 5. It is during this time that the vortex obtains its
strong tilt with height as the upper-level contours shift off the pole, in the direction of
low topographic heights (see Fig. 1). At t = 10 the total wave activity again builds,
mostly at upper-levels in the K£o 45 simulation and at lower-levels in the S i 0 60

 s m >

ulation (further evidence of the shielding effect alluded to in the last paragraph). The
relative wave activity plots indicate that these behaviours are due to contour shape
changes as much as they are to changes in the position of the centroid of the vortex.
We also note the impression of waves reflecting downwards from the top at t ~ 5,
reaching the bottom at t = 10 and then in the 2JX0 45 case reflecting upwards to cause

administrator



Contour Model of the Polar Stratospheric Vortex /197

(a) <BLQA5

Fig. 4 Perspective views of the vortex for the case of a low rigid upper-boundary: (a) ®£0 4 5 (weak
forcing. T|0 = 0.45). (b) «£0.60 (strong forcing, T|0 = 0.6).

(b) (t = 15)

10

5

0

-5

-10 -5 0
x

10

Fig. 5 Top level (dotted line) and bottom level (solid line) potential vorticity contours for the case of a
low rigid upper-boundary: (a) <BLa 45 (% = 0.45). (b) ®£0 60 (r\0 = 0.6). The topographic forc-
ing function -ftfC](x, y) is shaded.
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5 (b)

total total

Fig. 6 Total (top) and relative (bottom) wave activity density for the case of a low rigid upper-bound-
ary: (a) SXo.45 (% = 0-45). (b) « £ 0 6 0 (ifo = 0.6).

the subsequent upper-level havoc and in the S£0.60 case setting off the dramatic low-
level breaking (and perhaps suppressing further wave propagation as suggested by
DS). Further diagnostics would be required to confirm these hypothesized chains of
events.

2 HIGH RIGID UPPER-BOUNDARY ('B'K)

How does the picture just painted change when the rigid upper-boundary is lifted to
z = 72 km? Consider Fig. 7(a) and (b) which are perspective views of a weakly
forced (hereafter ®?/o.45> where the y{ stands for high rigid upper-boundary) and
strongly forced (hereafter ®Wo.6O) vortex, respectively, when zT = 72 km. Nothing

administrator
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(a)

21

Fig. 7 As in Fig. 4 for the case of a high rigid upper-boundary: (a) (B!HQ 4 5

(•no = °-6)-
= 0.45). (b) W0 6 0

(b) = 15)

-10 -5 0 5 10 -10 - 5 ^ 0 5 10

Fig. 8 As in Fig. 5 for the case of a high rigid upper-boundary: (a) «W045 (% = °-45)- (b)
(•no = 0-6).



(a)

200 / John Fyfe and Xiaohong Wang

5 (b)

0 2 4 6 8 10 12 14
t

0 2 4 6 8 10 12 14

Fig. 9 As in Fig. 6 for the case of a high rigid upper-boundary: (a) S#o45 Cno = 0-45). (b)

(•no = °-6)-

appreciably different from the lower upper-boundary case happens to the vortex
before t ~ 5, whether weakly or strongly forced. After t ~ 5 the ®^0 60 vortex
evolves much as the 3£0.60 one, in the sense that the breaking is confined to the
lower half of the domain and is very complex [i.e., involving vortex displacement,
reshaping, filamentation and secondary development (compare Fig. 8(b) and Fig.
5(b) solid lines)]. On the other hand, after t ~ 5 the ®%4 5 vortex evolves much dif-
ferently than the <BL0A5 case insofar as the former's upper-level contours undergo
relatively little shape change [compare Fig. 8(a) and Fig. 5(a), dashed lines]. We note
in the tB!rt0A5 case, and subsequent to t ~ 15 (not shown), that two distinct regions of
breaking develop, one near a kink in the vortex at z ~ 7.5 and another near the bot-
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(a)

Fig. 10 As in Fig. 4 for the case of a vertical sponge (aT = 1.6): (a) KS045 (1% = 0.45). (b) ®5060
(r\0 = 0.6). The thin solid contours are contours within the vertical sponge.

$SoA5 (t = 15)

Fig. 11 As in Fig. 5 for the case of a vertical sponge (aT = 1.6): (a) a s 0 45 (T)0 = 0.45). (b)
(•no = 0.6).
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(a)

0 2 4 6 8 10 12 14
t

0 2 4 6 8 10 12 14
t

Fig. 12 As in Fig. 6 for the case of a vertical sponge (aT = 1.6): (a) ®5o45 (% = 0-45). (b) 85o6O
(% = 0.6). The vertical sponge bottom is indicated by the horizontal dashed line.

torn. An early hint of this behaviour is seen in the bottom left panel of Fig. 9 which
shows relative wave activity maxima at z ~ 7.5 and z~ ZB beginning around t = 10.

b Vertical sponge (tiS)
Let us now consider placing a vertical sponge in the region 48 km =£ z =£ 72 km.
Comparing Fig. 10 and Fig. 7 there appears little difference between the S^(high
rigid upper-boundary) and the 25 (vertical sponge) cases up to t ~ 5 (i.e., with or
without a vertical sponge the vortex is tilted with height and there is some minor
low-level breaking when strongly forced). Beyond t ~ 5 the evolution is quite dif-
ferent. For example, the IBSM5 vortex [Fig. 10(a) and Fig. 11 (a)] remains in a more
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Fig. 13 Perspective view of the vortex for a compressible vortex: Low rigid upper-boundary cases:
(a) CL0l5 (T)0 = 0.15), (b) CX0.l75 Cno = °-175) and (c> C£0.25 Cno = 0-25). Vertical sponge
cases: (d) CS0AS Cn0 = 0.15), (ej C50.i75 (-no = °-175) a n d W CS0.25 (̂ O = °-25)- N o t e t h a t t h e

plots do not include the region of the vertical sponge.

or less steady state (excepting some relatively minor low-level breaking) to t = 15
(and in fact to the end of the simulation at t = 25, not shown). On the other hand,
the corresponding 2#o.45 vortex [Fig. 7(a) and Fig. 8(a)] shows advanced breaking
and/or contour distortion throughout the lower two-thirds of the domain during the
same time. The ®5o.6o [Fig. 10(b) and Fig. ll(b)] and ®^0.60 [Fig. 7(b) and Fig.
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10

..0

(d) C5o.25

- 5 •

-10 -5 0

Fig. 14 Top level (dotted line) and bottom level (solid line) potential vorticity contours: Low rigid
upper-boundary cases: (a) C£o 15 (r\0 = 0.15) and (b) CL025 (r\0 = 0.25). Vertical sponge cases:
(c) C50.i5 (ino = °-15) and (d) «0.25 (̂ lo = °-25)-

8(b)] simulations are also quite different. Although both simulations exhibit signifi-
cant lower-level breaking, the character of the breaking is quite different. Specifi-
cally, the ®5o.6o vortex remains more or less intact despite winding and then
expulsion of a thin and seemingly passive filament. The 2Wo.6o vortex, on the other
hand, shows a much less recognizable main vortex and the development of a sec-
ondary vortex. For completeness we show the S5 wave activity plots in Fig. 12,
which when compared to the corresponding !&tf plots in Fig. 9 further punctuates
our point that the evolution of a barotropic vortex can be highly sensitive to the
upper boundary condition.
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(a) (b) GWb.04 (C) CSQ.04

Fig. 15 Perspective views of a compressible vortex for a very weak forcing amplitude of r]0 = 0.04.
(a) Low rigid-lid CX0 04. (b) High rigid-lid CW0.o4- (c) Vertical sponge CSQ 04.

4 Summary and discussion
This study was primarily motivated by DS who used a three-dimensional quasi-
geostrophic contour dynamics/surgery numerical model to study the response of a
barotropic vortex to topographic forcing of varying amplitude. Our specific ques-
tion, in the context of DS, is what is the role of the rigid upper-boundary condition in
wave breaking? We have addressed this question by replacing the rigid upper-bound-
ary with a vertical sponge. Our main results are:

• Given a vertical sponge and a forcing amplitude greater than a certain critical
value, breaking is as in the corresponding rigid upper-boundary case insofar as it
is confined to the lower half of the vortex. However, important differences exist.
For example, with a vertical sponge the vortex remains fairly true to its initial cir-
cular shape but is wrapped by a long narrow filament at lower levels. Without a
vertical sponge the vortex is so deformed at lower levels as to be nearly unrecog-
nizable. We caution the reader that while interesting in itself we have not shown
this to be a general result, that is to say there does exist the possibility that for yet
larger forcing amplitudes the lower level vortex could be destroyed even in the
presence of an absorbing sponge.

• Given a vertical sponge and a forcing amplitude less than the critical value no
breaking exists. This contrasts with the rigid upper-boundary case which shows
significant deformations near the upper boundary. Evidently the upper level defor-
mations are an artifact of the rigid upper-boundary condition.
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Our conclusions so far are based on the assumption of a constant density profile.
Given a more realistic density profile [say, po(z) = p00 exp(—z/H)] the degree to
which our results hold will depend upon the point at which wave amplitudes
become large enough, due to the density effect, to break. If that point is situated
well above the model domain then our Boussinesq results should hold to first
approximation. If, on the other hand, that point lies within the model domain our
conclusions will have to be modified. Take, for example, Fig. 13(a)-(c) which
shows a series of experiments with an exponential density profile and a rigid-lid
located just above the top-most contour (as considered in DS). To judge whether or
not the upper-level breaking is due to the density effect (i.e., wave amplitudes
increasing exponentially with height) or the rigid-lid effect (discussed earlier) we
repeat this set of simulations but with our absorbing sponge replacing DS's rigid-lid
[see Fig. 13(c)-(e)]. Given the close correspondence between the rigid-lid and
absorbing sponge simulations we conclude that for this range of forcing amplitudes
the density effect dominates the upper-level response, with upper-boundary specifi-
cation playing only a minor role (consider also Fig. 14 for the corresponding plan
views). Further in this vein, consider Fig. 15 where, given a much reduced topo-
graphic amplitude, we contrast a low rigid-lid [Fig. 15(a)], high rigid-lid [Fig.
15(b)] and absorbing sponge [Fig. 15(c)] simulation. For this topographic forcing it
appears that the density-effect only becomes significant within the region of the
sponge. The upper-level breaking seen in the low rigid-lid experiment is therefore
interpreted as a local amplification due to boundary reflections (as in our small
amplitude Boussinesq simulations).
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