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Summary 

The analytical solution of a linear barotropic model is 
derived, including details of the quasi-geostrophic initializa- 
tion procedure. The prognostic equations are integrated 
using three different methods of treating the meteorological 
and gravitational modes separately. These are a semi-Eulerian, 
semi-implicit (EI) technique, a semi-Lagrangian, semi-implicit 
(LI) procedure, and a split-explicit (SE) method. The stability 
criteria and phase speeds are derived for each of the three 
techniques. 

The following theoretical conclusions are derived. Of 
course, in actual numerical integrations particularly those 
using more complex models, the results are not so unequivocal. 

The stability of the El procedure is governed by the CFL 
criterion for the meteorological mode. Gravity waves have 
no effect on the timestep but move more slowly than the 
analytical waves. The LI method is unconditionally stable 
with respect to both meteorological and gravitational modes. 
There is thus no timestep restriction. However, the gravity 
waves have the same reduced phase speed as in the EI 
technique. The SE procedure has CFL timestep criteria for 
both the meteorological and gravitational calculations. 
However, its gravity wave phase speeds are relatively accurate. 
Moreover, it is the only one of the three methods that handles 
the nearly-compensating pressure gradient and Coriolis 
forces together. From the point of computational efficiency, 
the LI technique is probably the best. 

1. Introduction 

It is well-known that the hydrostatic primitive 
equations admit as solutions high-speed gravity 
waves as well as slower-moving meteorological 

waves (e.g., Hattiner and Williams, 1980, pp. 40-42). 
If the equations are integrated explicitly in time, 
the fast-moving gravity waves require a short time 
step in order to satisfy the Courant-Friedrichs- 
Lewy (CFL) stability criterion. The time step is 
much less than that needed to keep time truncation 
error acceptably small. This results in an exces- 
sively long computational time to produce a 
prognosis. 

To overcome this problem, several methods 
have been designed to treat the gravity and 
meteorological modes separately. Three of these 
will be investigated in this paper. One is a semi- 
Eulerian, semi-implicit procedure (adapted from 
Kwizak and Robert, 1971), hereafter referred to as 
the EI method. A second is a semi-Lagrangian, 
semi-implicit technique (Robert, 1981), which will 
be designated as LI. A third is a split-explicit 
method (Marchuk, 1974), which will be called 
SE. 

Research is continuing on these procedures. For 
example, Kar et al. (1994) describe an EI technique 
which yields a locally one-dimensional method of 
solving a two-dimensional Helmholtz equation. 
Purser and Leslie (1994) present a LI technique in 
which forward trajectories, rather than the usual 
backward trajectories, are calculated. Rivest et al. 
(1994) describe problems and remedies associated 
with orographic forcing in a LI model. Gall6e 
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and Schayes (1994) use a form of the SE method 
in which advection is calculated using a semi- 
Lagrangian scheme. 

In the rest of this paper, the EI, LI and SE 
methods are applied to a linearized barotropic 
model. This model is described in Section 2. The 
advantages of such a simple model are that it 
yields an analytical solution and permits an easy 
comparison of the three procedures. Details of the 
derivation of the initialization technique of Phillips 
(1960) have been added, which are not in the 
original paper. The numerical procedures of the 
EI, LI and SE procedures applied to the model are 
described in Sections 3, 4 and 5, respectively. 
Stability criteria and phase speeds are derived for 
each technique. The advantages and disadvantages 
of the three methods as applied to the simple 
model are summarized in Section 6. 

Some of the results presented here are probably 
familiar individually. However, a contribution of 
this paper is throught to be the synthesis of various 
findings in such a way as to facilitate understanding 
and comparing them. The derivations of the 
stability criteria and phase speeds of the EI and 
LI methods do not appear to be widely published 
in the literature. 

2. A L i n e a r  B a r o t r o p i c  M o d e l  

The shallow-water equations (e.g., Haltiner and 
Williams, 1980, p. 54) may be written, omitting 
metric terms due to the earth's sphericity, 

8u c~u 8u 84) 
- - + u - - + v - - + - - - f v  O, (2 .1)  
c~t 8x ~y ~x 

8v ~v 8v 84) 
- -  + u - -  + v - -  + - -  + f u  = 0, (2 .2)  
8t 8x 8y 8y 

- -  + u - -  + v - -  + 4) + = 0. (2 .3)  
& 8x 8y \Sx  

Here the x-axis points east, the y-axis points north, 
u and v are the x and y velocity components, 4)is 
the geopotential, and f is the Coriolis parameter. 

Consider a basic state with a uniform zonal 
current U in geostrophic balance. That is, 

U - (2.4) 
f By '  

where ~(y) is the geopotential of the basic state. 
Superimpose a perturbation independent ofy. The 

total velocity components and geopotential may 
be expressed as 

u(x,  t) = u + u'(x, t), 

t) = v'(x, t), 

4)(x, y, t) = ~(y) + ~b'(x, t), 

(2.5) 

(2.6) 

(2.7) 

where the primes denote perturbations. From Eqs. 
(2.4) and (2.7), 

v - -  = - f U r .  (2.8) 
8y 

Substituting Eqs. (2.5)-(2.8) in (2.1)-(2.3), assuming 
the Coriolis parameter has a constant value fo, 
replacing 4) in the last term of Eq. (2.3) by a 
constant 4)o, replacing u6?/Sx) by U(8/Sx), and 
dropping the primes yields 

8u u SU 
- -  + + &/~ - f o v  = O, (2 .9)  
& 8x c~x 

8v u~_V 
- -  + + f o  u = 0, (2 .10)  
& 8x 

&b 86 8u 
- - +  -foU =o. (2.11) 8t 8x 4)o  

where u, v and ~b now denote perturbation quanti- 
ties. 

An analytical solution to Eqs. (2.9)-(2.11) may 
be obtained following the method of Kurihara 
(1965). Some details have been added which are 
not in Kurihara's paper. Assume travelling waves 
of the type 

u =/~ exp [iv(x - et)], (2.12) 

v = Fexp( iv (x  - ct)], (2.13) 

~b = q~ exp [iv(x - et)], (2.14) 

where ~, F and ~ are complex amplitudes, v = 2n /L  
is the wave number, L is the wavelength, and e is 
the phase speed. From Eqs. (2.12)-(2.14), 

8~ 8~ 
- -  = (2.15a) 3t - c g ~ ,  

8o~ 
- - =  ivo~, (2.15b) 
8x 

where ~ = u ,  v or ~b. Applying Eqs. (2.15) to 
(2.9)-(2.11) yields 

i (U - c)vu - f o v  + iv~b = 0, (2.16) 
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f o u + i(U - c)vv = 0, (2.17) 

iVqboU - f o U r  + i( U - c)vq~ = 0. (2.18) 

For  a non-trivial solution, the determinant  of the 
coefficients of Eqs. (2.16)-(2.18) must  vanish. This 
gives the following cubic equat ion for the phase 
speed: 

(U - c) 3 - ~o(U - c) + @ c  = 0. 

Kur ihara  (1965, Eqs. (3.3)) gives 
roots of Eq. (2.19): 

3 k 3  ' 

~ /  a 8 
c z = U + 2  - - c o s - ,  

3 3 

3 \ 3  ' 

where 

1 s = t a n  
)~/2 4a3 1 

27b 3 

a -  f~ @0, 
v 2 

b -  f 2 U  

(2.19) 

the fo l lowing 

(2.20) 

(2.21) 

(2.22) 

Equat ion (2.20) is the phase speed for the meteoro- 
logical or Rossby mode. Equat ions  (2.21) and 
(2.22) are the phase speeds for the two gravitational 
modes. 

Approximate  solutions for the phase speeds 
may be obtained by writing Eq. (2.19) as follows: 

( U _ c ~ 2 -  _ f 2  1 = 0 ,  (2.23) 
', Co / v c (1-U/c) 

where 

Co 2 = qSo. (2.24) 

For  the Rossby mode, one would  expect (U - c) << 
c o so the first term in Eq. (2.23) may be omitted. 
This results in 

U 
c 1 - . (2.25) 1 2 2 2 + f o/(v co) 

For  the gravitat ional  modes,  U/c << 1 so this term 

will be d ropped  from the denomina to r  of the 
second term in Eq. (2.23). This yields 

e2 v + , j C o  2 2 = +fo/V , 

c3 = v - , / 4  + f /v2 

(2.26) 

(2.27) 

Equat ions (2.25)-(2.27) will be used when discus- 
sing initialization. If effects of rotation are neglected 
by setting )Co = 0, Eqs. (2.25)-(2.27) further simplify 
to 

ca = U, (2.28) 

c 2 = U + c o, (2.29) 

c 3 = U - c o. (2.30) 

The complete  analytical solution to Eqs. (2.9)- 
(2.11) will now be presented. Let 

O j = ~ j e x p [ i v ( x - c i t ) ] ,  j = 1 , 2 , 3 ,  (2.31) 

where q~j is the geopotential  ampli tude of the j th  
mode. Equat ions  (2.16)-(2.18) must  hold fox each 
of the three modes. Eliminating v between Eqs. 
(2.16) and (2.17) results in 

( g  - cj)v 2 
u j = f ~  o 2-(U--~J) ev; ~J' j =  1,2,3. (2.32) 

Substi tut ing Eq. (2.32) into (2.17) gives 

ivfo 
Uj = 2 f o  - (U - c y v  2 qS~, j = 1, 2, 3. (2.33) 

Equat ions  (2.31)-(2.33) are Eqs. (3.2) of Kurihara  
(1965). The complete solution is 

3 
u = ~ u j, (2.34a) 

j = l  
3 

v = ~ vj, (2.34b) 
j = l  

3 
= 2 ~b~. (2.34c) 

j = l  

The ampli tudes q~j in Eqs. (2.31)-(2.34) are 
arbitrary. Nevertheless, the two gravitational modes 
may be removed from the initial condit ions by 
following the procedure of Phillips (1960), also 
discussed by Haltiner and Williams (1980, pp. 45-  
47). However, these references omit  many  of the 
details of the derivation, which is non-trivial. 
These details will now be given. Set t = 0 in Eqs. 
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(2.31)-(2.34): 

u(x,O)=exp(ivx) Z ~)s v z ( U - - c )  ] 
j=l fgZ(-U cs)ZvZJ 

= u0 exp (ivx), (2.35) 

v(x, O) = exp(ivx) ~ ()i 
j = t  f2--(-U~cj)2v2 

= vo exp (ivx), (2.36) 
3 

~h(x, O) = exp(ivx) ~ Sj = ~b o exp (ivx), (2.37) 
) = 1  

where 
3 

UO = E UJ '  
j = t  

3 

VO = E t'~] 
j = l  

3 

* o :  E ~j 
j = 1  

are the total amplitudes. Let 

2 +f~/v  z. (2.38) fl = c o 

Assume the phase speeds are given by Eqs. (2.25)- 
(2.27) so that 

2 - 2  - 1  U - c l = U f o v  g , (2.3%) 

U - -  C 2 = - -  fill2, (2.39b) 

U - c 3 = #1/2. (2.39c) 

Substituting Eqs. (2.39a), (2.39b) and (2.39c) in 
(2.35)-(2.37) and dividing by e xp(ivx) yields the 
following three equations for ~b~, ~b z and ~3: 

U f 20#t - ' 
fg_U2f~v-21x-2 ~ 

= UO~ 

f~ -- #v 2 

ivf ivfo 
f zo_  UZf~v_2tz_ 2 Col +f2o_#V 2 

& + & + & = ~o. 

V2pl/2 
v21xii2 ~2-4fg_#v2 4)3 

(2.40) 

- -  ~2 -~ ivf~ 

(2.41) 
(2.42) 

Equations (2.40)-(2.42) may be solved for q~x, ~b2 
and q~3 in terms of u o, vo and qb o. After much 

algebra, the results are 

/1  U2f2v-2g - 2 \  
~1 = | ~ 7  4 --Z_-7---- t J o Y ~  | f 2  v- 2(ifo 2vc20Vo _ dpo) ' 

\ U fov  # - # /  
(2.43) 

c~ z[ iv- l fo( l+V/~- l /a)Vo+C~o] 

(2.44) 

cg 2Civ- ' fo(1-U,-aJ2)Vo+C~o? 
( ~ 3 - -  2~l,~/AO -- CO L 2(Uf2----~v-_2-~-II-~_iA-~ ~ J" 

(2.45) 

Consider the first factor of Eq. (2.43). In the 
numerator, 

U2 f ~v - 2#-2 = ( u u ~ v - 2 # -  , )U#- , 

= (U - cOUp- ~ << t, 

where Eq. (2.39a) has been employed in the second 
equality. Similarly, in the denominator of Eq. 
(2.43), 

cs~f~ , -%-~ = ( u -  c,) ~ <<~. 

Thus Eq. (2.43) may be simplified to 

~)1 =f2ov-2P-i(--i fo~vc~vo + q$o). (2.46) 

Consider now the denominators of the second 
terms in Eqs. (2.44) and (2.45). 

U f ~v- 2#- li2 = (U - cl)l? i2 << p. 

Therefore Eqs. (2.44) and (2.45) may be simplified 
to 

c 2 I iv - i fo ( l+U#- '12)Vo+C~o? ~2-- 0 2 - 2 - ~  Uo + Co 2# 

(2.47) 

c 2 z~iv- i fo(1-U~-l l2)vo+dPo 1 
~3-- ~~ + 2r o Co L 2p 

(2.48) 

It is desirable to specify initial conditions free 
of gravity waves. Suppose initial conditions are 
given by 

82u f2  U 82q9 
u - (2.49) 

8x 2 @o @o 8x2'  

1 84) v _ . (2.5o) 
fo ax 

Equation (2.49) is obtained by substituting Eq. 
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(2.50) (the geostrophic relation) into Eqs. (2.10) 
and (2.11) and eliminating time derivatives from 
the resulting two equations. Since Oo~/c~y = 0, where 

= u or v, u makes no contribution to the vorticity 

0v 
= ~ ,  (2.51) 

d x  

and v makes no contribution to the divergence 

cgu 
6 = - - .  (2.52) 

cgx 

Thus u may be interpreted as the divergent part 
of the wind and v as the rotational part. The 
rotational part is calculated geostrophically by 
Eq. (2.50) while the divergent part is evaluated 
from the quasi-geostrophic Eq. (2.49). 

In Eqs. (2.49) and (2.50), substitute for u, v and 
4 using the right hand sides of the second equalities 
in Eqs. (2.35)-(2.37). This gives, with the use of 
Eqs. (2.15b), (2.24) and (2.38), 

u 0 = U#-  14 o, (2.53) 

v o = i v f o  14o. (2.54) 

Substituting Eqs. (2.53) and (2.54) in Eqs. (2.46)- 
(2.48) results in 

q~t = 40, (2.55) 

(~2 = (~3 = 0. (2.56) 

Thus, initializing by means of Eqs. (2.49) and (2.50) 
eliminates gravity waves from the initial conditions. 
Note that using the geostrophic relation for the 
divergent part of the wind (i.e. u -  0) instead of 
Eq. (2.49) will not yield Eq. (2.56), and hence will 
not completely remove gravity waves. The purpose 
of Phillips' (1960) technique is similar to that of 
linear normal mode initialization. 

3. A Semi-Eulerian Semi-Implicit (El) Method 

A grid-point version of the EI method following 
Kwizak and Robert (1971), will be applied to Eqs. 
(2.9) (2.11). Let F be any function and define the 
following differencing and averaging operations: 

F(s + As) - F(s - As) 
F, = , (3.1) 

2As 

p = F(s + As) + F(s -- As) 

2 
(3.2) 

where s is an independent variable (x or t). In the 

EI technique, one writes Eqs. (2.9)-(2.11) as 

u, + @~ = - Uux + f o r  = a(t), (3.3) 

vt = -- Uvx - - fo  u = b(t), (3.4) 

4, + @oftt~ = - U 4 x  + f o U r  = c(t). (3.5) 

Thus the pressure gradient force in Eq. (3.3) and 
the divergence in Eq. (3.5) are regarded as gravita- 
tional terms and treated implicitly (time-averaged). 
The remaining terms in Eqs. (3.3) (3.5) are consid- 
ered meteorological terms and calculated expli- 
citly. A possible source of problems in the EI 
method is the fact that the nearly compensating 
pressure gradient and Coriolis forces are treated 
separately. The acceleration is usually a small 
imbalance between these two forces. In the LI 
technique (discussed in Section 4), the two forces 
are handled together in one equation but separately 
in a second equation. In the SE procedure (Section 
5), both forces are treated as gravitational terms. 

Rearrange Eqs. (3.3)-(3.5) to give 

u(t  + At) + At4x( t  + At)  = u(t - A t ) -  A t 4 , ~ ( t -  At) 

+ 2Ata(t)  = A(t,  t - At), 

(3.6) 

v(t + At) = v(t - At) + 2Atb( t )  = B(t, t - At), (3.7) 

O(t + At)  + CrPoAtux(t + At) = 4( t  - At) 

- CI)oAtux(t - At) + 2Atc(t)  = C(t, t - At). (3.8) 

The value of v(t + At) can be evaluated directly 
from Eq. (3.7). Eliminate u from Eqs. (3.6) and (3.8) 
by taking the x-difference of Eq. (3.6) and substitut- 
ing in Eq. (3.8): 

O(t + At) - ~o(At)2 Oxx(t + At)  = C - ~oAtA~(3.9)  

Equation (3.9) is a finite difference elliptic equation 
in 4(t  + At). When it is solved for O(t + At), this is 
substituted in Eq. (3.6) to yield u(t + At). 

The stability and phase speeds will now be 
derived. By analogy to the analytical solutions 
(2.12)-(2.14), assume numerical solutions of the 
type 

u(nAt,  m A x )  = fi exp [i(c~nAt + vmAx)], (3.10) 

v(nAt,  mAx)  = ~Texp [i(c~nAt + vmAx)] ,  (3.11) 

4(nAt ,  m A x )  = ~pexp[ i (~nAt  + vmAx)] ,  (3.12) 

where m and n are integers, nAt  and m A x  are 
discrete values of t and x, ~ = 2~# is the angular 
frequency, and z is the period. Substitute Eqs. 
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Table 1. Values Assigned to Various Parameters 

U 2 5 m s  -1 
Ax 50 km 
L lO00km 
q~o 5.46 • 104m2s 2 

fo 10-4s  -~ 

(3.10)-(3.12) in Eqs. (3.3)-(3.5) to give 

- f o r  
\ At Ax / 

sin vAx cos ~ At 
+i  r =0,  (3.13) 

Ax 

i ( s i n e A t  U s i n v A x ) v  
f ~  \ At + Ax ) =0,  (3.14) 

sin v Axcoscc At 
igA o- .u -- f o Uv 

Ax 

i ( s i n e t A t  U sin_v Ax']q 5 
+k ~- + Ax / =o. (3.15) 

Equations (3.13)-(3.15) are the analogues of Eqs. 
(2.16)-(2.18). 

As in the analytical case, for a non-trivial 
solution, the determinant of the coefficients of Eqs. 
(3.13)-(3.15) must vanish. This results in 

Oo(Si" A c~ 
(sin ~ At U sin v Ax ) 

•  Z + z~  

+ f zF Sin oc At U sin v AX ( l _ cos e gt) l = O. 
~ 35 ~ 3x 

(3.16) 

Equation (3.16) is the analogue of Eq. (2.19). The 
magnitudes of the terms in Eq. (3.16) may be 
computed using the values in Table 1. Assuming 
At/z <~ 0.1, the last term of Eq. (3.16) (involving fo  ~) 
is four orders of magnitude smaller than the others 
and may be omitted. Thus rotational effects are 
negligible in Eq. (3.16). The corresponding analyti- 
cal phase speeds are given by Eqs. (2.28)-(2.30). 
The simplified Eq. (3.16) yields three equations: 
s ineAt U sin v Ax 

§ - 0 ,  (3.17) 
At Ax 

sin e At U sin v Ax sin v x cos e At 
+ tb~/2 ~ 0,  

At Ax - o  Ax 

(3.18) 

sin cr At U s i n v A x  _ l / 2 s i n v d x c o s e A x  
+ 9 o = 0 .  

At Ax Ax 

(3.19) 

For computational stability, it is necessary that 
e be real in each of Eqs. (3.17)-(3.19). For the 
meteorological mode, write Eq. (3.17) as 

U At sin v Ax 
sin sAt  - (3.20) 

Ax 

To ensure that e is real, one requires that ] sin e At] 
~< 1. From Eq. (3.20), since [sin v Axt ~< 1, a suffi- 
cient condition for stability is 

A x  
- - .  (3.21) At<<. U 

For the values given in Table 1, (3.21) gives 
At <~ 2000s. Kwizak and Robert (1971) and Robert 
(1979) refer to the necessity of satisfying the CFL 
criterion (3.21). 

Equations (3.18) and (3.19) may be used to give 
the stability criteria for the gravitational models. 
In Eq. (3.18) define 

1 
X = ~-, (3.22) 

At  

sin v Ax 
Y, = ( [ 1 ' / 2 - -  (3.23) ~ 0  Ax 

Y1 
- , (3.24) sinfll x/X 2+Y2 

X 
- . ( 3 . 2 5 )  cos/~, ~/x2 + Y~ 

Subst i tu t ing  Eqs. (3.22) and (3.23) in Eq. (3.18) 
gives 

U sin v Ax 
X sin e At + Y, cos e At - (3.26) 

Ax 

However, from Eqs. (3.24) and (3.25), 

x = ~ / x  2 + y 2  c o s  i l l ,  

Y1 = x/X2 + Y2 sinfll �9 

Therefore Eq. (3.26) may be written 
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U sin v Ax 
sin (e At + ill) = - . (3.27) 

a ,/x 2 + 

Since At and fil are real, to guarantee that e is real, 
it is necessary that (~At - ill) be real. A sufficient 
condition is that the square of the right side of Eq. 
(3.27) not exceed unity. This gives, with the substi- 
tution of Eqs. (3.22) and (3.23), the stability criterion 

-- (At) 2 sin 2 v Ax(Crpo - -  U 2) ~ (Ax) 2. (3.28) 

Since U 2 << ~b o for any realistic values of U and ~o 
(cf. Table 1), (3.28) is satisfied for any value of At. 

As for the other gravitational mode, in Eq. (3.19) 
define 

or)1/2 sin v Ax 
Y2 = ~0 , (3.29) 

Ax 

V2 
sin f12 - , (3.30) 

N/X --~ y2 2 
X 

- . (3.31) cos& ,/x2 + 

Employing an argument analogous to that used 
for Eq. (3.18) yields 

U sin v Ax 
sin(eAt + f12) = Axx/X 2 + yZ' (3.32) 

which is similar to Eq. (3.27) and which also gives 
(3.28). Thus the EI method is theoretically uncon- 
ditionally stable with respect to gravity waves. Its 
stability is governed by the CFL criterion (3.21) 
for the meteorologica, model. 

Using Eq. (3.20), the phase speed of the meteo- 
rological mode in the computational solution is 
given by 

c* -  e_v vAtl s in- l (UAts invAx)  (3.33) 

Employing the values in Table 1 and setting 
UAt/Ax = 1 (see (3.21)) in Eq. (3.33), one obtains 
c* = U = 25 m s- 1, which agrees exactly with the 
analytical phase speed given by Eq. (2.28). The 
more accurate analytical phase speed given by Eq. 
(2.20) is c 1 = 24.885 m s- 1. 

Gravity waves may be removed from the initial 
conditions using the procedure described in the 
last part of Section 2 (Eqs. (2.35)-(2.56)). However, 
if any gravity waves exist in the numerical solution, 
it is instructive to examine their phase speeds. 

From Eqs. (3.27) and (3.32), 

c . : ~ [ s i n _ l (  UsinvAx_ ) + f l , ] ,  (3.34, 
\ A x , / x  2 + 

U sin v Ax ~ ] ,  (3.35) 
c~=vlAt[sin-l(Ax~x/S27-y2]+f12 

where 

fll = sin-1 ( ~ X ~ _  y2 ) '  (3.36) 

( j 2  / (3.37) f12 = sin * + y ~ j "  

Substitute At = Ax/U (see (3.2t)) and Eqs. (3.22), 
(3.23), (3.29), (3.36) and (3.37) into Eqs. (3.34) and 
(3.35) to give 

= L [ s i n _ l  ( UsinvAx ) 
C~ Y N~ -U2 + q)0 sin2 V Ax 

( q~1/2 sin v Ax 
sin- 1 \ ~ / U 2  7 ~ s~n2% Ax) 1, (3.38) 

+ 

\x/-U2 + q)o sin3 v ~ x )  

- sin- \ x / U 2  + ~o sin2 vAx/3" 

Using the values in Table 1, Eqs. (3.38) and (3.39) 
yield c* = 106 m s- 1 and c* = - 90 m s- 1. These 
are considerably smaller than the analytical values 
given by Eqs. (2.29) and (2.30) which are c 2 = 
259 m s- 1 and c3 = - 209 m s- 1. Mesinger and 
Arakawa (1976, p. 58) note the retardation of 
gravity waves. 

4. A Semi-Lagrangian Semi-Implicit (LI) Method 

Following Robert (1981), replace Eqs. (2.9) and 
(2. t0) with the vorticity and divergence equations 

8_~ + US~ + fo6=O, (4.1) 
8t 8x 

06 UO6q_O2~lC~ r= - -  + 0. (4.2) 
8t 8x 8x z ao~ 

Write Eq. (2.11) as 

8(b 
- -  + U -L + ~bo6 - foUr = 0. (4.3) 
8t 8x 
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In the LI method, write Eq. (4.1) as 

((x, t + At) - ((x - 2 UAt,  t - At) 

2At  

+ f o 6 ( x  - UAt,  t) = 0. (4.4) 

The reason for employing the vorticity equation 
is that ff is quasi-conservative. That is, the pattern 
of ( is approximately advected with speed U 
without change in shape, since the last term in Eqs. 
(4.1) and (4.4) (the divergence term) is normally 
small. The values at ( x - 2 U A t ,  t - 2 A t )  and 
( x -  UAt,  t -  At) in Eq. (4.4) are found by inter- 
polation. In Eq. (4.4), one needs to know 6. 
Evaluate Eqs. (4.2) and (4.3) semi-implicitly: 

--t  6t + 0 ~  = -- Ubx + f o (  = a(t), (4.5) 

d2t + q)o 5t = - UOx + f o U r  = b(t). (4.6) 

Note that in Eq. (4.5), the terms due to the pressure 
gradient force (~b~x) and the Coriolis force 0co() are 
handled differently. This was also done in the EI 
procedure (Section 3). However, in Eq. (4.4), the 
pressure gradient force has been eliminated and 
the term due to the Coriolis force (last term) is 
treated as an explicit forcing term. Eq. (4.6) is 
identical to Eq. (3.5). 

Write Eqs. (4.5) and (4.6) as 

cS(t + At) + A t 4 ~ ( t  + At) = 6(t - At) 

+ Atr  - At) + 2Ata(t) = A(t, t - At), (4.7) 
4~(t + At) + r + At) = c~(t - At) 

+ CI)oAt6(t - At) + 2Atb(t)  = B(t, t - At). (4.8) 

Eliminate 6(t + At) from these two equations to 
yield 

q~(t + At) -- @o(At)2dpx~(t + At) = B - @oatA. 

(4.9) 

Note that the left side of Eq. (4.9) is identical to 
that of Eq. (3.9). Solve Eq. (4.9) for dp(t + At) and 
substitute in Eqs. (4.7) or (4.8) to obtain dp(t + At). 
New velocities are found from 

u = Zx, (4.10) 

v = O x  , (4.11) 

where 

)G~ = 6, (4.12) 

~bxx= ( (4.13) 

are solved to give the new velocity potential Z and 

stream function 4. In the simple linear model 
examined here, only Eqs. (4.11) and (4.13) need be 
evaluated every timestep, since v is required in the 
right side of Eq. (4.6). Equations (4.10) and (4.12) 
are not needed until the end of the prognosis. 

To examine the stability of the LI method, it is 
convenient to express ~ and 6 in Eqs. (4.4)-(4.6) in 
terms of u and v. From Eqs. (2.51), (2.52), (3.10) 
and (3.11), 

v sin v Ax 
= v x = i , (4.14) 

Ax  

u sin v Ax 
6 = u x = i (4.15) 

Ax 

Equation (4.4) may then be written 

foe- iVVa 'u  + (ei~at-- e-i~ate-Zivvat)v = 0. (4.16) 
2At  

However, 
e i a A t _  e-iaAt e -  2iv At 

-= e - i vu  a t  [ei(~ + vu) a t  _ e - i(~ + vu) a t ]  

= 2ie-i~Vatsin(e + vU)At. 

Hence, Eq. (4.16) may be simplified to 

i sin(~ + vU)At  
f o U +  v = 0 .  

At 
(4.17) 

Equations (4.5) and (4.6) may be written 

sinv _Ax ( s i n e  At + U sin v Ax ~u -~ i f o  sin v Ax  

Ax  \ At  Ax  / a x  

sin 2 v AX(cos 7 At) (o = O, 
+ (ax)2 

(4.18) 

i~o 
s i n  AX(cos At)u -foUr 

v 

A x  

( sin e At U sin v Ax']  
+ i{ t q5 = 0. (4.19) ) \ At Ax  

Equations (4.17)-(4.19) are the analogues of Eqs. 
(2.16)-(2.18) and (3.13)-(3.15). Equations (4.19) 
and (3.15) are identical. Setting the determinant of 
the coefficients of Eqs. (4.17)-(4.19) to zero yields 

s invAxs in(o~ + v U ) A t ~ ( s i n o ~ A t  U s i n v A x ~  2 

ax at k \  + as / 

_ ~0 sin2 VAXcos2 ~ A t  1 
( A x )  2 
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[- sin v A x  ( sin ~ At  -~ U sin v A x  + f I [ Ax \ /it / 

U sin 2 v / i x  ] 
-[ (Ax) 2 cos e At J = 0. (4.20) 

Equation (4.20) is the analogue of Eqs. (2.19) and 
(3.16). 

Omitting the last term (involving f2) in Eq. 
(4.20) as before, the simplified equation yields the 
following three relationships: 

sin(~ + v U ) A t  = 0, (4.21) 

sin e At  ~- U__sin v A x  t- ci3~/2 sin v A x  cos ~/it  - O, 

/ i t  A x  / i x  

(4.22) 

sin c~ At  t- U sin v A x  q~01/2 sin v A x  cos c~ At  = O. 

At  A x  / ix  

(4.23) 

Since v and U are real, Eq. (4.21) will theoretically 
guarantee that 0~ is real no matter what value is 
assigned to /it. Equations (4.22) and (4.23) are 
identical to Eqs. (3.18) and (3.19) and hence will 
always yield a real ~. Therefore the LI method is 
theoretically unconditionally stable with respect 
to both the meteorological mode and the two 
gravitational modes. 

The phase speed of the meteorological mode is 
given by Eq. (4.21) as 

c * * -  - U, (4.24) 
v 

which is the same as the analytical speed given by 
Eq. (2.28). Equations (4.22) and (4.23) yield the 
phase speeds of the gravitational modes 

c** = c~, (4.25) 

c~* = c~, (4.26) 

where c* and c~, the phase speeds in the EI 
method, are given by Eqs. (3.34) and (3.35). 

0u 305 
- 4-for, (5.2) 

Ot ~x  

0v 3v 
- u - -  ( 5 . 3 )  

& c3x' 

~F 
- f o u ,  (5 .4 )  

c?t 

0q5 3o5 
- v : ' + f o W ,  (5 .5)  

& ~x 

#u 
- - - .  (5.6) 

0t @o c3x 

Equations (5.1), (5.3) and (5.5) are meteorological 
equations and include the advective terms. Recall 
from Eq. (2.8) that the last term of Eq. (5.5) is the 
y-component ofgeopotential advection. Equations 
(5.2), (5.4) and (5.6) are gravitational equations and 
account for the remaining terms. The Coriolis 
forces in Eqs. (5.2) and (5.4) are regarded as 
gravitational terms so as not to separate them 
from the pressure gradient forces. There is no 
y-component of the pressure gradient force in the 
gravitational Eq. (5.4). 

Let At  and 6t be the timesteps for the meteoro- 
logical and gravitational equations, respectively. 
Let ti, 13 and q5 be values at (t + At)  computed from 
finite difference versions of the meteorological 
Eqs. (5.1), (5.3) and (5.5). That is, 

ii = u( t  - At)  - 2AtUu=(t) ,  (5.7) 

= v(t  - At)  - 2AtUv~,(t), (5.8) 

= ~ t  - At)  + 2 A t [ -  U(~x(t) + f o U v t t ) ] .  (5.9) 

Then integrate finite difference versions of the 
gravitational Eqs. (5.2), (5.4) and (5.6) from t to 
(t + At)  in steps of 6t, starting with/i, ~ and q~ at 
time t. Thus 

u(t  + c~t) = u(t  -- (St) + 2 6 t [ -  (~=(t) + f o r ( t ) ] ,  (5.10) 

v(t  + 60  = v(t - 60  - 26t  f oU(t), (5.11) 

O(t + 6t) = qb(t - &)  - 2&q)oUx(t). (5.12) 

5. A Sp l i t -Expl i c i t  (S E)  M e t h o d  

Following Marchuk (1974), split Eqs. (2.9)-(2.11) 
into meteorological and gravitational terms: 

0u Ou 
- w ( 5 . 1 )  

& c3x' 

To determine the stability criteria and phase 
speeds, apply Eqs. (3.10)-(3.12) to Eqs. (5.7)-(5.12). 
Eqs. (5.7)-(5.9) give 

i ( s in ~_ At  sin v /iX ) u  
+ U = 0, (5.13) 

\ A t  A x  ] 
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sin ~ At sin v Ax ~v 
i \  ~-~ + U  zlx ] =0,  (5.14) 

i (  s ineAt uSinvAx4)=O. (5.15) 
- f o U r +  \ -At + Ax 

Setting the determinant of the coefficients of Eqs. 
(5.13)-(5.15) to zero yields Eq. (3.20), the result for 
the EI method. Thus the stability criterion and 
phase speed of the meteorological mode are given 
by (3.21) and (3.33). 

Equations (5.10)-(5.12) yield 

sin ~ 5t i sin v Ax 
i u - f o v  + - - -  qb = 0, (5.16) 

6t Ax 

sin ~ & 
fou + i v = 0, (5.17) 

at 

sin v Ax .s in~& 
i q ~ o - - U + t  - r  (5.18) 

Ax $t 

Setting the determinant of the coefficients of Eqs. 
(5.16)-(5.18) to zero yields, after dividing out the 
common factor sin e &/&, 

sin e 6t'~ 2 sin 2 v Ax 
~t  / } - ~~ - ~ x ~ 5 - + f  2=0 .  (5.19) 

The term f2  will be omitted as before, although 
in this case its retention creates no problem. The 
resulting simplified Eq. (5.21) yields 

sin ~ 6t = T- ~/)01/2 (~t sin v Ax. (5.20) 
Ax 

For c~ to be real, a sufficient condition in Eq. (5.20) 
is 

Ax 
6t <~ cb~/~. (5.21) 

--0 

The phase speeds are given by Eq. (5,20) as 

\/r A ) _ ~ _  1 s i n - l [ -  c***  ~ sinvAx , (5.22) 
y~t y 

= - ( 5 . 2 3 )  

Comparing Eqs. (5.22) and (5.23) with the analyti- 
cal expressions (2.29) and (2.30), it is seen that the 
basic current U is not included in Eqs. (5.22) and 
(5.23). Using the values in Table 1, and the upper 
limit to the timestep in Eq. (5.21), one obtains from 
Eqs. (5.22) and (5.23) the speeds c~**=-o6111/2= 
234 m s- 1 and c** * = - 234 m s- 1. The analytical 

values from Eqs. (2.28) and (2.30) are c 2 = 259 m s- 1 
and c 3 = - 209 m s- 1 

A variation of the SE method is the calculation 
of the advection terms by a Lagrangian technique 
with the remaining terms being computed in an 
explicit, Eulerian manner (Krishnamurti, 1962; 
Gall6e and Schayes, 1994). 

6. C o n c l u d i n g  R e m a r k s  

The following theoretical findings are obtained. It 
should be noted, however, that the results are 
determined analytically using a very simple model. 
In actual numerical integrations using more rea- 
listic models, the results are not so clear-cut. 

The stability of the El method is determined by 
the CFL criterion for the meteorological mode. 
High speed gravity waves do not limit the timestep 
but the implicit part of the EI procedure results 
in slow gravity wave speeds. As Mesinger and 
Arakawa (1976, p. 58) point out, this may affect 
the geostrophic adjustment process. Nevertheless, 
Collins (1980) does not find any significant differ- 
ence in adjustment time and accuracy of the final 
adjusted state between explicit and semi-implicit 
calculations. The LI technique is unconditionally 
stable with respect to both the meteorological and 
gravitational modes so there is no timestep restric- 
tion. However, it has the same reduced gravity 
wave speeds as the El procedure. The SE method 
has CFL timestep limitations for both the meteoro- 
logical and gravity wave calculations. However, 
the gravity waves have more accurate phase 
speeds than in the El and LI techniques. Moreover, 
it is the only procedure of the three that treats the 
nearly compensating pressure gradient and Corio- 
lis forces together. 

If one is not concerned with the slow movement 
of the gravity waves, from the point of view of 
computation efficiency, the LI method is probably 
preferable, since it can use the largest timesteps of 
the three procedures. A glance at the literature 
suggests that much of the current work is on LI 
techniques. 
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