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ABSTRACT

A mechanism for the breakdown of vertically propagating edge waves in a Boussinesq fluid is investigated
within the context of the destruction of the polar stratospheric vortex. Under inviscid, quasi-linear, and slowly
varying conditions in a three-dimensional, quasigeostrophic contour dynamics model it is analytically predicted
that planetary-scale edge wave breaking will occur if the zonal mean flow is decelerated by more than approx-
imately one-half its initial value via a positive group-velocity–mean-flow feedback mechanism. Fully nonlinear
model simulations confirm this ‘‘one-half rule’’ and detail the sequence of events leading to the breaking.

1. Introduction

Fyfe and Held (1990, hereafter FH) investigated the
interaction of equatorward-propagating Rossby waves
and zonal mean flows, where the latter were initially
free of any critical lines. For zonal mean flows con-
taining a critical line it has been amply demonstrated
that wave breaking will occur in the vicinity of the
critical level (Warn and Warn 1976, 1978; Killworth
and McIntyre 1985). The question addressed in FH was
whether wave breaking can occur without a critical line
(as often appears the case in the real atmosphere). In
FH a stationary Rossby wave, sinusoidal in longitude,
was slowly switched on, and the meridional propagation
of the resulting wave front was examined. It was shown
analytically that under inviscid, quasi-linear, and slowly
varying conditions a steady state was obtained if, and
only if, the zonal mean flow was decelerated by less
than two-fifths of its initial value as a result of the pas-
sage of the wave front. Quasi-linear numerical simu-
lations revealed that larger than ‘‘two-fifths’’ deceler-
ations lead to critical-level formation followed by im-
mediate wave breaking.

The physical explanation for this behavior is as fol-
lows. The passing wave front causes a mean-flow de-
celeration that acts to reduce the group velocity, and
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especially so in regions where the winds are the weakest.
For a steady state to emerge, the wave activity must
increase proportionately to the decrease in group ve-
locity so that there will be no prolonged convergence
of wave activity into these regions. However, when the
two-fifths rule is violated this does not happen and the
zonal-mean-flow deceleration and wave activity pileup
continues unabated until, as the numerical simulations
show, a critical level is formed.

Figure 1 illustrates graphically the mathematical basis
of FH’s two-fifths rule for Rossby wave breaking. The
curves represent the relationship between wave activity
density A and zonal mean flow u in the steady state for
different forcing amplitudes h (with the functional de-
pendence following from the fact that the group velocity
varies inversely with A). The straight line represents the
relation between A and u that exists at all times for
flows evolving from initial zonal mean flow u8. Inter-
sections between the straight line and the curves rep-
resent possible steady states for the given h and u8. It
is evident from Fig. 1 that there exists a critical forcing
denoted hc (corresponding to the dashed curve) beyond
which no steady states exist for the given u8. Corre-
sponding to this critical forcing, there is a corresponding
critical wave activity density Ac and zonal mean flow
u c. Fyfe and Held (1990) showed that Ac 5 2u8/5 and
u c 5 3u8/5, which are the basis of the two-fifths rule.

As stated, FH’s investigation dealt with equatorward-
propagating Rossby waves. In this investigation we con-
sider vertically propagating planetary-scale ‘‘edge
waves.’’ In this context, edge wave refers to a class of
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FIG. 1. Graphical derivation of Ac and u c as in Fyfe and Held (1990).
The curves represent the relationship between A and u (based on
quasi-linear slowly varying theory) that must exist in a steady state
for different forcing amplitudes h (where h0 , h1 , h2 , h3). The
straight line represents the relation between A and u that exists at all
times for a flow that evolves from the initial wind u 8. The dashed
curve marks the critical amplitude hc above which no steady states
can evolve from the initial wind u 8.

FIG. 2. Idealized vortex with uniform interior and exterior vorticity
Qi and Qo, respectively: C is the bounding contour, re is the distance
from the North Pole to C, and NP denotes the North Pole.

geophysical waves supported in regions of extreme hor-
izontal gradients of potential vorticity (PV), such as
often associated with the polar stratospheric vortex.
Consider the level view of an idealized polar strato-
spheric vortex shown in Fig. 2. In this example the edge
of the vortex is defined by the curve C, which separates
interior and exterior regions of uniform PV, Qi and Qo,
respectively. The PV gradient across the vortex edge is
infinite and the undulations in C are interpreted as edge
waves that have deformed the vortex from its resting
state (which is, by assumption, concentric about the
pole). The question we pose then is, under what con-
ditions will these edge waves break and, in so doing,
produce irreversible deformations of the vortex edge?

In this study we use the three-dimensional, quasi-
geostrophic Contour Dynamics with Surgery (QG CD/
CS) model developed by Dritschel and Saravanan (1994,
hereafter DS) and used (with modification) by Fyfe and
Wang (1997, hereafter FW) in their study of upper
boundary effects on planetary wave breaking. The mod-
el uses a polar-cap f -plane geometry, meaning that the
Coriolis parameter f is taken to be constant on an in-
finite plane that is centered at the North Pole. The initial
state consists of a cylindrical PV column of radius r8
and PV jump DQ(z) [ Qi(z) 2 Qo(z), which varies with
the vertical coordinate z. A vertically propagating sta-
tionary edge wave front is topographically forced, and
an absorbing sponge is placed below the model’s up-
permost level to ensure no back reflections.

In section 2 we develop a theory for the breakdown
of the vertically propagating edge waves. To obtain a

reasonably simple analytical solution that reveals the ba-
sic group-velocity–mean-flow feedback mechanism in its
purest form we assume an inviscid, Boussinesq, and sin-
gle PV-contour fluid. The extent to which the theory is
modified by the inclusion of damping effects, density
variation, and multiple PV contours will remain an open
question. We note, however, that there does not appear
to be any major impediment to introducing these effects
into the system of equations to follow [say, as was done
by Dunkerton (1981) in an analogous problem for ver-
tically propagating internal waves]. Two additional as-
sumptions that we must make in order to obtain an an-
alytical solution are 1) a background state that is slowly
varying in height (but time dependent) upon which prop-
agates 2) a stationary Rossby wave, sinusoidal in lon-
gitude. Fyfe and Held relaxed both 1) and 2) and found
numerically that in either case the same qualitative result
prevailed: there exists a threshold wind speed beyond
which steady solutions are unattainable as a consequence
of a runaway group-velocity–mean-flow feedback. In sec-
tion 3 we numerically investigate the present system
when 2) is relaxed, and leave the issue of 1) for future
study. In section 4 we summarize and conclude.

2. Theory

The plan for this section is to present the wave equa-
tion for the system and then derive its dispersion rela-
tionship. Following this we use wave activity density
and zonal-mean-flow equations, together with the dis-
persion relation, to derive a rule for edge wave breaking.
We reiterate that in this model QG PV, q, is always
piecewise uniform, that is, q(z) 5 Qi(z) inside the vortex
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edge C and q(z) 5 Qo(z) outside and re is the horizontal
distance from the North Pole to the vortex edge.

a. Wave equation

The linearized equation governing a small-amplitude
Boussinesq disturbance streamfunction c9(l, r, z, t) to
a zonally averaged mean state c(r, z, t) is

]q9 u ]q9 ]q
1 1 y9 5 0, (1)

]t r ]l ]r

where

1 ]c9
y9(l, r, z, t) 5 2 , (2)

r ]l

2 21 ] ]c9 1 ] c9 1 ] c9
q9(l, r, z, t) 5 r 1 1 , (3)

2 2 21 2r ]r ]r r ]l B ]z

]c
u(r, z, t) 5 , and (4)

]r

21 ] ]c 1 ] c
q(r, z, t) 5 r 1 , (5)

21 2r ]r ]r B ]z

where l, r, and z are the zonal, meridional (or radial),
and vertical directions, respectively. The zonal average
is written as ( ) 5 1/(2p) ( ) dl and B 5 g2/2p#0

(cpT88 ) (where g is gravity acceleration; cp is specific2f 8
heat capacity at constant pressure; T88 a constant ref-
erence temperature; and f 8 5 2V is the constant Coriolis
parameter, with V being the angular rotation rate of
earth). The system is nondimensionalized as in FW with
timescale S 5 4p/ f 8, vertical length scale H 5 RT88/g,
and horizontal length scale L 5 N8H/ f 8 (R being the
ideal gas constant and N8 the Brunt–Väisälä frequency).

In order to make analytical progress with Eq. (1) we
require that ]q /]r be time invariant. In FH this was true
under their assumption that the mean state was slowly
varying in the meridional direction. In this study the
assumed piecewise-uniform distribution of PV does not
allow for slow variations in the meridional direction, so
we assume a priori that

]q ]q
5 5 2DQ(z)d(r 2 r ), (6)) 8]r ]r t50

where DQ(z) 5 Qi(z) 2 Qo(z) is the PV jump across
the vortex edge and d is the Dirac delta function. The
validity of the assumption that ] q /]r is time invariant
will be judged later when we compare our theoretical
predictions (given this assumption) with our numerical
simulations (without this assumption).

b. Dispersion relation

To solve Eq. (1) we assume a wave solution,
i(sl2st)c9(l, r, z, t) 5 c̃(r, z)e and
i(sl2st)q9(l, r, z, t) 5 q̃(r, z)e , (7)

where s is the zonal wavenumber and s the frequency
(both constant and real). Substituting the above into Eq.
(1) produces q̃ 5 sq r /(us 2 sr), which upon furtherc̃
substitution into Eq. (3) yields

2 21 ] ]c̃ 1 ] c̃ sq srr 1 5 1 c̃
2 21 2 1 2r ]r ]r B ]z us 2 sr r

[ V(r, z)c̃. (8)

Note that this equation is time independent except para-
metrically through the dependence of V on u(r, z, t). We
now invoke WKB theory under the assumption that V
is a slowly varying function of z, that is, V 5 V(r, Z),
where Z 5 nz and n is a small dimensionless parameter.
Thus, Z is a ‘‘stretched’’ variable compared to z. We
now seek local wave solutions,

5 Q(r, Z)L(z, Z),c̃ (9)

where Q is real and L is complex, and which after
substitution into Eq. (8) yields

21 1 ] ]Q 1 1 ] L
r 2 V(r, Z )Q 5 2 . (10)

21 2[ ] [ ]Q r ]r ]r L B ]z

Since the left-hand side is only a function of r and Z
and the right-hand side only a function of z and Z, it
must be the case that both sides are equal to a function
of the stretched variable Z alone, say, C(Z). We thus
obtain the following equations:

1 ] ]Q
r 2 V(r, Z )Q 2 C(Z )Q 5 0, (11)1 2r ]r ]r

2] L
1 BC(Z )L 5 0. (12)

2]z

As shown in appendix A, matching solutions at r ±
r8 and r 5 r8 leads to the following constraint on the
frequency of the waves:

u
8s 5 s 2 DQK (ÏCr )I (ÏCr ) , (13)s s[ 8 8 ]r
8

where u8 5 u(r8, Z, t), and Is and Ks are modified Bessel
functions of the first and second kind, respectively. Now
since by assumption the coefficient C(Z) in Eq. (12) is
slowly varying, we can use standard WKB theory (Nay-
feh 1981)to obtain

L
8L(z, Z ) 5 exp i m(Z ) dz , (14)E[ ]Ïm(Z )

where L8 is a constant (determined from the lower
boundary condition) and m(Z) is the vertical wave-
number satisfying m 5 BC. The dispersion relation-Ï
ship for the system then follows from Eq. (13), that is,

u m m
8s 5 s 2 DQK r I r . (15)s s1 2 1 2[ 8 8 ]r ÏB ÏB8
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Real solutions to this equation exist only when 0 , u8/
(r8DQ) 2 s/(sDQ) , (2s)21. Finally, the vertical group
velocity, Cg [ ]s/]m, is given by

sDQr
8C 5g

2ÏB

m m m
3 I r K r 1 K rs s21 s115 1 2 1 2 1 2[ ]8 8 8ÏB ÏB ÏB

m m m
2 K r I r 1 I r .s s21 s111 2 1 2 1 2 6[ ]8 8 8ÏB ÏB ÏB

(16)

For large x 5 mr8/ B (i.e., small vertical wave-Ï
length, which is our WKB limit) we have, using as-
ymptotic formulas for the modified Bessel functions,
that

21u DQ m
8s ø s 2 r and (17)1 2[ 8 ]r p ÏB8

22 2sDQr m sr p u s
8 8 8C ø r ø 2 . (18)g 1 2 1 28 r spÏB ÏB DQÏB 8

As can be seen, the vertical group velocity (in this limit)
is proportional to the square of the Doppler-shifted zonal
mean flow at r8. This contrasts to the meridionally prop-
agating case treated in FH where the horizontal group
velocity is more weakly dependent on the zonal mean
flow (i.e., is proportional to the zonal mean flow to the
power of 1.5).

c. The one-half rule for edge wave breaking

We now derive a rule for edge wave breaking fol-
lowing the approach set out in FH. Here we work with
two equations, one connecting wave activity density and
zonal mean flow in the steady state, and another con-
necting wave activity density and zonal-mean-flow
change for all time. Equating ]A/]u evaluated from both
these equations establishes the critical steady-state zonal
mean flow.

As shown in appendix B, the wave activity density
2 2A(z, t) 5 2pr r DQh9 | (19)r

88 8

(where is the mean square displacement from r 52h9 |r
8

r8) is governed by

]A ]
1 (C A) 5 0. (20)g]t ]z

Under steady conditions, that is, ]A/]t 5 0, it follows
that A 5 , where b is a constant. Given that Cg 521bC g

Cg(mr8/ B) [Eq. (16)] and u8 5 u8(mr8/ B) [Eq. (15)Ï Ï
with s 5 0] we obtain via the chain rule our first key
equation:

]A 2A
5 , (21)

]u m8 r DQD r1 28 8ÏB

where D is a complicated combination of Bessel func-
tions (given in appendix C).

Also derived in appendix B are the following rela-
tionships between A at time t and the u change between
time t 5 0 and t [taking A(z, 0) 5 0]:

`

2 2 2A(z, t) 5 24pr r Du dr ø 4pr r E (Du ) , (22)E8 8 8 8 8
0

where the right-hand side follows from the assumption
that the vortex remains circular while displaced off the
pole (E is an empirically derived function of DQ whose
exact functional form is irrelevant to what follows). Tak-
ing the derivative of the right-hand side of Eq. (22) with
respect to u8 yields our second key equation:

]A 2A
5 . (23)

]u Du
8 8

Equating Eq. (21) and Eq. (23) produces the equation
for the critical steady-state values and mc,cu8

c cu m u 8
8 82 D r 5 , (24)1 28r DQ r DQÏB8 8

while at the same time Eq. (15) with s 5 0 yields

c c cu m m
8 2 K r I r 5 0. (25)s s1 2 1 28 8r DQ ÏB ÏB8

With Eqs. (24) and (25) we have two equations in
the two unknowns /(r8DQ) and mcr8/ B. We notecu Ï8
that for large x 5 mr8/ B it follows from Eq. (18)Ï
(with s 5 0) that Cg ø (sp/DQ B r8) . Therefore,2uÏ 8
given that A 5 , we have that ]A/]u8 ø 2 2A/u8,21bC g

which together with Eq. (23) yields
cu 1
8 ø . (26)

u 8 2
8

In other words, in this asymptotic limit, a steady state
is possible if, and only if, the zonal mean flow at r8 is
decelerated by less than one-half of its initial value. This
contrasts with the smaller critical value of two-fifths
derived by FH for the case of meridionally propagating
Rossby waves.

In Fig. 3 we plot the exact (solid curve) and asymp-
totic (dashed line) critical ratio for a range ofcu /u 88 8

(r8DQ) (for s 5 1). Take note that no propagatingu 88
wave solutions exist for u8/(r8DQ) $ 0.5 (given s 5
0). As can be seen the exact critical ratio varies weakly
with /(r8DQ) and approximately converges to one-halfu 88
as /(r8DQ) → 0. This differs from FH in the senseu 88
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FIG. 3. Relation between the initial state as expressed by (r
8
DQ)u8

8and the critical ratio / (for s 5 1). The dashed horizontal line iscu u8
8 8the approximate ratio for small /(r

8
DQ). No propagating wave so-u8

8lutions exist beyond /(r
8
DQ) 5 0.5 (shaded area). The solid dotu8

8identifies the initial setup and critical ratio in the numerical experi-
ments discussed in section 3.

FIG. 4. The initial zonal mean wind distribution. The vertical co-
ordinate is given by Z 5 nz, with z in units of scale height and n 5
0.1. The zero wind line is indicated by the thick contour.

that their critical ratio is independent of the initial zonal
mean flow.

3. Numerical verification

In the previous section we formulated a theory for
the interaction between a vertically propagating edge
wave and a vertically sheared zonal mean flow. To allow
for a reasonably simple analytical solution we assumed
an inviscid, Boussinesq, and single PV-contour fluid.
From the point of view of obtaining analytical solutions,
the introduction of damping (say, Rayleigh friction and
Newtonian cooling), density variation with height, or
multiple PV contours would not appear to pose a major
obstacle to extending the theory. On the other hand, our
other key assumptions of 1) slow variation and 2) quasi-
linearity cannot be relaxed and at the same time ana-
lytical solutions obtained. Both of these assumptions
were numerically tested in FH and it was found that
relaxing these assumptions led to the same qualitative
results. Here we will test 2) and leave the question of
1) open.

a. Physical setup

To begin we set the time, vertical length, and hori-
zontal length scales to S 5 1 day, H ø 6.14 km, and
L ø 902 km, respectively (in turn yielding B ø 1).
Further, we consider a vortex initially centered on the
pole with radius r8 5 3 and PV jump DQ chosen so as

produce an initial zonal mean wind with the hourglass
distribution shown in Fig. 4. Recall that the vertical
coordinate is given by Z 5 nz with z in units of scale
height and n 5 0.1. The position of the minimum wind
at each r is indicated by the horizontal dashed line at
height Z*, while the position of the maximum wind at
each Z is indicated by the vertical dashed line at radius
r8. The bold contour defines the zero wind line, which
since it is so far away from the vortex edge is unim-
portant (at least initially, as we shall see). While these
zonal mean winds are meant to resemble the winter
stratospheric winds, there are two notable differences:
1) the model jets line up vertically (predisposing break-
ing at the center point) and 2) the vertical variation is
much weaker than observed owing to our use of the
WKB assumption. With regard to 2) we note that while
strict validity of the WKB assumption in this particular
application can be questioned, it is generally accepted
that it leads to ‘‘valuable, and often quantitative’’ results
(Andrews et al. 1987, p. 211), and indeed it has been
applied time and time again in middle-atmosphere plan-
etary wave propagation studies (e.g., Karoly and Hos-
kins 1982).

In the numerical experiments to be discussed we have
used 120 vertical levels yielding about 10 levels per
vertical wavelength and a domain that accommodates
about 12 vertical wavelengths in total (with a sponge
thickness of about 3 vertical wavelengths). The results
that follow are insensitive to increased vertical levels
and/or domain height. To generate an upward-propa-
gating s 5 1 wave front we force the system with the
bottom topography shown in Fig. 5 (slowly switched
on in time to limit the excitation of waves with nonzero
phase speed).
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FIG. 5. Plan view of the initial polar vortex (bold circle) on an f -
cap plane. The topography is shown by shaded contours. The North
Pole is the center of the plot.

FIG. 6. The ratio u
8
/ evaluated at Z* for h

8
5 0.12, 0.15, 0.158,u8

80.16, and 0.17. The dashed line is the critical ratio as predicted the-
oretically.

b. Nonlinear numerical simulations

A series of numerical experiments over a range of
topographic amplitudes have been carried out and are
summarized in Fig. 6. In this figure the ratio u8/ atu88
Z* is plotted as a function of time for several topo-
graphic amplitudes h8 (as labeled). Inspecting these
curves we conclude that steady states are obtained only
if h8 # 0.15, or equivalently, only if u8/ $ 0.47. Foru88
h8 # 0.15 this ratio remains unchanged when we con-
tinue the integrations up to t 5 300 (not shown). The
horizontal dashed line shows the theoretically predicted
critical ratio obtained in the last section. One can see
that the theoretical prediction is quite accurate in this
case. For h8 . 0.15 the zonal mean wind decelerates
beyond the theoretically predicted critical ratio and con-
tinues to slowly decelerate.

As suggested in Fig. 6, and as characterized further
in the following discussion, there appear to be three
phases in the evolution of the system when h8 . 0.15:
(i) an initial phase of deceleration as the wave front
passes the shear layer (as in the steady cases), (ii) an
intermediate phase of small deceleration presumably in-
volving enhanced zonal-mean-flow–group-velocity
feedback, and (iii) a final rapid phase of wave breaking
involving the migration of a stagnation point (i.e., a
hyperbolic point of no flow) across the vortex edge. To
characterize the system further, we now detail one steady
and one unsteady case.

c. Steady case

Consider the h8 5 0.12 case shown in Fig. 6. For
this case we plot in Fig. 7 contours of particle displace-

ment from r8, that is, . One sees upward wave prop-h9|r
8

agation with the waves increasing in amplitude and de-
creasing in vertical wavelength in the shear layer (cen-
tered at Z 5 10). By t 5 100 the waves have propagated
into the sponge layer (above Z 5 20) and the system
has reached its steady state. Regarding the very short
vertical wavelengths seen in Fig. 7, we reiterate that
these experiments test the quasi-linearity assumption
alone. Experiments to test the WKB assumption await
future study, but we are optimistic that, as in FH, the
same qualitative results will hold given more realistic
vertical wavelengths.

Another perspective on the wave evolution is afforded
by Fig. 8, which shows the wave activity density as a
function of height and time. Note that the wave activity
density plotted here is defined by Eq. (B1) (appendix
B) and is normalized by . As expected from the group2h8
velocity expression the wave front slows as it approach-
es the shear layer (as indicated by the tilting of the
isolines around Z 5 10). Plots of the zonal mean flow
(not shown) reveal that as the wave front propagates
upward it leaves a trail of decelerated wind behind with
the largest deceleration occurring at the initial vortex
edge and in the middle of the shear layer (where the
vortex displacement is greatest).

d. Unsteady case

Now consider the h8 5 0.16 case also shown in Fig.
6. For this stronger forcing the zonal mean wind at Z*
decelerates beyond the critical value and, as such, the
system cannot achieve a steady state. A perspective view
of the vortex at t 5 166 is shown in Fig. 9. Within the
shear layer the vortex has begun to filament (i.e., break
in terms of irreversibility) but not to such an extent that
continued upward propagation is suppressed in any sig-
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FIG. 7. Particle displacement contours for h
8

5 0.12 at (a) t 5 40, (b) t 5 60, (c) t 5 80, and (d) t 5 100. The shaded and unshaded
contours represent positive and negative values, respectively. The contour interval is 0.5.

nificant way. Dritschel and Saravanan (1994) and FW
both show that continued local breaking of this sort will
eventually inhibit vertical propagation given sufficient
PV homogenization.

Figure 10 shows the sequence of events leading to
this distortion (at Z*). Following local overturning of
the PV contour (Fig. 10a) a thin filament stretches out-
side and around the vortex (Fig. 10b) and then separates
(Fig. 10c). The filament then orbits the vortex until it
is eventually surgically removed (Fig. 10d). Similar cy-
cles of overturning, thinning, separation, and expulsion
follow at intervals of approximately 14 days. A similar
process was observed by Polvani and Plumb (1992) for
a two-dimensional perturbed vortex.

It has been observed that the initial overturning in-
volves the migration of a stagnation point across the
contour. This is shown in Figs. 11a,b, where the solid
dot indicates the stagnation point and velocity vectors
are indicated with arrows. Following the initial passage
of the wave front and before t 5 150 (not shown) the
PV contour slowly shifts toward the lower-left quadrant
of the domain without significant departure from its ini-
tial circular shape (with the stagnation point being lo-
cated well outside the contour). After t ø 150, a region
of high curvature builds on the contour (Fig. 11a) and
when it becomes sufficiently high the contour overturns.
At precisely this time the stagnation moves inside the
contour (Fig. 11b). The strain field around the stagnation
point is shown in Figs. 11c,d. As can be seen, once the

stagnation point crosses the contour, part of the contour
is drawn toward an area of large negative strain and is
subsequently stretched out. Polvani et al. (1989) also
found that the onset of filamentation is associated with
a stagnation point migrating inside a vortex (in their
simplier two-dimensional system).

4. Summary and discussion

In this paper we have investigated the interaction be-
tween a vertically propagating planetary-scale edge
wave front and a vertically sheared zonal mean flow
(initially free of any critical levels). The inviscid, Bous-
sinesq, single PV-contour, quasi-linear, and slowly vary-
ing theory that we have developed shows that if the
zonal mean wind decelerates by less than roughly one-
half its initial value, a steady state will ensue. On the
other hand, if the deceleration exceeds one-half its initial
value, no steady state is obtained. Numerical simulations
with a fully nonlinear CD/CS model show that despite
the simplifying quasi-linear assumption the prediction
of a one-half threshold is a good one (over the range
of parameters considered). The numerical model also
shows that when the threshold is exceeded wave break-
ing eventually occurs in the shear region through a pro-
cess involving the migration of a stagnation point across
the vortex edge.

We repeat that to obtain a reasonably simple analyt-
ical solution we have assumed an inviscid, Boussinesq,
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FIG. 8. Wave activity density A (normalized by ) for h
8

5 0.12.2h
8

FIG. 9. Perspective view of the vortex at t 5 166 for h
8

50.16.

and single PV-contour fluid. We see no major obstacle,
though, to extending the theory by introducing damping
(say, Rayleigh friction and Newtonian cooling), density
variation with height, and multiple PV contours. On the
other hand, the slowly varying assumption cannot be
relaxed and at the same time analytical solutions ob-
tained. We remain optimistic though that, as in FH, our
results will remain qualitatively correct when strict va-
lidity of the WKB assumption is not ensured.
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APPENDIX A

Solution to Eq. (11)

a. Case: r ± r8
Equation (11) is singular at r8 because of the d-func-

tion behavior of q r [recall the definition of V in Eq. (8)].
Away from r8 where q r is zero Eq. (11) is a modified
Bessel equation whose general solution is

Q(r, Z) 5 C1Is( Cr) 1 C2Ks( Cr),Ï Ï (A1)

where C1 and C2 are, at this point, unknown functions
of Z (Is and Ks are modified Bessel functions of the first
and second kind, respectively). Note that Is( Cr) → `Ï
as r → ` and Ks( Cr) → ` as r → 0. Demanding thatÏ
Q be bounded as r → ` and r → 0 produces two solution
branches for Q, that is, one where C1 5 0 for r . r8
and another where C2 5 0 for r , r8. Matching the two
branches of Q as r → r8 yields C1 5 BsKs ( Cr8) andÏ
C2 5 BsIs( Cr8). Thus we haveÏ

B K (ÏCr )I (ÏCr) r , r ,s s s8 8Q(r, Z ) 5 (A2)5B I (ÏCr )K (ÏCr) r . r ,s s s8 8

where Bs is obtained from the following normalization
constraint rQ2 dr 5 1:`#0

8
2B 5 , (A3)s

2 2 2 2 2r [I (ÏCr )X 2 K (ÏCr )Y ]s s8 8 8

where

X 5 K (ÏCr ) 1 K (ÏCr ) ands21 s118 8

Y 5 I (ÏCr ) 1 I (ÏCr ).s21 s118 8

b. Case: r 5 r8
We now return to the general equation (11), which is

valid for all r, including r8. As noted, Eq. (11) is singular
at r8 because of the d-function behavior of q r. To find
the so-called jump condition that ensures that Q in Eq.
(A2) solves Eq. (11) at r8 we apply the operator

r 1e
8

lim r( ) drE
e→0 r 2e

8
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FIG. 10. The PV contour at Z* for h
8

5 0.16 at (a) t 5 160, (b) t 5 166, (c) t 5 168, and (d)
t 5 174.

to Eq. (11) (Yih 1980). Here e is a small real number.
This yields (after some manipulation)

r 1e
8]Q sr DQ

8lim r 5 2 Q , (A4)[ ] 8]r u s 2 sre→0 r 2e
8 8 8

where u8 5 u(r8, Z, t) and Q8 5 Q(r8, Z). Using Q from
Eq. (A2) in the above yields Eq. (11).

APPENDIX B

Wave Activity Density

As shown in DS the wave activity density for this
one PV-contour system is

1
2 2 2A(z, t) 5 r DQ (r 2 r ) dl, (B1)R8 84 C

assuming that the contour is not displaced over the pole
(as in this study). Defining h9 [ r 2 r8 then to first
order A is given by Eq. (19).

a. Derivation of Eq. (20)

Multiplying the particle displacement equation ]h9/]t
1 (u /r)]h9/]l 5 y9 (Andrews et al. 1987) by 4pr8

h9DQ and zonally averaging along r8 yields2r8
]A

22 4pr r DQy9h9| 5 0. (B2)r
88 8]t

Similarly, using the Eliassen–Palm flux equation = · S
5 2r8r y9q9 , where S 5 [S (l ) , S (r) , S (z)] 5 [0, 2r8ru9y9 ,
2 (r8r/B) y9]c9/]z] (Andrews et al. 1987), we get

]S
21 4pr r DQy9h9| 5 0, (B3)r

88 8]z

where S [ 4p rS (z) dr. To obtain this equation we`#0

used u9y9 5 0 (for a single wave as here) and r2y9q9`#0

dr 5 [following from known properties of2r DQy9h9 |r
88

the d function as shown in Wang (1998)]. Adding Eqs.
(B2) and (B3) gives

]A ]S
1 5 0. (B4)

]t ]z
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FIG. 11. The PV contour, velocity, and stagnation point (solid dot) at Z* for h
8

5 0.16 at (a),
(c) t 5 156 and (b), (d) t 5 158. (a), (b) Arrows represent the velocity field; (c), (d) shaded
contours are the strain field.

We now relate A and S. Using h9 5 and y9i(sl2st)h̃e
5 2isc9/r in the particle displacement equation gives
h92 5 /(sr8 2 u8s)2. Also c92 5 0.5Q2|L| 22 20.5s c9 |r

8

5 0.5 ( Cr8) ( Cr8)|L| 2 and sr8 2 u8s 52 2 2B K IÏ Ïs s s

2sr8DQKs( Cr8)Is( Cr8) soÏ Ï
2 2pr B |L|s8A 5 .

DQ

As for S, we note that y9 5 2isc9/r, ]c9/]z 5 imc9 and
c92 5 0.5Q2|L| 2 yield

2pr sm
28S 5 |L| ,

B

where the rQ2 dr 5 1 normalization has been used.`#0

With these expressions for A and S and replacing by2Bs

Eq. (A3), it follows that
2r DQsm
8S 5

4B

2m m m
23 I r K r 1 K rs s21 s115 1 2 1 2 1 2[ ]8 8 8ÏB ÏB ÏB

2m m m
22 K r I r 1 I r A.s s21 s111 2 1 2 1 2 6[ ]8 8 8ÏB ÏB ÏB

Manipulation of the Bessel functions and group velocity
expression in Eq. (16) yields S 5 CgA, which together
with Eq. (B4) produces Eq. (20).

b. Derivation of Eq. (22)

Integrating ]u /]t 5 2y9q9 [Andrews et al. (1987),
with the residual mean term neglected) with y9q9 dr`#0

5 [following from known properties of theDQy9h9 |r
8

d function as shown in Wang (1998)] yields

`]
u dr 5 2DQy9h9| . (B5)E r

8]t 0

This equation, together with Eq. (B2) and after time
integration with A(z, 0) 5 0, produces the left-hand side
of Eq. (22). It now remains to relate the radially inte-
grated mean zonal flow change and the mean zonal flow
change at r8. Let us assume that the passing wave front
shifts the vortex off the pole with the vortex remaining
circular with centroid located distance e from the North
Pole. Numerical experimentation (not shown) reveals
this to be acceptable given reasonably small (albeit finite
amplitude) displacements of the vortex. As shown in
Wang (1998) this idealization allows us to write
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0 for r # r 2 e,
8

2(pr 2 a)DQ
2 for r 2 e , r # r ,

8 82pr
Du 5 (B6) 2(pr 2 a)DQ

82 for r , r # r 1 e,
8 82pr0 for r . r 2 e,

8

where the area common to the initial and shifted vortices
is a 5 1 r2(b 2 b9) 2 er sinb with cosb 5 (r22pr8
1 e2 2 )/2re and cosb9 5 (r2 2 e2 2 )/2 r8e.2 2r r8 8
Inspecting this expression shows that shifting a circular
vortex off the pole results in maximum deceleration at
r 5 r8 that increases with increasing e. Further, it is
shown in Wang (1998) that to very good approximation

`

2Du dr ø 2E (Du ) , (B7)E 8
0

where E is functionally related to DQ.

APPENDIX C

Bessel Functions: D(x)

D (x) 5 {[I (x) 1 I (x)]K (x)s21 s11 s

22 I (x)[K (x) 1 K (x)]}s s21 s11

4 {[I (x) 1 I (x)][K (x) 1 K (x)]s21 s11 s21 s11

2 2I (x)K (x) 2 0.5I (x)[K (x) 1 K (x)]s s s s22 s12

2 0.5K (x)[I (x) 1 I (x)]}.s s22 s12
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