In this exercise, we will both examine the processes of network analysis as well as the command-line interface of ArcGIS. For more information about network analysis, begin your exploration at Start ➔ All Programs ➔ ArcGIS ➔ ArcINFO Workstation ➔ ArcDoc ➔ Working with linear features ➔ Network Analysis ➔ Introduction to NETWORK

PATH

How long would it take to knock off all of the local banks in Salisbury? In the first test, we have picked, using our extensive bank-robbing experience, the order in which we’re going to “visit” each bank. We’re assuming that we’re going to be approaching Salisbury on US 50 from the west.

Step 1: (Create) Examine data

STREETS – Network coverage of Metro Salisbury

Key Data Items in AAT:
- **SP_LIMIT** – speed limit
 - 40 mph for thoroughfares
 - 35 mph for in-town major streets
 - 30 mph for in-town minor streets
 - 25 mph for neighborhood streets
- **FR_TO_IMP** – from-to impedance
 - Number of seconds necessary to traverse the link
 - Based on length and speed limit
- **TO_FR_IMP** – to-from impedance
 - These are the same for all streets (not reality)

BANKS2ROB – Destinations in Salisbury

Key Data Items in PAT:
- **STREETS-ID** – Matching Node-ID in STREETS
 - Picked nodes from STREETS network closest to bank locations
- **ORDER_1** – Visiting order
 - Essentially random order
 - Might be alphabetical
 - Starting point is order_1 = 1
- **IMP_1** – Impedance at stops
Assumes we can knock off a bank in 3 minutes (180 seconds)

Step 2: Set up network

Arc: ArcPlot
Arcplot: netcover streets path1
Arcplot: stops banks2rob.pat order_1 # imp_1 # # cum_imp
Arcplot: impedance fr_to_imp to_fr_imp

Step 3: Run analysis

Arcplot: path stops

Step 4: Examine results

In ArcMap, display the route by single-clicking on STREETS and choosing the path. Display the path with arrows.
Add the banks2rob coverage.
Open the theme table, find cum_imp and determine the time it will take to hit all the banks using our pre-defined order (in hours and minutes…data is in seconds).
To find the directions, Arcplot: directions # name meters

Step 5: Change and explore

Copy banks2rob to banks_orig
Using the Editor, remove a couple of banks that are obviously out of the way. (Make a note of which ones you are removing.
Run again with a different pathname and see what happens.

Use path2 in place of path 1
Use b2rminus2_b.pat in place of banks2rob.pat

TOUR

What if we let the GIS pick the best route for our crime spree?

Step 1: Set up network

Arc: ArcPlot
Arcplot: netcover streets tour1
Arcplot: stops banks2rob.pat order_1 # imp_1 # outord_1 cum_imp
Arcplot: impedance fr_to_imp to_fr_imp

Step 2: Run analysis

Arcplot: tour stops
Step 3: Examine results

In ArcMap, display the route by single-clicking on STREETS and choosing the path.
Display the path with arrows
Add the banks2rob coverage
Open the theme table, find cum_imp and determine the time it will take to hit all the banks using our pre-defined order (in hours and minutes…data is in seconds)
To find the directions, Arcplot: directions # name meters

Step 4: Change and explore:

In ArcCatalog, copy STREETS STREETS_ORIG
Using the Editor in ArcMap, remove the Main St Bridge, the US 50 Bridge, and the Isabella St Bridge from STREETS
Run the analysis again and see what happens

Use streets_b in place of streets
Use tour2 in place of tour1
Use banks2rob_b.pat in place of banks2rob.pat

ALLOCATE

We questioned the wisdom of Sam Walton (God Rest His Soul), putting two Wal-Mart stores so close together in Salisbury. Let’s take a look at the potential service areas of these stores and see if there is a logical reason to do so.

Step 1: Examine data

SHOPPING – Network coverage of Metro Salisbury with demand per link

Key Data Items in AAT:
 SP_LIMIT – speed limit
 40 mph for thoroughfares
 35 mph for in-town major streets
 30 mph for in-town minor streets
 25 mph for neighborhood streets
 FR_TO_IMP – from-to impedance
 Number of seconds necessary to traverse the link
 Based on length and speed limit
 TO_FR_IMP – to-from impedance
 These are the same for all streets (not reality)
 DEMAND_1 – demand for shopping per link
 Represented as number of people per link
 Estimated as one “person” every 25 meters
 “Calc demand_1 = length / 25”

SHOPCENT – Shopping centers in Salisbury (Wal-Mart locations)
Key Data Items in PAT:

- **SHOPPING-ID** – Matching Node-ID in SHOPPING
 Picked nodes from SHOPPING network closest to center locations
- **ROUTE-ID** – Number that distinguishes one allocation area from another
- **MAX_TIME** – Maximum amount of travel time to a store
 Number of customers is not our main constraint but amount of travel time. This item sets the maximum about of time that customers will take to travel to that store. Set at 100 seconds (completely contrived)
 - MAX_TIME2 – 200
 - MAX_TIME3 – 400
 - MAX_TIME4 – 500
- **CUST** – Maximum amount of customers
 Bogus variable for this analysis, set to be very large number

Step 2: Set up network

Arcplot: netcover shopping areas1
Arcplot: impedance fr_to_imp to_fr_imp
Arcplot: demand demand_1
Arcplot: centers shopcent.pat route-id max_time cust total_time shoppers

Step 3: Run analysis

Arcplot: allocate centers out

Step 4: Examine results

In ArcMap, display the allocated links by single-clicking on SHOPPING and choosing areas1.
Display the using Unique Value on Areas1-id
Add the shopcent coverage
Open the theme table. How many shoppers are within 100 seconds of each store? Why so different?

Step 5: Change and explore:

Run the analysis 4 times using different MAX_TIMEs.
Be sure to name them differently in the netcover command.
Display all at once.
Is this what you expected?

In ArcCatalog, copy SHOPPING SHOPPING_OR
Using the ArcMap Editor, remove the Main St Bridge, the US 50 Bridge, and the Isabella St Bridge
Run again using MAX_TIME 4 and see what happens.
Use shopping_b in place of shopping
Use areas2 in place of areas1
Use shopcent_b.pat in place of shopcent.pat