Lecture 2: Object modeling and geodatabases

Georelational data model
- Spatial data is combined with attribute data
 - Spatial data indexed in binary files
 - Attribute data stored in separate tables and linked with a common field
- Topological relationships are stored
- Allowed for customization of attributes
- Spatial data not stored in RDBMS because of limitations in hardware and software

Disadvantage of georelational data model
- All features have the same generic behavior
 - Roads: crossing lines should form a traffic intersection (except over/underpass)
 - Streams: downstream lines should sum the flows of upstream lines

Geodatabase data model
- Allows features to have natural behaviors
- Establish defined relationships between features
- Brings a physical data model closer to a logical data model
 - Owners, buildings, parcels, roads
- Allows custom features to be implemented without writing specialized code

Uses of object behavior
- Adding and editing features
 - Attribute values must fall within a range
 - Adjacency and connectivity tests
 - Conform to a spatial arrangement
 - Geometry matches a set of rules
- Relationships among features
 - Networks should be connected
 - Relationships between features on the map and those not on the map

CAD Data Model
- 1960s and 1970s
- Geographic data stored as points, lines, and areas
- No attributes; each feature type stored on a different layer
- No topology – all “spaghetti”

Geodatabase data model
- Allows features to have natural behaviors
- Establish defined relationships between features
- Brings a physical data model closer to a logical data model
 - Owners, buildings, parcels, roads
- Allows custom features to be implemented without writing specialized code

Uses of object behavior
- Adding and editing features
 - Attribute values must fall within a range
 - Adjacency and connectivity tests
 - Conform to a spatial arrangement
 - Geometry matches a set of rules
- Relationships among features
 - Networks should be connected
 - Relationships between features on the map and those not on the map
Uses of object behavior II

- Cartographic display
 - Auto labeling of contour lines
 - Roads at a large scale are drawn as polygons with clean intersections
 - Coincident lines displayed next to each other
- Interactive analysis
 - Touch a feature and launch an update wizard
 - Select a link and automatically select all downstream links

Benefits of the geodatabase data model

- Uniform repository of geographic data
- Data entry and editing is more accurate
- Users work with more intuitive data objects
- Features have a richer context
- Better maps can be made
- Features on a map display are dynamic
- Shapes of features are better defined
- Sets of features are continuous
- Many users can edit geographic data simultaneously

Within a geodatabase...

- Feature dataset
 - Spatial reference
 - Object (non-spatial) classes
 - Feature (spatial) classes
 - Relationship classes
 - Geometric networks
 - Planar topologies
- Domains
- Validation rules
- Raster datasets
- TIN datasets
- Locators

Key components of OO

- Polymorphism
 - Behaviors of an object class can adapt to variations of objects
- Encapsulation
 - An object is accessed through well-defined software methods, hiding the internal details
- Inheritance
 - An object class can be defined to include the features of another object class, plus additional behaviors

Serving geographic data

- All data is stored in an RDBMS through enhancement
- How does Geodatabase extend an RDBMS
 - Represents 4 types of geo data
 - Stores shapes of features, coordinate systems
 - Can model topologically integrated datasets
 - Can define relationships between objects and features
 - Can enforce attribute integrity
 - Can bind natural feature behavior to feature tables
 - Can present multiple versions of data
- Personal vs. multiuser geodatabases
 - ArcInfo vs. ArcSDE

Building a data model

- Designing a logical data model
- Representing logical data model
- Implementing physical database model
Classes and Objects

- Abstract class
 - Cannot be used to create new objects
 - Is a specification for subclasses

- Creatable class
 - Objects you can directly create

- Instantiable class
 - Cannot directly create new objects
 - Objects created as functions of other objects

Types of Relationships

- Associations – relationships between classes
 - Multiplicity – constraint on associations
 - 1:1 – 1 and only 1 (default)
 - 0..1 – Zero or one
 - M..N – From M to N (positive integers)
 - * or 0..* – From zero to any positive integer
 - 1..* – From 1 to any positive integer

- Type inheritance – classes that share properties with superclass and have additional properties

- Instantiation – one object from one class can create an object from another class

- Aggregation – asymmetric; object of one class is "whole" another is "parts"

- Composition – stronger aggregation; objects from the "whole" class controls the lifetime of the "parts" class