Section 1.1 problem 17

Let a_k be Kevin's Acceleration and a_a be Alisons's, T_k be the time it takes Kevin to finish and T_a the time it takes Alison. Then, if K(t) and A(t) are the distance functions for Kevin and Alison respectively:

Since both accelerate at a constant rate:

K" =
$$a_k => K' = a_k t + C$$
 and $K = \frac{1}{2}a_k t^2 + Ct + C + .$
A" = $a_a => A' = a_a t + C$ and $A = \frac{1}{2}a_a t^2 + C * t + C^{\wedge}.$

For simplicity's sake let's let the length of the track be 12.

Since for both, initial velocity and position are 0 all the C's are 0 so:

$$\begin{split} K &= \frac{1}{2} a_k t^2 \text{ and } A = \frac{1}{2} a_a t^2 \\ K(T_k) &= \frac{1}{2} a_k T_k^2 = 12 => a_k = \frac{24}{T_k^2} \\ A(T_a) &= \frac{1}{2} a_a T_a^2 = 12 => a_a = \frac{24}{T_a^2} \end{split}$$

We also know that Alison covers the last $\frac{1}{4}$ of the distance in 3 seconds so at T_a -3 Alison's position is $12(1-\frac{1}{4}) = 9$. Similarly Kevin covers the last 1/3 of the race in 4 seconds so at T_k -4 Kevin's position is 9.

That is:

$$\begin{split} K(T_k\text{--}4) &= \frac{1}{2} \ a_k \ (T_k\text{--}4)^2 = 8 = \frac{1}{2} \ a_k \ T_k^2 - 4 \ a_k \ T_k + 8 \ a_k = 8 \\ A(T_a\text{--}3) &= \frac{1}{2} \ a_a \ (T_a\text{--}3)^2 = 9 = \frac{1}{2} \ a_a \ T_a^2 - 3 \ a_a \ T_a + \frac{9}{2} \ a_a = 9 \end{split}$$

$$\frac{1}{2} a_k T_k^2 - 4 a_k T_k + 8 a_k = 8$$

so ½ (24/
$$T_k^2$$
) T_k^2 - 4 (24/ T_k^2) $T_k + 8$ (24/ T_k^2) = 8

and 12 -96/
$$T_k$$
 +192/ T_k^2 = 8 => 12 T_k^2 - 96 T_k + 192 = 8 T_k^2 => T_k^2 - 24 T_k + 48 = 0. $T_k \approx 2.2$ or 21.8 since 2.2 < 4, Kevin finishes in about 21.8 seconds.

$$\frac{1}{2}$$
 a_a $T_a^2 - 3$ a_a $T_a + 9/2$ $a_a = 9$ so $\frac{1}{2}$ $(24/T_a^2)$ $T_a^2 - 3$ $(24/T_a^2)$ $T_a + 9/2$ $(24/T_a^2) = 9 => 12 - 72/T_a + 108/T_a^2 = 9$ => 3 $T_a^2 - 72$ $T_a + 108 = 0$ or $T_a^2 - 24$ $T_a + 36 = 0 => T_a \approx 1.6$ or 22.4 Since 1.6 < 3, Alison finishes in about 22.4 seconds.

So, Kevin wins by about 22.4 - 21.8 or .6 seconds.