Primitive roots

Let a and n be relatively prime positive integers. The smallest positive integer k so that $a^k = 1 \pmod{n}$ is called the order of a modulo n. The order of a modulo n is usually denoted by $\operatorname{ord}_n a$. If it happens that $\operatorname{ord}_n a = \phi(n)$, where ϕ is the Euler phi function, then a is said to be a primitive root modulo n.

It is well known which integers have primitive roots. It is also known that if the positive integer n has a primitive root, then it has a total of $\phi(\phi(n))$ incongruent primitive roots. The purpose of this lab is to attempt to discover which integers have primitive roots.

Exercises

- 1. Use the ring structure of \mathbb{Z}_n and the software PascGaloisJE or one of the supporting Java applets to find a primitive root modulo each of the following integers.
 - (a) 8
 - (b) 14
 - (c) 11
 - (d) 25
 - (e) 26
 - (f) 6
- 2. Show that the integer 15 has no primitive roots.
- 3. Show that the integer 20 has no primitive roots.
- 4. How many incongruent roots does 11 have? Find a set of this many incongruent primitive roots modulo 11.
- 5. Make a conjecture about which positive integers n possess a primitive root.
- 6. Find all solutions of the congruences (express your answer as a congruence class).
 - (a) $7^k = 13 \pmod{15}$
 - (b) $5^k = 4 \pmod{19}$