
Subgroups and Generators of Dn and Sn

This lab is an extension of the Subgroups and Generators of Zn lab. We would suggest doing that lab
before attempting this one.

As you know from class a subgroup of a group is a subset of elements from the group that, under the
same operation of the group, produces a group structure itself. The study of a groups subgroups can tell us
a lot of information about the group itself, as we will see in the subsequent labs. As you do this lab keep in
mind the following concepts: generator, subgroup, identity, closure.

Part 1: Dn

We will first look a what a Dihedral group is and discuss the notation that the PascGalois JE program
uses for these groups. If you are already familiar with these group structures and know the notation used
by the PascGalois JE program you may skip to the exercises.

Dihedral groups are the symmetry groups of regular polygons. D3 is the symmetry group of an equilateral
triangle, D4 is the symmetry group of a square, D5 is the symmetry group of a regular pentagon, and so
on. If M is an n sided regular polygon, then M has n rotational symmetries and n reflectional symmetries.
Hence the corresponding symmetry group has 2n elements. For example, let us consider the symmetry group
of a square with corners labeled 1, 2, 3 and 4.
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By turning the square counterclockwise, we see that there are 4 rotational symmetries: 0◦, 90◦, 180◦ and
270◦, shown below
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Of course 360◦, 450◦, . . . are also symmetries, but they are equivalent to one of the four already listed. Note
that we could also have done our rotations clockwise. We will use the convention that all the rotations will
be counterclockwise since each clockwise rotation is equivalent to a counterclockwise rotation. Can you see
why? We also see that there are four axes for reflectional symmetries. There is a vertical axis that bisects
the square. Reflecting about this axis interchanges corners 1 and 2 and also 3 and 4. There is an analogous
horizontal axis. Reflection about it interchanges 1 and 4 and also 2 and 3. Finally, there are two axes passing
through the diagonals of the square. One passed through corners 1 and 3. Reflection about this axis leaves
corners 1 and 3 fixed but interchanges 2 and 4. You should be able to describe the last axis at this point.
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The notation for the group elements of Dn vary from text to text. Usually the first non-trivial rotation is
denoted with a character like ρ and hence all of the rotations can be written as ρ0 = e, ρ, ρ2, . . . , ρn−1. The
reflections are sometimes written with their own letter, such as, α, β, τ , . . . and some texts will use a letter
like τ to represent the reflection over the horizontal and then they write the remaining transformations as
combinations of τ and ρ. When it comes to a computer program we need another notation. The PascGalois
JE program uses an R for a rotation and F for a reflection (or flip). These letters are followed by a number
that defines which rotation and which reflection it is. For the rotations of Dn the notation is R0, R1, R2,
. . . , Rn − 1. R0 is the rotation by 0 degrees, that is, the identity. R1 is the rotation by 360

n degrees, R2 is

1



the rotation by 2 · 360
n degrees and in general Ri is the rotation by i · 360

n . For D4, R1 is the rotation by 90◦,
R2 is the rotation by 180◦, and R3 is the rotation by 270◦. Pictorially,
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F0 is the reflection over the horizontal. F1 is the reflection over the line through the center of the polygon
that makes an angle of 360

2n degrees with the horizontal. F2 is the reflection over the line through the center
of the polygon that makes an angle of 2 · 360

2n degrees with the horizontal and in general Fi is the reflection
over the line through the center of the polygon that makes an angle of i · 360

2n degrees with the horizontal. For
D4, F0 is the reflection over the horizontal. F1 is the reflection over the line that is 45◦ from the horizontal.
F2 is the reflection over the line that is 90◦ from the horizontal, that is, the vertical. F3 is the reflection
over the line that is 135◦ from the horizontal. Pictorially,
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When you are working with a polygon with an even number of vertices place half of the vertices above
the horizontal and half below. When working with a polygon with an odd number of vertices place one
vertex on the positive horizontal axis.

1. We usually only work with Dn for n ≥ 3. How many elements are in Dn for n ≥ 3? Since Dn represents
the symmetries of a regular n-gon what would the geometric object be for D2? Hence how many
elements are in D2? So what is D2 isomorphic to? Answer the same questions for D1. Now that this is
settled let’s move onto more interesting investigations. So from here on out we will assume that n ≥ 3.

2. Is Dn abelian for any n ≥ 3? If so prove it and if not give a counter example.

3. Is Dn cyclic for any n ≥ 3? Why or why not?

4. What elements generate Dn? Is there a minimal set of generators? If so, what are they? Can you find
more than one minimal set?

In this exercise you may find the Calculator tab of some use. Doing calculations in Dn can be a bit
tedious especially if you are drawing an n-gon for each operation. Each child window has a Calculator
tab that will do quick calculations inside the group you have selected. This tab has three main sections,
the Group Operation section, Subgroup section and Coset section. We will deal with the Coset section
in another lab. In the Group Operation section you simply type in the group elements, using the
PascGalois JE program’s notation, into the two boxes and select the “*” button to do the operation.
There is also a “^” key that allows you to take an element to a power, in this case the entry in the right
hand box must be an integer. There is also an interchange key that will interchange the two elements
so you can quickly check if the operation is commutative. The Subgroup section is particularly useful
for this exercise, simply type in the elements separated by commas and click the generate subgroup
button “〈a〉”. The list below will contain all of the elements in the subgroup generated by the elements
you supplied.

5. Graph the PascGalois triangles of Dn for n = 3, 4, . . . , 8. Recall from the introductory lab that you
need to select the Group tab, select Dn in the drop-down selection box at the top and then input the
value of n. Next select 1-D Automaton. If you are using a recent version of the PascGalois JE program
you will notice that the Default Element has been changed from 0 to R0, which is the PascGalois JE
notation for a rotation by 0◦, in other words the identity. If you are using an older version of the
program this may still be 0. In which case click on the Use Group Identity button and then R0 should
be loaded in. Next go to the Seed tab. Since 1 is not an element of Dn we will need to change the
seed. In exercise #4 you should have found that R1 and F0 always work as a set of generators, there
will of course be others. Change the number of columns in the seed table to two and then input these
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two generators. At this point you can go to the Image tab and graph the image. Make sure that all
of the elements of Dn show up in the color correspondence to the right. We will usually use these two
generators for Dn but note what happens if we use a different set of generators. Take some of the
generating sets you found in exercise #4 and use them as seeds. Are there any generating sets that do
not produce the entire group when you create the PascGalois triangle? If so, why do you think this
happened.

6. Can you see any “embedded” triangles in these examples? If so, list any “embedded” triangles you
see. Do this for each value of n. Use these observations to complete the following sentence for each of
the “embedded” triangles.

The group has a subgroup which is isomorphic to .

7. For each of the PascGalois triangles of Dn for n = 3, 4, . . . , 8, do you see any of the “pointing down”
triangles? Is there a relationship between seeing these and the value of n? If so, what are your
observations? Is there any case where one of these “pointing down” triangles does correspond to a
non-trivial subgroup H and inside of this triangle there are yet smaller triangles that correspond to a
non-trivial subgroup of H? If so, give an example.

8. For each of the groups Dn for n = 3, 4, . . . , 8, do the following. You may find the Calculator tab of
some use.

(a) List all of the subgroups of the group.

(b) Which of these subgroups are cyclic and which are not?

(c) For each subgroup find a generating set of elements, make sure that this generating set is minimal.

(d) For each subgroup use the generating set to construct a PascGalois triangle. Does the image
resemble any PascGalois triangle you have seen before? If so, complete the following sentence.

The group has a subgroup which is isomorphic to .

(e) Construct a subgroup lattice for the group.

9. Is there any correlation between n and the complexity of the PascGalois triangle you graphed in #5
for that group? If so, what are your observations?

Part 2: Sn

We will first look a what a Symmetric group is and discuss the notation that the PascGalois JE program
uses for these groups. If you are already familiar with these group structures and know the notation used
by the PascGalois JE program you may skip to the exercises.

Sn is the set of all permutations on n letters, usually called the Symmetric group. For the letters we
usually use the numbers {1, 2, 3, . . . , n}. One notation for a permutation is cycle notation which displays
where each element in the permutation goes. For example, if we have the notation (1, 3, 4, 2) we know that
the permutation sends 1 to 3, 3 to 4, 4 to 2 and 2 to 1. Any element not displayed in the cycle notation
remains fixed by the permutation. Similarly, the notation (1 6 3)(2 5 4) sends 1 to 6, 6, to 3, 3 to 1, 2 to 5,
5 to 4 and 4 to 2. In this notation we can represent S3 as { (1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2) }. It can
be shown that any permutation can be written as a product of disjoint cycles, so we can use this notation
to represent any element of Sn.

The operation on this group is permutation, or function, composition done right to left. For example, in
the calculation (1 2 4 3)(3 5 2 4) we start with the first number in the set “1”. The right permutation does
not have a 1 in it so it fixes 1, so we move on to the left permutation where 1 gets sent to 2. So to start our
answer we have 1 going to 2, i.e. (1 2. Now where does 2 go? The right permutation sends 2 to 4 and the
left permutation sends 4 to 3, so in all 2 goes to 3 and we have (1 2 3. Now we do the same for 3. The right
permutation sends 3 to 5 and the left permutation fixes 5 so in all 3 goes to 5, giving (1 2 3 5. Next 5 goes
to 2 and then 2 goes to 4 so in all 5 goes to 4, giving (1 2 3 5 4. Finally, 4 goes to 3 and then 3 goes to 1 so
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4 goes to 1, which is the first letter in our list so we close the parentheses for a final answer of (1 2 3 5 4).
So (1 2 4 3)(3 5 2 4) = (1 2 3 5 4). Some other examples, (1 4 2)(3 2 4) = (1 4 3), (1 2 4 3)(3 2 5) = (1 2
5)(3 4), and (1 2 4 3)(6 7 2)(3 2 1)(3 2 5) = (2 5 6 7 4 3).

The notation used by the PascGalois JE program in this case is just like the notation we would write by
hand. Simply put all of the cycles in parentheses and make sure that there is at least one space between the
“letters” in each cycle. It may be tempting to separate the letters by commas, do not do that, the PascGalois
JE program will see this as a Cartesian product and give you a syntax error.

1. We usually only work with Sn for n ≥ 3. How many elements are in Sn for n ≥ 3? Since Sn represents
the permutations on n letters what would S2 look like if we wrote all of the elements in cycle notation?
So what is S2 isomorphic to? Answer the same questions for S1. Now that this is settled let’s move
onto more interesting investigations. So from here on out we will assume that n ≥ 3.

2. Is Sn abelian for any n ≥ 3? If so prove it and if not give a counter example.

3. Is Sn cyclic for any n ≥ 3? Why or why not?

4. What elements generate Sn? Is there a minimal set of generators? If so, what are they? Can you find
more than one minimal set? In this exercise you may find the Calculator tab of some use.

5. Graph the PascGalois triangles of Sn for n = 3, 4, 5. Recall from the introductory lab that you need to
select the Group tab, select Sn in the drop-down selection box at the top and then input the value of n.
Next select 1-D Automaton. If you are using a recent version of the PascGalois JE program you will
notice that the Default Element has been changed from 0 to (1), which is the PascGalois JE notation
for the identity. If you are using an older version of the program this may still be 0. In which case click
on the Use Group Identity button and then (1) should be loaded in. Next go to the Seed tab. Since 1
is not an element of Sn we will need to change the seed. In exercise #4 you should have found that
(1 2) and (1 2 3) generate S3, there will of course be others. Change the number of columns in the
seed table to two and then input these two generators. In general, the elements (1 2) and (1 2 . . . n)
generate Sn. At this point you can go to the Image tab and graph the image. Do all of the elements
of S3 show up in the triangle? What about with S4 and S5. If not, why do you think this happened?
Can you find a “better” set of generators?

6. Can you see any “embedded” triangles in these examples? If so, list any “embedded” triangles you
see. Do this for each value of n. Use these observations to complete the following sentence for each of
the “embedded” triangles.

The group has a subgroup which is isomorphic to .

7. For each of the PascGalois triangles of Sn for n = 3, 4, 5, do you see any of the “pointing down”
triangles? Is there a relationship between seeing these and the value of n? If so, what are your
observations? Is there any case where one of these “pointing down” triangles does correspond to a
non-trivial subgroup H and inside of this triangle there are yet smaller triangles that correspond to a
non-trivial subgroup of H? If so, give an example.

8. Clearly, Sn is a far more complicated structure than Zn or Dn. The PascGalois triangles look far more
chaotic then those produced by either Zn or Dn. This exercise will try to point out why.

(a) List all of the subgroups of S3 and construct a subgroup lattice. How many subgroups does S3

have? What are the orders of each of these subgroups?

(b) How many groups of order 2 are there? Does S3 have a subgroup that is isomorphic to any group
of order 2? If so, which one(s)?

(c) How many groups of order 3 are there? Does S3 have a subgroup that is isomorphic to any group
of order 3? If so, which one(s)?

(d) Now we will consider S4. Does S4 have a subgroup isomorphic to any group of order 2? Order 3?
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(e) How many groups of order 4 are there? Does S4 have a subgroup that is isomorphic to any group
of order 4? If so, which one(s)?

(f) Think about the generators to Sn, in particular the standard generators of Sn. Does S4 have a
subgroup isomorphic to S3. If so, what elements of S4 generate this subgroup?

(g) Does S5 have a subgroup isomorphic to S3. If so, what elements of S5 generate this subgroup?
Does S5 have a subgroup isomorphic to S4. If so, what elements of S5 generate this subgroup?

(h) Make a general conjecture about when Sn has a subgroup isomorphic to Sm and prove your
conjecture.

(i) Does S5 have a subgroup isomorphic to Z2. If so, what elements of S5 generate this subgroup?
What about subgroups isomorphic to Z3, Z4 and Z5?

(j) Make a general conjecture about when Sn has a subgroup isomorphic to Zm and prove your
conjecture.

(k) If we consider Dn again, there is a nifty way that we can represent elements of Dn as permutations.
Consider the two diagrams we used for D4.
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We can create a permutation out of each of these elements by considering where each of the vertices
go when we apply the transformation. For example, consider the original vertex numbering and
the new numbering after applying R1.
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Vertex 1 goes to 2, 2 to 3, 3 to 4 and 4 to 1. This is the same as the permutation (1 2 3 4).
Similarly, for F0 we get 1 to 4, 4 to 1, 2 to 3 and 3 to 2, giving the permutation (1 4)(2 3).
Translate the other 6 transformations into permutations. So does S4 have a subgroup isomorphic
to D4? If so, what are the generators of this subgroup?

(l) Do you think that S3 will have a subgroup isomorphic to D3? Can you find a set of generators
for a subgroup of S3 that will be isomorphic to D3? How many elements are in S3? How many
elements are in D3? What is all of this implying about S3 and D3? Create the PascGalois triangles
(using the standard generators for each group), what observations can you make?

(m) Do you think that S5 will have a subgroup isomorphic to D5? Do you think that S6 will have a
subgroup isomorphic to D6? Why or why not?

(n) We will not prove this here but the above questions are leading to what conjecture?
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