PascGalois Project ## Rings and Fields So far we have focused on groups where only a single binary operation is used. However, there is a second classic algebraic structure that has two binary operations (usually denoted + and \cdot) - namely a **ring** R. When just considering the first operation, (R, +) is an abelian group. We always denote the identity element under addition by 0. We also require that the ring multiplication \cdot is associative and R satisfies the distributive laws: $$a(b+c) = ab + ac (a+b)c = ac + bc$$ for all $a, b, c \in R$. Examples of rings include the integers and real numbers (both under the standard addition and multiplication) and the set of all 2×2 matrices with integer entries (under matrix addition and matrix multiplication). Of course, these three examples are all infinite rings. To see a finite example of a ring, consider the integers modulo n, i.e. $Z_n = \{0, 1, ..., n-1\}$ for some $n \geq 2$. We already know that (Z_n, \oplus) is an abelian group, where \oplus denotes addition mod n. To obtain a ring structure, we need a second binary operation. Let \odot denote multiplication mod n. For example, if n = 12 then $3 \odot 8 = 0$ and $2 \odot 9 = 6$. Since \odot is associative and the distributive laws hold for \oplus and \odot , it follows that (Z_n, \oplus, \odot) , which we willdenote by Z_n , is a ring. Like groups, there are special classes of rings that mathematicians are particularly interested in. For instance, a ring R is commutative if $a \cdot b = b \cdot a$ for all $a, b \in R$. Certainly the integers, real numbers, and Z_n all form commutative rings. The ring of 2×2 matrices under matrix addition and matrix multiplication does not form a commutative ring. Can you see why? A ring R is said to have unity if there exists some $1_R \in R$ such that $1_R \cdot a = a \cdot 1_R$ for all $a \in R$. Note that 1_R , if it exists, is the multiplicative identity element of R. To introduce the next class of rings we first need a definition. A nonzero element $a \in R$, where R is commutative, is called a zero divisor for R if there exists some nonzero $b \in R$ satisfying ab = 0. A commutative ring R with unity is called an *integral domain* if it contains no zero divisors. Note that both the integers and real numbers are integral domains. However, even though Z_n is a commutative ring with unity, it is an integral domain only for certain values of n. <u>Question</u>: For which values of n does Z_n have zero divisors. (Note: this will determine precisely when Z_n is an integral domain). Finally, we define a *field* to be a commutative ring where the nonzero elements form a group with respect to multiplication. Note that a field necessarily has a unity element 1_R . In addition, if a is a nonzero element from a field R, then a must have a multiplicative inverse $a^{-1} \in R$ that satisfies $a \cdot a^{-1} = a^{-1} \cdot a = 1_R$. Note that every field is an integral domain. Also, every finite integral domain is a field (both of these results should be in your text as theorems and/or exercises). PascalGT allows the user to experiment with Z_n ring multiplication and other binary operations on a sufficiently small finite set. The Z_n ring multiplication triangles are drawn by placing two elements a and b of $Z_n \setminus \{0\}$ down the sides of the triangle (what will happen if 0 is placed down one of the sides?). ## Exercises: - 1. Construct triangles (P_{Z_n}, a, b) using various nonzero ring values $a, b \in Z_n$. Note that the operation here is multiplication mod n rather than addition mod n. Try n = 3, 4, 5, 6, 7, 8, and 9. Record what happens for each value of n and each combination $a, b \in Z_n$ that you try. - 2. Which of your pictures contain elements that are zero divisors? How does the presence of zero divisors affect the corresponding triangles? - 3. Describe what your triangles look like when n is prime versus when n is composite. Does this relate to the presence of zero divisors? - 4. Do any of the pictures you obtain look similar to Pascal's triangle mod n? Based on this, can you make a conjecture regarding which values of n make Z_n a field? - 5. Construct a PascGalois triangle using Z_{15} ring multiplication with 2 down the left side of the triangle and 3 down the right. Give a description of the resulting triangle. Does this example violate your conjecture from the previous exercise? Why or why not?