COSC 220 Homework #10: STL

1 Instruction

When you are finished submit all your work through the MyClasses page for this class. Create
a directory called Homework10, put each programming exercise into its own subdirectory
of this directory, zip the entire Homework10 directory up into the file Homework10.zip, and
then submit this zip file to Homework #10.

Make sure that you:

e Follow the coding and documentation standards for the course as published in the
MyClasses page for the class.

e Check the contents of the zip file before uploading it. Make sure all the files are
included.

e Make sure that the file was submitted correctly to MyCLasses.

All non-templated class structures are to have their own guarded specification file (.h)
and implementation file (.cpp) that has the same name as the class. All templated class
structures are to be guarded and written entirely in their (.h) file. No inline coding in the
class specification. In addition you must create a make file that compiles and links the
project on a Linux computer with a Debian or Debian branch flavor.

2 Exercise #1

Write a program that will ask the user to input the number of dice to roll, the number of
sides of the dice (assume all die are the same), and the number of rolls. Have the program
roll all the dice that many times and store the counts of the total roll in a map structure.
Then have the program print out the contents of the map structure. Example runs are below.

Input number of dice to roll: 2

Input number of sides for each die: 6
Input number of rolls of dice: 10
Results

4 1

= o 00 J o
P wWw

Input number of dice to roll: 3

Input number of sides for each die: 6
Input number of rolls of dice: 1000000
Results

3 4671

13737

27774

46572

69237

~ o U

Fall 202/ 1

COSC 220 Homework #10: STL

8 97385

9 115515
10 125185
11 124960
12 115617
13 97671

14 69185
15 46294

16 27708

17 13875
18 4614

Input number of dice to roll: 3

Input number of sides for each die: 4
Input number of rolls of dice: 1000000
Results

15666

47217

93968

156358

187433

187339

9 156272

10 93766

11 46349

12 15632

O J oUW

3 Exercise #2

Revise the above program to store all the rolls in a multiset and then use the count function
to display the same results. Make sure that each roll total appears only one time. Example
runs are below.

Input number of dice to roll: 3

Input number of sides for each die: 6
Input number of rolls of dice: 10
Results

41

5
7
8
9
10
11
15
17

N e

[S

Input number of dice to roll: 2

Input number of sides for each die: 6
Input number of rolls of dice: 1000000
Results

2 27896

55596

83531

110661

139481

166358

~N oo W

Fall 202/ 2

COSC 220 Homework #10: STL

8
9

138748
111262

10 83371
11 55218
12 27878

Input number of dice to roll: 2

Input number of sides for each die: 4
Input number of rolls of dice: 1000000
Results

2

O J oy U1l Ww

61954

124703
187578
250120
187825
125267
62553

4 Exercise #3

Create a class called MathSet that inherits off of the STL set class. The MathSet class will
be an extension of the set class that does some of the operations commonly seen in set theory
and discrete mathematics. The MathSet is to be templated but it does not need to store
any data, the set parent class will take care of all that. Overload the following operators,

e + : This is to return a set that is the union of the two operand sets. So A + B is in
mathematical notation A U B.

e — : This is to return a set that is the set difference of the two operand sets. SoA — B
is the set of all elements of A that are not in B,

e » : This is to return a set that is the intersection of the two operand sets. So A = B
is in mathematical notation A N B.

e ~ : This is to return a set that is the symmetric difference of the two operand sets.
So A ~ B is the set of all elements which are in either of the sets, but not in their
intersection.

e << : stream out operator that prints out the set in standard mathematical notation,
as in the examples below.

e As you would expect, the overloaded = and constructors pass right through to the set
class, with a couple exceptions. The constructor with the initializer list does not pass
through automatically, so we will create one. This, in turn, requires an overloaded
default constructor. Both of these simply pass the construction to the base set class as
we have done many times before with child classes. Without this initializer constructor
the main program code of

MathSet<int> A = {1, 2, 3, 4, 5, 6};

would not work. There are other things we could do to integrate this further but for
now this is sufficient.

Fall 202/ 3

COSC 220 Homework #10: STL

— Create a default constructor that simply calls the set default constructor.

— Create a constructor that brings in an initializer list and invokes the set construc-
tor with that list. The start of the specification entry is
MathSet<T> (initializer_1ist<T> L)
finish it.

4.1 Extra Credit

For some extra credit, write a function that creates the power set of the set. The power set
of a set A is denoted as P(A), and is defined as the set of all subsets of A. So for example, if
A ={1,2,3}, then P(A) = {{}, {1},{1,2},{1,2,3},{1,3},{2},{2,3},{3}}. The power set
can be defined recursively as,

o If S ={}, then P(S) = {{}}.
o If S#{} letec Sand T =S5 — {e}, then P(S) =P(T)U{tU{e}:t € P(T)}.

Use this definition to code the power set function.

4.2 Program Run

The following test program produces the output below. Note that if you did not do the extra
credit you should comment out the portion that tests the power set function.

#include "MathSet.h"
#include <iostream>

using namespace std;

int main () {
srand (time (0));

MathSet<int> A = {1, 2, 3, 4, 5, 6};
cout << A << endl;

MathSet<int> B;
B.insert (17);
cout << B << endl;

MathSet<int> C;
cout << C << endl;

B.insert ({
4,
r

14

~ o U1

’

)i
cout << B << endl;

cout << A + B << endl;
cout << A - B << endl;

Fall 202/ 4

COSC 220 Homework #10: STL

cout << B - A << endl;
cout << A * B << endl;
cout << (A ~ B) << endl;

B = A;
cout << A << endl;
cout << B << endl;

B = {4, 3, 6, 7};

A.insert ({10, 11, 12});
cout << A << endl;
cout << B << endl;

MathSet<int> E = A;
cout << A << endl;
cout << E << endl;

MathSet<int> F (A);
cout << A << endl;
cout << F << endl;

cout << &A << endl;
cout << &E << endl;
cout << &F << endl;

MathSet<int>::iterator it = A.begin();
while (it != A.end())

cout << *it++ << " ",
cout << endl;

it = A.find(6);

if (it != A.end())
A.erase (it);

cout << A << endl;

A.erase (10);
cout << A << endl;

it = A.find(3);

auto it2 = A.find(11);
A.erase (it, it2);

cout << A << endl;

cout << " —— Power Set Test Code" << endl;
A.clear ();

A.insert ({1, 2, 3});
cout << A << endl;

cout << A.PowerSet () << endl;
A.insert (4);
cout << A.PowerSet () << endl;

MathSet<char> S = {’'A’, 'B’, 'C'};
cout << S.PowerSet () << endl;

S.insert ('D");
cout << S.PowerSet () << endl;

auto D = S.PowerSet ();
cout << D << endl;

return 0;

Fall 202/ 5

COSC 220 Homework #10: STL

Output:

{1, 2, 3, 4, 5, 6}

{17}

{1}

{4, 5, 6, 7, 17}

{1, 2, 3, 4, 5, 6, 7, 17}

{1, 2, 3}

{7, 17}

{4, 5, 6}

{1, 2, 3, 7, 17}

(1, 2, 3, 4, 5, 6}

{1, 2, 3, 4, 5, 6}

{1, 2, 3, 4, 5, 6, 10, 11, 12}
{3, 4, 6, 7}

(1, 2, 3, 4, 5, 6, 10, 11, 12}
{1, 2, 3, 4, 5, 6, 10, 11, 12}
{1, 2, 3, 4, 5, 6, 10, 11, 12}
{1, 2, 3, 4, 5, 6, 10, 11, 12}
0x7ffc63el2a20

O0x7ffc63el2ael

0x7ffc63e12b10

12345610 11 12
{1, 2, 3, 4, 5, 10, 11, 12}
{1, 2, 3, 4, 5, 11, 12}

2!

————————————— Power Set Test Code

({y, {1}y, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, {3}}
{y, 1y, {1, 23}, {1, 2, 3}y, {1, 2, 3, 4}, {1, 2, 4}, {1, 3}, {1, 3, 4}, {1, 4}, {2},
{2, 3}y, {2, 3, 4}, {2, 4}, {3}, {3, 4}, {4}}
}I {A}I {Al B}I {AI BI C}I {Al C}I {B}I {BI C}l {C}}
}I {A}I {AI B}I {AI BI C}I {AI BI CI D}I {AI BI D}I {AI C}I {AI CI D}I {AI D}I {B}I
{B, ¢}, {B, C, D}, {B, D}, {C}, {C, D}, {D}}
{{}, (A}, {a, B}, {A, B, C}, {A, B, C, D}, {A, B, D}, {A, C}, {A, C, D}, {a, D}, (B},
{B, ¢}, {B, C, D}, {B, D}, {C}, {C, D}, {D}}

Fall 202/ 6

