
COSC 220 Homework #2: Introduction to Classes

1 Instructions

When you are finished submit all your work through the MyClasses page for this class. Create
a directory called Homework02, put each programming exercise into its own subdirectory
of this directory, zip the entire Homework02 directory up into the file Homework02.zip, and
then submit this zip file to Homework #2.

Make sure that you:

• Follow the coding and documentation standards for the course as published in the
MyClasses page for the class.

• Check the contents of the zip file before uploading it. Make sure all the files are
included.

2 Programming Exercises

The main idea for this homework assignment is to take the last homework assignment and
convert the structures to classes. All class structures are to have their own guarded specifica-
tion file (.h) and implementation file (.cpp) that has the same name as the class. In addition
you must create a make file that compiles and links the project on a Linux computer with a
Debian or Debian branch flavor.

1. Create a class structure named IntArrayList which has the following specification.

class IntArrayList {
private:

int *list;
int size;

public:
IntArrayList();
˜IntArrayList();

void duplicate(IntArrayList&);
void display(bool vert = false);
void displayAddress();
void sort();
bool sorted();
void add(int);
void concat(const IntArrayList&);
void remove(int, int);
void shuffle();
void sub(int, int);
void insert(const IntArrayList&, int);
void insert(int, int);
int get(int);
void set(int, int);
void resize(int);
int length();

};

Fall 2024 1



COSC 220 Homework #2: Introduction to Classes

• The data for the class must be in the private section and all the functions are to
be in the public section. The data consists of two items, a pointer to an integer
that will be pointing to a dynamically allocated array of integers and an integer
size that will hold the length of the array that is being pointed to by the list
pointer.

• The constructor will set the list pointer to nullptr and the size to 0.

• The destructor will release all allocated memory so that there are no memory
leaks or multiple frees.

• duplicate: This function brings in a reference to an IntArrayList object. The
function will make a copy of the calling object and store it into the parameter
object. So L1.duplicate(L2); will make a copy of L1 and store it into L2.

• display: This function will print the contents of the array horizontally if the vert
parameter is false and vertically if the vert parameter is true.

• displayAddress: Will print the address of the list pointer to the screen.

• sort: This function sorts the array in ascending order using either the bubble sort,
insertion sort, or selection sort.

• sorted: This function determines if the array is sorted in ascending order. If it is
then the function returns true and if it is not then the function returns false.

• add: Takes a single integer parameter value and appends it to the end of the list.
So if your list L1 is 1 2 3 4 5 and you call L1.add(17); then you L1 list is
now 1 2 3 4 5 17.

• concat: This function will concatenate the parameter IntArrayList to the end of
the calling array. So the calling array will be altered but the parameter array is
not to altered in any way. So if L1 is 6 17 18 25 and L2 is 20 3 6 16 8
then the call L1.concat(L2); will make L1 6 17 18 25 20 3 6 16 8.

• remove: This function takes as parameters a starting index and an ending index.
It will remove all the elements in the array from the starting index up to but not
including the ending index. For example, if the list is

1 2 3 4 5 6 7 8 9 10

Then the function call

L1.remove(3, 7);

would remove the elements at indicies 3, 4, 5, and 6. The list will now have size
6 and contain the following.

1 2 3 8 9 10

Make sure that you check the validity of the start and end indexes. If the start
is greater than or equal to end then there is nothing to remove. If the start is
negative you should start removing at the 0 index. If the end is beyond the end
of the array you should remove out to the last index. Also, if the start and end
values encompass the entire array then the array should be altered to nullptr.

Fall 2024 2



COSC 220 Homework #2: Introduction to Classes

• shuffle: This function randomly shuffles the contents of the list. You may use the
random_shuffle function from the algorithm library if you would like for
this function.

• sub: This function takes as parameters a starting index and an ending index. It
will change the array to the sub-array consisting of the entries from the starting
index up to but not including the ending index. For example, if the array is

1 2 3 4 5 6 7 8 9 10

Then the function call

L1.sub(3, 7);

would change L1 to the elements at indexes 3, 4, 5, and 6. The parameter array
will now have size 4 and contain the following.

4 5 6 7

Make sure that you check the validity of the start and end indexes. If the start
is greater than or equal to end then there is nothing to change. If the start is
negative you should start at the 0 index. If the end is beyond the end of the array
you should stop at the last index.

• insert: This function takes two parameters, a constant reference to an IntAr-
rayList object, and an integer index. It will alter the calling array to have the
second array inserted into it at the position specified by the last parameter. For
example, if IntArrayLists L1 and L2 contain the following lists,

1 2 3 4 5 6 7 8 9 10
31 20 22 87 0

Then the function call

L1.insert(L2, 2);

would alter L1 to the following array. The L2 array should be unaltered.

1 2 31 20 22 87 0 3 4 5 6 7 8 9 10

Make sure that you check the validity of the position index. If it is negative then
L2 should be inserted at the start of the array L1 and if it is beyond the end of
the array the array L2 should be added to the end of L1.

• insert: This function takes in two integer values as parameters, the first is a
value and the second is a index position. The function will insert the value into
the given position in the array and of course shifting the subsequent elements
down one. For example, if L1 is the list 2 5 20 3 6 16 8 54 then the call
L1.insert(123, 4); will change L1 to 2 5 20 3 123 6 16 8 54.

As with the previous insert, make sure that you check the validity of the position
index. If it is negative then the value should be inserted at the start of the array
L1 and if it is beyond the end of the array the value should be added to the end
of L1.

Fall 2024 3



COSC 220 Homework #2: Introduction to Classes

• get: This takes a single integer parameter representing an index and the function
returns the value stored in the array at that index. Make sure that you check the
validity of the index. If it is negative then you should return the first element of
the list. If it is beyond the array you should return the last element of the list.
Also, if the list contains no elements the function should return 0.

• set: This function takes two parameters, an integer value and an integer index.
The function replaces the entry in the array at the given index with the specified
value. If the index is out of range, the value is not to be inserted anywhere.

• resize: This function takes one parameter, the new size of the array. The function
will resize the array to the new given size. If the new array size is smaller then
the entries will be truncated and if the new size is larger the extra entries will be
set to 0. For example, if the list is the following, and size is 10,

1 2 3 4 5 6 7 8 9 10

The function call

L1.resize(20);

will produce,

1 2 3 4 5 6 7 8 9 10 0 0 0 0 0 0 0 0 0 0

and the function call

L1.resize(5);

will produce,

1 2 3 4 5

• length: This function returns the current length of the list.

With the above class the following main will produce the output below.

#include <iostream>
#include "IntArrayList.h"

using namespace std;

void div();

int main() {
srand(time(0));

IntArrayList L1, L2;

for (int i = 0; i < 10; i++)
L1.add(rand() % 100 + 1);

L1.display();
cout << L1.sorted() << endl;
L1.sort();
L1.display();
cout << L1.sorted() << endl;

Fall 2024 4



COSC 220 Homework #2: Introduction to Classes

div();

L1.displayAddress();
L2.displayAddress();
L1.duplicate(L2);
L1.display();
L2.display();
L1.displayAddress();
L2.displayAddress();

div();

L2.set(34, 3);
L2.set(21, 4);
L2.set(-15, 5);
L1.display();
L2.display();

div();

L2.add(123);
L2.add(27);
L2.add(-19);
L1.display();
L2.display();
L1.duplicate(L2);
L1.display();
L2.display();
L1.displayAddress();
L2.displayAddress();

div();

L2.resize(5);
L1.display();
L2.display();
for (int i = 0; i < 5; i++)

L2.set(rand() % 25, i);
L1.display();
L2.display();
L1.concat(L2);
L1.display();
L2.display();

div();

L1.display();
L1.sort();
L1.display();
L1.shuffle();
L1.display();

div();

L1.display();
L2.display();
L1.insert(L2, 5);
L1.display();

div();

L2.display();
L2.insert(5, 0);
L2.display();

Fall 2024 5



COSC 220 Homework #2: Introduction to Classes

L2.insert(2, -5);
L2.display();
L2.insert(54, 100);
L2.display();
L2.insert(123, 4);
L2.display();

div();

L1.display();
L1.remove(5, 10);
L1.display();
L1.sub(4, 12);
L1.display();

for (int i = 0; i < L1.length(); i++)
cout << L1.get(i) << endl;

return 0;
}

void div() {
cout << "\n--------------------------------\n\n";

}

Output:

38 23 31 27 23 52 59 57 70 34
0
23 23 27 31 34 38 52 57 59 70
1

--------------------------------

0x5631b1bf9f20
0
23 23 27 31 34 38 52 57 59 70
23 23 27 31 34 38 52 57 59 70
0x5631b1bf9f20
0x5631b1bf9ef0

--------------------------------

23 23 27 31 34 38 52 57 59 70
23 23 27 34 21 -15 52 57 59 70

--------------------------------

23 23 27 31 34 38 52 57 59 70
23 23 27 34 21 -15 52 57 59 70 123 27 -19
23 23 27 31 34 38 52 57 59 70
23 23 27 31 34 38 52 57 59 70
0x5631b1bf9f20
0x5631b1bf9ef0

--------------------------------

23 23 27 31 34 38 52 57 59 70
23 23 27 31 34
23 23 27 31 34 38 52 57 59 70
11 17 7 7 8
23 23 27 31 34 38 52 57 59 70 11 17 7 7 8
11 17 7 7 8

Fall 2024 6



COSC 220 Homework #2: Introduction to Classes

--------------------------------

23 23 27 31 34 38 52 57 59 70 11 17 7 7 8
7 7 8 11 17 23 23 27 31 34 38 52 57 59 70
57 17 11 7 7 52 23 31 8 23 70 59 38 27 34

--------------------------------

57 17 11 7 7 52 23 31 8 23 70 59 38 27 34
11 17 7 7 8
57 17 11 7 7 11 17 7 7 8 52 23 31 8 23 70 59 38 27 34

--------------------------------

11 17 7 7 8
5 11 17 7 7 8
2 5 11 17 7 7 8
2 5 11 17 7 7 8 54
2 5 11 17 123 7 7 8 54

--------------------------------

57 17 11 7 7 11 17 7 7 8 52 23 31 8 23 70 59 38 27 34
57 17 11 7 7 52 23 31 8 23 70 59 38 27 34
7 52 23 31 8 23 70 59
7
52
23
31
8
23
70
59

Make sure that you have no memory leaks, multiple frees, or any invalid read or write
accesses to the memory.

2. In this exercise you will write a program that will load in a file to an array of objects.
The files are csv files (comma separated values), where each consecutive entry is sepa-
rated by a comma. This is a standard format for spreadsheets and most will allow you
to save in csv form. The two files you will be using for testing are StateData001.csv
and StateData002.csv, you may want to open them in a text editor and a spread-
sheet (on Linux there is one called LibreOffice Calc). This will show you both the
layout of the text you will be reading in and how it would line up in spreadsheet form.

The data in the StateData001.csv file is energy-related carbon dioxide emissions
by year in millions of metric tons of energy-related carbon dioxide for each state in the
US by year for 1970–2020. The data in the StateData002.csv file is the same but
for a subset of states and years in the same range.

Your program should first create a new class structure with the following specification,

class StateData {
private:

string StateName;
double *data;
int size;

Fall 2024 7



COSC 220 Homework #2: Introduction to Classes

public:
StateData();
˜StateData();

void setStateName(string);
string getStateName();
void add(double);
double get(int);

};

• The data in the private section is a string for the state name, a pointer to a double
that will store a dynamically allocated array that contains the data for that state
when read from the file. The size field will store the current size of the array that
the data pointer points to.

• The constructor will set the pointer to nullptr, size to 0, and the state name to
the empty string.

• The destructor will release all allocated memory so that there are no memory
leaks or multiple frees.

• setStateName: Takes a string and sets the state name to that string.

• getStateName: Returns the state name.

• add: Takes a single double parameter and appends it to the data list.

• get: This takes a single integer parameter representing an index and the function
returns the value stored in the data array at that index. Make sure that you check
the validity of the index. If it is negative then you should return the first element
of the list. If it is beyond the array you should return the last element of the list.
Also, if the list contains no elements the function should return 0.

From the data file, each line after the first consists of the name of the state, that gets
put into state name field, and after the name there is a list of values for each year for
that state, those will be stored into the array that is pointed to by the data pointer.

So there will be an instance of a StateData object for each state in the file. These
will be stored in a dynamically allocated array of StateData types. Since different files
may have different listed states you cannot assume what the size of this array will be
without reading the file. You also do not know what years will be listed nor do you
know if the years listed will be contiguous or if some will be missing. One thing you
can assume is that each state that is listed will have a value of each year that is listed,
so there is no missing data.

Once the data is loaded into the program, you will print out a list of states and have
the user select one, by number. Then the program will print out a list of all the years
in the file and have the user type in the year they want. The program will then output
the data for that state and year. The program will also ask the user to input the
filename of the data file they want to load. Your program may assume that all data
files have the same structure, header line of years, then each line below that a state
name followed by a decimal value for each year. Two runs of the program are below,

Fall 2024 8



COSC 220 Homework #2: Introduction to Classes

Input the filename: StateData001.csv
Select a State
1. Alabama
2. Alaska
3. Arizona
4. Arkansas
5. California
6. Colorado
7. Connecticut
8. Delaware
9. District of Columbia
10. Florida
11. Georgia
12. Hawaii
13. Idaho
14. Illinois
15. Indiana
16. Iowa
17. Kansas
18. Kentucky
19. Louisiana
20. Maine
21. Maryland
22. Massachusetts
23. Michigan
24. Minnesota
25. Mississippi
26. Missouri
27. Montana
28. Nebraska
29. Nevada
30. New Hampshire
31. New Jersey
32. New Mexico
33. New York
34. North Carolina
35. North Dakota
36. Ohio
37. Oklahoma
38. Oregon
39. Pennsylvania
40. Rhode Island
41. South Carolina
42. South Dakota
43. Tennessee
44. Texas
45. Utah
46. Vermont
47. Virginia
48. Washington
49. West Virginia
50. Wisconsin
51. Wyoming
Selection: 39

Select a Year
1970
1971
1972
1973
1974
1975
1976
1977

Fall 2024 9



COSC 220 Homework #2: Introduction to Classes

1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
Selection: 2012

The energy-related carbon dioxide emissions for Pennsylvania in millions of
metric tons in the year 2012 was 239.8.

Input the filename: StateData002.csv
Select a State
1. Alabama
2. Alaska
3. Arizona
4. Arkansas
Selection: 3

Select a Year
1970
1971
1981
1982

Fall 2024 10



COSC 220 Homework #2: Introduction to Classes

1983
1984
1985
1986
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2003
2004
2016
2017
2018
2019
2020
Selection: 1999

The energy-related carbon dioxide emissions for Arizona in millions of
metric tons in the year 1999 was 80.62.

Here is a basic outline of the program construction.

(a) Get the filename from the user, if the file does not exist print out an error and
exit the program.

(b) Read in the first line of the file, this is the header of the spreadsheet. Find the
number of years in the spreadsheet. Remember this has to be done in general,
different files may have different years listed. Create a dynamically allocated
integer array of the correct size to store all of the years and load the years into
the array. You will probably want to use the stoi or atoi functions to convert
strings to integers.

(c) Read the rest of the file to determine the number of states that are in the file.
Create a dynamically allocated StateData array of the correct size to store all of
the state data. At this point you will need to go back to the beginning of the
file so you can read it again and populate the StateData array with names and
values. Recall that you can do this by either closing the file and repoening it or
you can clear the file (resetting the EOF bit) and then seeking the beginning.
For example, if the ifstream variable is inputFile, the following will reset the file
pointer to the beginning.
inputFile.clear();
inputFile.seekg(0L, ios::beg);

(d) Now read the file again and for each line extract the state name and data to add
to the array of StateData types. You will use the standard parsing technique of
storing the position of the previous comma, using the find function for strings to
find the next comma, extract the substring between them, and finally use stod or
atof to convert to a double.

Fall 2024 11



COSC 220 Homework #2: Introduction to Classes

(e) Close the file. It will not need to be reread anymore since all your data is in the
array.

(f) Print out the list of states with a number beside the state as in the examples
above. Have the user select the state by typing in the corresponding number.
Error check this input and if the value the user typed in is outside the range have
the program ask for input again until a legitimate value is entered.

(g) Then print out a list of years to select from and have the user type in the year
they wish to see. Again, error check this and if a year is input that is not in the
list have the program ask again until a legitimate year is input.

(h) Finally have the program find the correct data value for the user input and print
out a message like the ones above.

(i) Make sure that all the memory is cleaned up before the end of the program so
that there are no memory leaks, no multiple frees, and no invalid array accesses.

3. Optional Exercise for Extra Credit: This exercise is similar to previous one except
that the parsing of the data file is a little more difficult and in this case the arrays that
are being stored are not all the same length.

You will again be working with csv files (comma separated values), where each con-
secutive entry is separated by a comma. The difference here is that some of the data
entries have a comma in them (the formal names). In this case is it common to put
double quotes around the data entries.

The two files you will be using for testing are MarData001.csv and MarData002.csv.
The MarData001.csv file is displayed below. As before you may want to open them
in a text editor and a spreadsheet to see the layout of the text you will be reading in
and how it would line up in spreadsheet form. The data is fictitious data but is to rep-
resent a cross-country team’s members and their marathon times. Since each member
may have run a different number of marathons the rows of data will not always contain
the same number of entries, unlike the data in the previous exercise.

"Jones, Martha","3-32-15"
"Noble, Donna","4-1-52","3-59-18"
"Oswald, Clara Oswyn","3-51-22","4-5-19","3-40-15"
"Pond, Amy","4-31-25"
"Potts, Bill","4-52-01","4-43-20","4-5-54","3-58-25","3-42-19"
"Smith, John","4-10-55"
"Smith, Mickey","3-51-8","3-44-10","4-35-1"
"Smith, Sarah Jane","3-12-19"
"Tyler, Rose","4-10-32","4-2-57","3-49-55"
"Williams, Rory","4-25-17","3-39-20","3-35-10","3-30-17"

In this file all the entries are in double quotes and are separated by commas, and the
formal names have commas in them. The way you would read this is that Martha Jones
ran one marathon and her time was 3 hours, 32 minutes, and 15 seconds. Clara Oswyn
Oswald ran 3 marathons and her times were 3 hours, 51 minutes, and 22 seconds, 4
hours, 5 minutes, and 19 seconds, and 3 hours, 40 minutes, and 15 seconds respectively.

Create a PersonTimeData class with the following specification.

Fall 2024 12



COSC 220 Homework #2: Introduction to Classes

class PersonTimeData {
private:

string FirstName = "";
string LastName = "";
string MiddleName = "";
double *data = nullptr;
int numtimes = 0;

public:
PersonTimeData();
˜PersonTimeData();

void setName(string, string, string);
void add(double);
double get(int);
int getNumberOfTimes();
string getFormalName();
string getInformalName();

};

• The data are the first, middle, and last name strings, a pointer to an array of
doubles that will hold the decimal format of the marathon times the person ran,
and an integer numtimes that will store the length of the array of times.

• The destructor will release all allocated memory so that there are no memory
leaks or multiple frees.

• setName: Sets the first, middle, and last names in that order of the srring param-
eters.

• add: Takes a single double parameter and appends it to the data list.

• get: This takes a single integer parameter representing an index and the function
returns the value stored in the data array at that index. Make sure that you check
the validity of the index. If it is negative then you should return the first element
of the list. If it is beyond the array you should return the last element of the list.
Also, if the list contains no elements the function should return 0.

• getNumberOfTimes: Returns the number of times in the array.

• getFormalName: Returns the person’s name in formal format, e.g. Smith, John
Doe.

• getInformalName: Returns the person’s name in informal format, e.g. John Doe
Smith.

Each line of the file will represent a PersonTimeData object and these will be stored
in a dynamically allocated array of PersonTimeData objects. As with the last
exercise, you will not know the number of people on the team and they are of course
running different numbers of marathons so the arrays of data being stored will be of
different sizes, hence the need to store the number they ran in the object as well.

Once the data is loaded into the program close the file, it will not be needed. Do
not do any of the calculations until the file is closed. You will now print out a team
summary as in the two example runs below. The summary will display all the times
for the person, note that single digit minutes or seconds are in two digit format, e.g.

Fall 2024 13



COSC 220 Homework #2: Introduction to Classes

5 minutes is represented as 05. It will also display their average time, personal best,
and the best time for the entire team and who ran it.

As with the last exercise you will load in the data from the file into a dynamically
allocated array of PersonTimeData types for the entire database. The times are to
be stored as doubles in hours. So for Martha Jones the time of 3:32:15 would be
3.5375 = 3 + 32/60 + 15/3600. This format will make it easier to calculate averages
and find minimums.

Input the filename: MarData001.csv
Report for Martha Jones
Times: 3:32:15
Average Time: 3:32:15
Personal Best: 3:32:15

Report for Donna Noble
Times: 4:01:52 3:59:18
Average Time: 4:00:35
Personal Best: 3:59:18

Report for Clara Oswyn Oswald
Times: 3:51:22 4:05:19 3:40:15
Average Time: 3:52:19
Personal Best: 3:40:15

Report for Amy Pond
Times: 4:31:25
Average Time: 4:31:25
Personal Best: 4:31:25

Report for Bill Potts
Times: 4:52:01 4:43:20 4:05:54 3:58:25 3:42:19
Average Time: 4:16:24
Personal Best: 3:42:19

Report for John Smith
Times: 4:10:55
Average Time: 4:10:55
Personal Best: 4:10:55

Report for Mickey Smith
Times: 3:51:08 3:44:10 4:35:01
Average Time: 4:03:26
Personal Best: 3:44:10

Report for Sarah Jane Smith
Times: 3:12:19
Average Time: 3:12:19
Personal Best: 3:12:19

Report for Rose Tyler
Times: 4:10:32 4:02:57 3:49:55
Average Time: 4:01:08
Personal Best: 3:49:55

Report for Rory Williams
Times: 4:25:17 3:39:20 3:35:10 3:30:17
Average Time: 3:47:31
Personal Best: 3:30:17

The team’s best time was 3:12:19 by Sarah Jane Smith.

Fall 2024 14



COSC 220 Homework #2: Introduction to Classes

Input the filename: MarData002.csv
Report for Martha Jones
Times: 3:32:15
Average Time: 3:32:15
Personal Best: 3:32:15

Report for Donna Noble
Times: 4:01:52 3:59:18
Average Time: 4:00:35
Personal Best: 3:59:18

Report for Clara Oswyn Oswald
Times: 3:51:22 4:05:19 3:40:15
Average Time: 3:52:19
Personal Best: 3:40:15

Report for Amy Pond
Times: 4:31:25 4:11:05
Average Time: 4:21:15
Personal Best: 4:11:05

Report for Bill Potts
Times: 4:52:01 4:43:20 4:05:54 3:58:25 3:42:19
Average Time: 4:16:24
Personal Best: 3:42:19

Report for John Smith
Times: 4:10:55 3:31:51 3:56:21
Average Time: 3:53:02
Personal Best: 3:31:51

Report for Mickey Smith
Times: 3:51:08 3:44:10 4:35:01
Average Time: 4:03:26
Personal Best: 3:44:10

Report for Sarah Jane Smith
Times: 3:12:19
Average Time: 3:12:19
Personal Best: 3:12:19

Report for Rose Tyler
Times: 4:10:32 4:02:57 3:49:55 3:10:58
Average Time: 3:48:36
Personal Best: 3:10:58

Report for Rory Williams
Times: 4:25:17 3:39:20 3:35:10 3:30:17
Average Time: 3:47:31
Personal Best: 3:30:17

The team’s best time was 3:10:58 by Rose Tyler.

Fall 2024 15


