
COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

1 Instructions

When you are finished submit all your work through the MyClasses page for this class. Create
a directory called Homework1, put each programming exercise into its own subdirectory of
this directory, zip the entire Homework1 directory up into the file Homework1.zip, and
then submit this zip file to Homework #1.

Make sure that you:

1. Follow the coding and documentation standards for the course as published in the
MyClasses page for the class.

2. Check the contents of the zip file before uploading it. Make sure all the files are
included.

2 Programming Exercises

In these exercises you will be using dynamically allocated array structures exclusively. You
are not to create any “program memory” arrays or use any other data structures such as the
STL vector, list, etc.

Make sure that all the memory is cleaned up before the end of the program so that there
are no memory leaks, no multiple frees, and no invalid array accesses.

1. Write a program that has the following functions. Use the main program given below
to test all of the functions.

• div: A function that takes no parameters nor returns anything, simply prints out
a division line with blank spaces above and below to make output easier to read.

• duplicateArray: This function will make a copy of an array and return a pointer
to the new array. Specifically, it takes two parameters, a pointer to an integer
array and the size of the array. It creates a new array, dynamically allocated,
copies the contents to the new array and then returns a pointer to the new array.
The parameter array should not be altered in any way.

• display: This function takes two parameters, a pointer to an integer array and
the size of the array and prints the array to the console on a single line with a
single space between the entries.

• getRandomNumbers: This function takes one parameter, the size of the array to
be constructed. It creates a new integer array, dynamically allocated, populates
it with random integers and returns a pointer to the new array.

• sort: This function takes two parameters, a pointer to an integer array and the
size of the array and sorts the array in ascending order using either the bubble
sort, insertion sort, or selection sort.

Fall 2024 1

COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

• sorted: This function takes two parameters, a pointer to an integer array and the
size of the array and determines if the array is sorted in ascending order. If it is
then the function returns true and if it is not then the function returns false.

• concat: This function takes the pointers of two integer arrays and the two array
sizes. It will concatenate the second array onto the first array. So the first array
will be altered but the second array is not to altered in any way.

• remove: This function takes four parameters, a pointer to an array, the size of
the array, a starting index and an ending index. It will remove all the elements in
the array from the starting index up to but not including the ending index. For
example, if the array A is

1 2 3 4 5 6 7 8 9 10

Then the finction call

remove(A, 10, 3, 7);

would remove the elements at indicies 3, 4, 5, and 6. The parameter array will
now have size 6 and contain the following.

1 2 3 8 9 10

Make sure that you check the validity of the start and end indexes. If the start
is greater than or equal to end then there is nothing to remove. If the start is
negative you should start removing at the 0 index. If the end is beyond the end
of the array you should remove out to the last index. Also, if the start and end
values encompass the entire array then the array should be altered to nullptr.

• shuffle: This function takes two parameters, a pointer to an integer array and the
size of the array and randomly shuffles the contents of the array. You may use
the random_shuffle function from the algorithm library if you would like
for this function.

• sub: This function takes four parameters, a pointer to an array, the size of the
array, a starting index, and an ending index. It will change the array to the sub-
array consisting of the entries from the starting index up to but not including the
ending index. For example, if the array A is

1 2 3 4 5 6 7 8 9 10

Then the finction call

sub(A, 10, 3, 7);

would change A to the elements at indexes 3, 4, 5, and 6. The parameter array
will now have size 4 and contain the following.

4 5 6 7

Fall 2024 2

COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

Make sure that you check the validity of the start and end indexes. If the start
is greater than or equal to end then there is nothing to change. If the start is
negative you should start at the 0 index. If the end is beyond the end of the array
you should stop at the last index.

• insert: This function takes five parameters, two pointers to integer arrays, their
sizes, and an integer index. It will alter the first array to have the second array
inserted into it at the position specified by the last parameter. For example, if
arrays A and B are the following, with size and sizeB their respective sizes,

1 2 3 4 5 6 7 8 9 10
31 20 22 87 0

Then the function call

insert(A, size, B, sizeB, 2);

would alter A to the following array. The B array should be unaltered.

1 2 31 20 22 87 0 3 4 5 6 7 8 9 10

Make sure that you check the validity of the position index. If it is negative then
B should be inserted at the start of the array A and if it is beyond the end of the
array the array B should be added to the end of A.

• resize: This function takes three parameters, a pointer to an integer array, the
size of the array, and another integer that will be the new size of the array. The
function will resize the array to the new given size. If the new array size is smaller
then the entries will be truncated and if the new size is larger the extra entries
will be set to 0. For example, if the array A is the following, and size is 10,

1 2 3 4 5 6 7 8 9 10

The function call

resize(A, size, 20);

will produce,

1 2 3 4 5 6 7 8 9 10 0 0 0 0 0 0 0 0 0 0

and the function call

resize(A, size, 5);

will produce,

1 2 3 4 5

For a lengthier example, the following main produced the output below.

Fall 2024 3

COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

int main() {
int size = 0;

cout << "Input array size: ";
cin >> size;

int *A = getRandomNumbers(size);

display(A, size);
sort(A, size);
display(A, size);

if (sorted(A, size))
cout << "Array is sorted." << endl;

else
cout << "Array is not sorted." << endl;

div();

delete[] A;
A = new int[10];
size = 10;

for (int i = 0; i < size; i++)
A[i] = i + 1;

int *copyA = duplicateArray(A, size);

display(A, size);
shuffle(A, size);
display(A, size);
cout << sorted(A, size) << endl;
sort(A, size);
display(A, size);
cout << sorted(A, size) << endl;

div();

int *B = new int[5];
int sizeB = 5;

for (int i = 0; i < sizeB; i++)
B[i] = rand() % 100;

display(B, sizeB);
display(A, size);
concat(A, size, B, sizeB);
display(B, sizeB);
display(A, size);

div();

// Reset A to original data.
delete[] A;
size = 10;
A = duplicateArray(copyA, size);

display(A, size);
remove(A, size, 3, 7);
display(A, size);

div();

// Reset A to original data.
delete[] A;

Fall 2024 4

COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

size = 10;
A = duplicateArray(copyA, size);

display(A, size);
sub(A, size, 3, 7);
display(A, size);

div();

// Reset A to original data.
delete[] A;
size = 10;
A = duplicateArray(copyA, size);

display(A, size);
display(B, sizeB);
insert(A, size, B, sizeB, 2);
display(A, size);

div();

// Reset A to original data.
delete[] A;
size = 10;
A = duplicateArray(copyA, size);

display(A, size);
resize(A, size, 20);
display(A, size);

div();

// Reset A to original data.
delete[] A;
size = 10;
A = duplicateArray(copyA, size);

display(A, size);
resize(A, size, 5);
display(A, size);

delete[] A;
A = nullptr;
delete[] copyA;
copyA = nullptr;
delete[] B;
B = nullptr;

return 0;
}

Output:

Input array size: 5
1198147922 458026869 772450542 1895792 231677570
1895792 231677570 458026869 772450542 1198147922
Array is sorted.

1 2 3 4 5 6 7 8 9 10
2 4 5 8 9 1 3 10 6 7
0
1 2 3 4 5 6 7 8 9 10

Fall 2024 5

COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

1

19 64 86 56 28
1 2 3 4 5 6 7 8 9 10
19 64 86 56 28
1 2 3 4 5 6 7 8 9 10 19 64 86 56 28

1 2 3 4 5 6 7 8 9 10
1 2 3 8 9 10

1 2 3 4 5 6 7 8 9 10
4 5 6 7

1 2 3 4 5 6 7 8 9 10
19 64 86 56 28
1 2 19 64 86 56 28 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5

2. In this exercise you will be updating the Array2DDyn example we went over in class.
Do the following to that code example.

(a) Fix the logic error in the delete2Darray example as we discussed in class.

(b) Move all the functions below the main and put prototypes for the functions above
the main and below the namespace.

(c) Add a function resize2Darray that will take in as its first parameter one of
these dynamic 2-D arrays, the current number of rows, the current number of
columns, the new number of rows, and the new number of columns. That is, the
array and four integers. The function should be void return type. The function
will create a new 2-D dynamic array, load in the data from the old one (as long
as there is row and column space), put zeros in the new entries, and replace the
parameter array with the new one. That is, the array that comes in as the first
parameter will be changed to the resized array.

(d) Add a function copyArray that will take in as its first parameter one of these
dynamic 2-D arrays, the number of rows, and the number of columns of the array.
The function will create a copy of the input array and return a pointer to the
copy. So the returned array and the input array will have the same values in
them but be separate in memory.

Fall 2024 6

COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

For the following example main program,

int main() {
int **A = create2Darray(3, 5);

for (int i = 0; i < 3; i++)
for (int j = 0; j < 5; j++)
A[i][j] = i + j + 1;

print2Darray(A, 3, 5);
cout << endl;

resize2Darray(A, 3, 5, 7, 8);
print2Darray(A, 7, 8);
cout << endl;

A[4][1] = A[4][3] = A[5][0] = A[5][1] = A[5][7] = 12;
print2Darray(A, 7, 8);
cout << endl;

resize2Darray(A, 7, 8, 6, 4);
print2Darray(A, 6, 4);
cout << endl;

resize2Darray(A, 6, 4, 4, 6);
print2Darray(A, 4, 6);
cout << endl;

int ** B = copyArray(A, 4, 6);
print2Darray(B, 4, 6);
cout << endl;

cout << A << endl;
cout << B << endl;

delete2Darray(A, 4);
delete2Darray(B, 4);

return 0;
}

the output is,

1 2 3 4 5
2 3 4 5 6
3 4 5 6 7

1 2 3 4 5 0 0 0
2 3 4 5 6 0 0 0
3 4 5 6 7 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 2 3 4 5 0 0 0
2 3 4 5 6 0 0 0
3 4 5 6 7 0 0 0
0 0 0 0 0 0 0 0
0 12 0 12 0 0 0 0
12 12 0 0 0 0 0 12
0 0 0 0 0 0 0 0

1 2 3 4

Fall 2024 7

COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

2 3 4 5
3 4 5 6
0 0 0 0
0 12 0 12
12 12 0 0

1 2 3 4 0 0
2 3 4 5 0 0
3 4 5 6 0 0
0 0 0 0 0 0

1 2 3 4 0 0
2 3 4 5 0 0
3 4 5 6 0 0
0 0 0 0 0 0

0x5607d74314a0
0x5607d7431470

3. In this exercise you will write a program that will load in a file to an array of structures.
The files are csv files (comma separated values), where each consecutive entry is sepa-
rated by a comma. This is a standard format for spreadsheets and most will allow you
to save in csv form. The two files you will be using for testing are StateData001.csv
and StateData002.csv, you may want to open them in a text editor and a spread-
sheet (on Linux there is one called LibreOffice Calc). This will show you both the
layout of the text you will be reading in and how it would line up in spreadsheet form.

The data in the StateData001.csv file is energy-related carbon dioxide emissions
by year in millions of metric tons of energy-related carbon dioxide for each state in the
US by year for 1970–2020. The data in the StateData002.csv file is the same but
for a subset of states and years in the same range.

Your program should first create a new struct StateData which has two fields, a string
for the state name and a pointer to a double which will store the array of numeric data
for each state. That is, from the data file, each line after the first consists of the name
of the state, that gets put into state name field, and after the name there is a list of
values for each year for that state, those will be stored into the array that is pointed
to by this pointer.

If you have not worked with structs before they are fairly simple and you can find a
detailed discussion of them in Chapter 11 of the text. There are also several examples
in the class code example archive in the Chapter 11 directory. In general structs are a
simple aggregate data type, that is, a data type that holds other data values of various
types. To create a struct with a string and a pointer to a double you could do the
following.

struct StateData {
string StateName = "";
double *data = nullptr;

};

This would be defined globally (although it would not need to be) and hence be placed
along with your function prototypes at the top of the program. I would place it above
the prototypes in case you want to send a variable of this type as a parameter in one

Fall 2024 8

COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

of your functions. These are not considered global variables since they are really a
template to a data type. They are not variables until they are instantiated, which will
happen inside the main or some other function and hence be local to that function.

These structs are just another (user-defined) data type so you can declare a variable
of this type or create an array of these things. You access the fields of this structure
with the dot notation. For example, the following block of code will declare dat as one
of these types, load Maryland into the state name, create an array of 5 doubles for the
data and populate this array.

StateData dat;
dat.StateName = "Maryland";
dat.data = new double[5];
dat.data[0] = 12.3;
dat.data[1] = 7.6;
dat.data[2] = 25.9;
dat.data[3] = 18.8;
dat.data[4] = 77.7;

You can create the same thing using a class structure as follows,

class StateData {
public:

string StateName = "";
double *data = nullptr;

};

The example code above would be the same for one of these. You may use whichever
you like. Note that these class structures are C++ code. If you work in C and not
C++ then you would use the struct syntax since classes do not exist in C.

There will be an instance of a StateData struct for each state in the file. These will
be stored in a dynamically allocated array of StateData types. Since different files
may have different listed states you cannot assume what the size of this array will be
without reading the file. You also do not know what years will be listed nor do you
know if the years listed will be contiguous or if some will be missing. One thing you
can assume is that each state that is listed will have a value of each year that is listed,
so there is no missing data.

Once the data is loaded into the program, you will print out a list of states and have
the user select one, by number. Then the program will print out a list of all the years
in the file and have the user type in the year they want. The program will then output
the data for that state and year. The program will also ask the user to input the
filename of the data file they want to load. Your program may assume that all data
files have the same structure, header line of years, then each line below that a state
name followed by a decimal value for each year. Two runs of the program are below,

Input the filename: StateData001.csv
Select a State
1. Alabama
2. Alaska
3. Arizona
4. Arkansas
5. California
6. Colorado

Fall 2024 9

COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

7. Connecticut
8. Delaware
9. District of Columbia
10. Florida
11. Georgia
12. Hawaii
13. Idaho
14. Illinois
15. Indiana
16. Iowa
17. Kansas
18. Kentucky
19. Louisiana
20. Maine
21. Maryland
22. Massachusetts
23. Michigan
24. Minnesota
25. Mississippi
26. Missouri
27. Montana
28. Nebraska
29. Nevada
30. New Hampshire
31. New Jersey
32. New Mexico
33. New York
34. North Carolina
35. North Dakota
36. Ohio
37. Oklahoma
38. Oregon
39. Pennsylvania
40. Rhode Island
41. South Carolina
42. South Dakota
43. Tennessee
44. Texas
45. Utah
46. Vermont
47. Virginia
48. Washington
49. West Virginia
50. Wisconsin
51. Wyoming
Selection: 39

Select a Year
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

Fall 2024 10

COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
Selection: 2012

The energy-related carbon dioxide emissions for Pennsylvania in millions of
metric tons in the year 2012 was 239.8.

Input the filename: StateData002.csv
Select a State
1. Alabama
2. Alaska
3. Arizona
4. Arkansas
Selection: 3

Select a Year
1970
1971
1981
1982
1983
1984
1985
1986
1988
1989
1990
1991

Fall 2024 11

COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

1992
1993
1994
1995
1996
1997
1998
1999
2003
2004
2016
2017
2018
2019
2020
Selection: 1999

The energy-related carbon dioxide emissions for Arizona in millions of
metric tons in the year 1999 was 80.62.

Here is a basic outline of the program construction.

(a) Get the filename from the user, if the file does not exist print out an error and
exit the program.

(b) Read in the first line of the file, this is the header of the spreadsheet. Find the
number of years in the spreadsheet. Remember this has to be done in general,
different files may have different years listed. Create a dynamically allocated
integer array of the correct size to store all of the years and load the years into
the array. You will probably want to use the stoi or atoi functions to convert
strings to integers.

(c) Read the rest of the file to determine the number of states that are in the file.
Create a dynamically allocated StateData array of the correct size to store all of
the state data. At this point you will need to go back to the beginning of the
file so you can read it again and populate the StateData array with names and
values. Recall that you can do this by either closing the file and repoening it or
you can clear the file (resetting the EOF bit) and then seeking the beginning.
For example, if the ifstream variable is inputFile, the following will reset the file
pointer to the beginning.
inputFile.clear();
inputFile.seekg(0L, ios::beg);

(d) Now read the file again and for each line extract the state name and data to
add to the array of StateData types. For the data, you will create a dynamically
allocated double array and store the values. You may want to use the stod or
atof functions to convert strings to numeric values. Once the array is loaded set
the data pointer in the StateData struct to the array you created. This process
is the standard parsing technique of storing the position of the previous comma,
using the find function for strings to find the next comma, extract the substring
between them, and finally use stod or atof to convert to a double.

(e) Close the file. It will not need to be reread anymore since all your data is in the
array.

Fall 2024 12

COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

(f) Print out the list of states with a number beside the state as in the examples
above. Have the user select the state by typing in the corresponding number.
Error check this input and if the value the user typed in is outside the range have
the program ask for input again until a legitimate value is entered.

(g) Then print out a list of years to select from and have the user type in the year
they wish to see. Again, error check this and if a year is input that is not in the
list have the program ask again until a legitimate year is input.

(h) Finally have the program find the correct data value for the user input and print
out a message like the ones above.

(i) Make sure that all the memory is cleaned up before the end of the program so
that there are no memory leaks, no multiple frees, and no invalid array accesses.

4. Optional Exercise for Extra Credit: This exercise is similar to previous one except
that the parsing of the data file is a little more difficult and in this case the arrays that
are being stored are not all the same length.

You will again be working with csv files (comma separated values), where each con-
secutive entry is separated by a comma. The difference here is that some of the data
entries have a comma in them (the formal names). In this case is it common to put
double quotes around the data entries.

The two files you will be using for testing are MarData001.csv and MarData002.csv.
The MarData001.csv file is displayed below. As before you may want to open them
in a text editor and a spreadsheet to see the layout of the text you will be reading in
and how it would line up in spreadsheet form. The data is fictitious data but is to rep-
resent a cross-country team’s members and their marathon times. Since each member
may have run a different number of marathons the rows of data will not always contain
the same number of entries, unlike the data in the previous exercise.

"Jones, Martha","3-32-15"
"Noble, Donna","4-1-52","3-59-18"
"Oswald, Clara Oswyn","3-51-22","4-5-19","3-40-15"
"Pond, Amy","4-31-25"
"Potts, Bill","4-52-01","4-43-20","4-5-54","3-58-25","3-42-19"
"Smith, John","4-10-55"
"Smith, Mickey","3-51-8","3-44-10","4-35-1"
"Smith, Sarah Jane","3-12-19"
"Tyler, Rose","4-10-32","4-2-57","3-49-55"
"Williams, Rory","4-25-17","3-39-20","3-35-10","3-30-17"

In this file all the entries are in double quotes and are separated by commas, and the
formal names have commas in them. The way you would read this is that Martha Jones
ran one marathon and her time was 3 hours, 32 minutes, and 15 seconds. Clara Oswyn
Oswald ran 3 marathons and her times were 3 hours, 51 minutes, and 22 seconds, 4
hours, 5 minutes, and 19 seconds, and 3 hours, 40 minutes, and 15 seconds respectively.

Your program should first create a new struct PersonTimeData which has five fields,
a string for the person’s first name, a string for the person’s middle name, a string for
the person’s last name, a pointer to a double which will store the list of marathon times

Fall 2024 13

COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

for the person, and an integer that will store the number of marathons they ran. So as
with the previous exercise each line of the file will represent a PersonTimeData struc-
ture and these will be stored in a dynamically allocated array of PersonTimeData
types. As with the last exercise, you will not know the number of people on the team
and they are of course running different numbers of marathons so the arrays of data
being stored will be of different sizes, hence the need to store the number they ran in
the struct as well.

Once the data is loaded into the program close the file, it will not be needed. Do
not do any of the calculations until the file is closed. You will now print out a team
summary as in the two example runs below. The summary will display all the times
for the person, note that single digit minutes or seconds are in two digit format, e.g.
5 minutes is represented as 05. It will also display their average time, personal best,
and the best time for the entire team and who ran it.

As with the last exercise you will load in the data from the file into dynamically
allocated arrays, one array of PersonTimeData types for the entire database and each
data type has its own dynamically allocated array of times. The times are to be stored
as doubles in hours. So for Martha Jones the time of 3:32:15 would be 3.5375 =
3 + 32/60 + 15/3600. This format will make it easier to calculate averages and find
minimums.

Input the filename: MarData001.csv
Report for Martha Jones
Times: 3:32:15
Average Time: 3:32:15
Personal Best: 3:32:15

Report for Donna Noble
Times: 4:01:52 3:59:18
Average Time: 4:00:35
Personal Best: 3:59:18

Report for Clara Oswyn Oswald
Times: 3:51:22 4:05:19 3:40:15
Average Time: 3:52:19
Personal Best: 3:40:15

Report for Amy Pond
Times: 4:31:25
Average Time: 4:31:25
Personal Best: 4:31:25

Report for Bill Potts
Times: 4:52:01 4:43:20 4:05:54 3:58:25 3:42:19
Average Time: 4:16:24
Personal Best: 3:42:19

Report for John Smith
Times: 4:10:55
Average Time: 4:10:55
Personal Best: 4:10:55

Report for Mickey Smith
Times: 3:51:08 3:44:10 4:35:01
Average Time: 4:03:26
Personal Best: 3:44:10

Fall 2024 14

COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

Report for Sarah Jane Smith
Times: 3:12:19
Average Time: 3:12:19
Personal Best: 3:12:19

Report for Rose Tyler
Times: 4:10:32 4:02:57 3:49:55
Average Time: 4:01:08
Personal Best: 3:49:55

Report for Rory Williams
Times: 4:25:17 3:39:20 3:35:10 3:30:17
Average Time: 3:47:31
Personal Best: 3:30:17

The team’s best time was 3:12:19 by Sarah Jane Smith.

Input the filename: MarData002.csv
Report for Martha Jones
Times: 3:32:15
Average Time: 3:32:15
Personal Best: 3:32:15

Report for Donna Noble
Times: 4:01:52 3:59:18
Average Time: 4:00:35
Personal Best: 3:59:18

Report for Clara Oswyn Oswald
Times: 3:51:22 4:05:19 3:40:15
Average Time: 3:52:19
Personal Best: 3:40:15

Report for Amy Pond
Times: 4:31:25 4:11:05
Average Time: 4:21:15
Personal Best: 4:11:05

Report for Bill Potts
Times: 4:52:01 4:43:20 4:05:54 3:58:25 3:42:19
Average Time: 4:16:24
Personal Best: 3:42:19

Report for John Smith
Times: 4:10:55 3:31:51 3:56:21
Average Time: 3:53:02
Personal Best: 3:31:51

Report for Mickey Smith
Times: 3:51:08 3:44:10 4:35:01
Average Time: 4:03:26
Personal Best: 3:44:10

Report for Sarah Jane Smith
Times: 3:12:19
Average Time: 3:12:19
Personal Best: 3:12:19

Report for Rose Tyler
Times: 4:10:32 4:02:57 3:49:55 3:10:58

Fall 2024 15

COSC 220 Homework #1: Pointers & Dynamically Allocated Arrays

Average Time: 3:48:36
Personal Best: 3:10:58

Report for Rory Williams
Times: 4:25:17 3:39:20 3:35:10 3:30:17
Average Time: 3:47:31
Personal Best: 3:30:17

The team’s best time was 3:10:58 by Rose Tyler.

Fall 2024 16

