COSC 220 Homework #/: Operator Overloading

1 Instructions

When you are finished submit all your work through the MyClasses page for this class. Create
a directory called Homework04, put each programming exercise into its own subdirectory
of this directory, zip the entire Homework04 directory up into the file Homework04.zip, and
then submit this zip file to Homework #4.

Make sure that you:

e Follow the coding and documentation standards for the course as published in the
MyClasses page for the class.

e Check the contents of the zip file before uploading it. Make sure all the files are
included.

e Make sure that the file was submitted correctly to MyCLasses.

All class structures are to have their own guarded specification file (.h) and implemen-
tation file (.cpp) that has the same name as the class. No inline coding in the .h files. In
addition you must create a make file that compiles and links the project on a Linux computer
with a Debian or Debian branch flavor.

2 Programming Exercises

1. This exercise is on the creation of a Point class, utilizing operator overloading. I
am going to leave the way you store the data up to you. As we discussed in class,
the concept of data hiding is that someone who uses your class structure need not
know (and should not need to deal with) how you are storing the data. The interface
functions should take care of all of this. We will discuss the mathematics involved (not
very much here). The test program below will show you what needs to be implemented
and what operators need to be overloaded. It will also show you the structure of the
returned vales as well as the formatting.

The class structure is to be named Point. It represents a point in three dimensions,
that is (z,y, z). The values of z, y, and z are all decimal values, hence a double data
type for these three entries will do here.

e The addition of two points is another point and is done by adding the respective
x, y, and z values. So in mathematical notation,

(1,21, 21) + (@2, Y2, 22) = (X1 + T2, Y1 + Y2, 21 + 22)

e The subtraction of two points is another point and is done by subtracting the
respective x, y, and z values. So in mathematical notation,

(xbyh 21) - (5U2792, 22) = (Il — X2, Y1 —Y2,21 — Zz)

Fall 2024 1

COSC 220 Homework #4: Operator Ouverloading

Multiplying a number and a point (called scalar multiplication) is just multiplying
each entry by that number. So in mathematical notation,

a-(r1,y1,21) = (@ 21,0 y1,a- 21)
This can also be done on either side of the point, that is,
(z1,y1,21) a=(a-z1,a-y1,a- 21)

We can also divide a point by a number by dividing each entry by the number.
So in mathematical notation,

(21,91, 21)/a = (21/a, 91 /a, 21 /a)

The length of a point is just the distance from the point to the origin, specifically,
The multiplication of two points will be interpreted as what is called the dot
product (or scalar product). Specifically, if the two points are p = (x1,y1, 21) and
q = (v2,Y2,22), then pxq = x1 - T3+ y1 - Y2 + 21 - 22. Note that the product of two
points is not a point but a decimal number.

Two points are equal if their x, y, and z coordinates are all equal to each other.
Specifically, (x1,y1,21) = (22, Y2, 22) means that x; = x5 and y; = yo and 27 = 25.

Given the following testing program,

int

© 00 N O Uk W N =

W NN NN NN NN NN = = e e e e e e e
O © 0 N O GR W= O © 0N U W N = O

#include <iostream>
#include "Point.h"

using namespace std;

main () {

Point pl;

Point p2(3, 5, 1)
Point p3(-2, 4, 7);
cout << pl << " " KK p2 << " " <K< p3 << endl;

Point p4 = p2;
cout << p4 << endl;

p4 = p3;
cout << p4 << endl;

p4 = p2 + p3;
cout << p4 << endl;

p4 = p2 - p3;
cout << p4 << endl;

double d = p2 * p3;
cout << d << endl;

p4d = p2;

if (p2 == p4)

Fall 2024

COSC 220 Homework #4: Operator Ouverloading

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

cout << "Points are equal." << endl;
else
cout << "Points are different." << endl;

cout << p4.length() << endl;

cout << p4 << endl;

cout << p4d.getX() << endl;
cout << pd.get¥ () << endl;
cout << pd.getZ() << endl;

p4d.setX(-5.2);
pd.setY(7.1);
pr4.setZ(3.5);

cout << p4 << endl;

cout << péd.getX() << endl;
cout << péd.getY () << endl;
cout << péd.getZ () << endl;

p4.setXYZ (3.14159, 2.718281828, 1.618033988);
cout << p4 << endl;

cout << p3 << endl;

cout << 3 x p3 << endl;
cout << p3 * 2 << endl;
cout << p3 / 4 << endl;

return 0O;

The output would be

Points are equal.
5.91608
(3, 5, 1)

—~ P 0w

-5.2, 7.1, 3.5)
-5.2

7.1
3.5
(3.14159, 2.71828, 1.61803)
(721 41 7)

(-6, 12, 21)

(741 81 14)

(-0.5, 1, 1.75)

This exercise is a continuation of Lab #4 and the last homework assignment on dy-
namically allocated two-dimensional arrays. You may want to consult Lab #4 and the
last homework to refresh your memory on the setup of the Array2D class structure as
well as its use of dynamic memory.

Fall 2024 3

COSC 220

Homework #/: Operator Overloading

(a) Take the Array2D class from Lab #4 and change the name of the class to Matrix.
The array (double pointer) should be changed from integers to an array of doubles,
the rows and cols should remain as is. If you had trouble with any part of Lab
#4 you can use the published solutions for the lab as a template to get started.

(b) Add the following to the Matrix class.

A Copy Constructor for the class.
Overloaded assignment statement for the class.

A display function that takes in a single integer parameter that specifies the
width of the column. The display of the matrix will be right justified in the
column.

Overloaded + operator. Addition of two matrices can only be done if the
number of rows and the number of columns between the two are equal. So
you can add two 3 x 5 matrices or two 7 X 4 matrices but you cannot add a
3 X b matrix to a 7 X 4 matrix. If the sizes are equal then the sum is another
matrix of the same size and each entry is the sum of the corresponding entries.
For example,

4 4 7 2 4 78 367 11 12 10 8 11
2406 8|+]105091]|= 2 9 015 9
729 88 1 70 6 2 8 9 9 14 10

If the sizes are not compatible have the function return a 1 x 1 matrix with
its only entry being 0.

Overloaded — operator. Subtraction of two matrices can only be done if the
number of rows and the number of columns between the two are equal. So
you can subtract two 3 X 5 matrices or two 7 X 4 matrices but you cannot
subtract a 3 x b matrix from a 7 x 4 matrix. If the sizes are equal then the
difference is another matrix of the same size and each entry is the difference
of the corresponding entries. For example,

4 4 7 2 4 78 367 -3 —4 4 —4 -3

2406 8[—-]105091]|= 2 -1 0 -3 7

72 9 8 8 1 70 6 2 6 -5 9 2 6
If the sizes are not compatible have the function return a 1 x 1 matrix with
its only entry being 0.
Overload the * operator so that you can take a double times a Matrix. For
example if M is a matrix then the syntax 2.4 * M would call this function.
Note that this will take a friend function in a similar manner to how the
RationalNumber class did the same thing. When you take a number times

a matrix you multiply all of the entries in the matrix by the number. For
example,

Fall 2024

COSC 220 Homework #/: Operator Overloading

4 4 7 2 4 12 12 21 6 8
3-12 406 8| = 6 12 0 18 24
729 8 8 21 6 27 24 24

e Overload the * operator so that you can take a Matrix times a double. For
example if M is a matrix then the syntax M x= 2.4 would call this function.
Note that this does not take a friend function. Again use the RationalNumber
class code as a template. When you take a matrix times a number you
multiply all of the entries in the matrix by the number. For example,

4 4 7 2 4 12 12 21 6 8
2 406 8| -3= 6 12 0 18 24
72 9 8 8 21 6 27 24 24

e Overload the stream out operator << to print the matrix (array) on one line.
The rows are to have brackets around them and the entire matrix is to have
brackets around it. The entries are to be separated by a single space. For
example, if the matrix M is

4 4 7 2 4
2406 8
729 88

then cout << M; wouldprint [[4 4 7 2 4]1([2 4 0 6 8]1[7 2 9 8 8]].

e Overload the array access operator []. This should return a pointer to
the indexed row. So the syntax M[2] will return a pointer to the row (ar-
ray) at index 2. So in our last example, M[2] will be a pointer to the row
[7 2 9 8 8]. Do range checking on this so that if the row index is out
of range the function will return nullptr instead of a memory address. A
note on this operator overload. Since the return type is a pointer to the row
array, the syntax M[2] [3] will automatically access (and update if on the
left of an assignment statement) the (2,3) position in the array. The only
downside is that with this syntax (unlike the set command) will not check
the column index for validity.

e Create a transpose function that will return the transpose of the current
matrix. The transpose is where the rows and columns are switched. So the
first row of a matrix is the first column of the transpose, the second row of
a matrix is the second column of the transpose, and so on. For example, the
transpose of

4 4 7 2 4
2406 8
729 88

18

Fall 2024)

COSC 220

Homework #/: Operator Overloading

1
2

IR SN
S O = N
CoO CO © N

4 8

e Optional Extra Credit: Overload the * yet again but this time for mul-
tiplying two matrices together. So if A and B are two matrices the syntax
A + B will call this function. To multiply two matrices the first thing is that
the number of columns of the first must be the same as the number of rows
of the second. So if A is n x m and B is m X k you can multiply the two
matrices together. If the number of columns of the first and the number of
rows of the second do not match then the multiplication is not defined. If it
is defined then the result is a matrix C that has size n x k. The entries of the
product matrix are defined as follows. Denote A and B as follows,

11 Q12 aiz -+ Qim b1 bio 513 blk
Q21 Q22 Q23 -+ Q2m b baa bag - by
A= | G311 Q32 a33 - (3y B=| ba bz b3z -+ b3y
L Ap1 Ap2 QAp3z - - Anm i i bml bm2 bm3 e bmk i
then
€11 C2 Ci3 -+ Cig
Co1 Co2 Co3 -+ Cok
AB=(C = | C31 C32 C33 - - C3
i Cnl Cp2 Cp3z - Cnk |
with

Cij = Z @itbr; = anbij + aiobaj + aisbsj + - -+ + Aibi;
t=1
In words, take the i row of A, and the j** column of B, they are the same
length. Multiply the respective entries, then add all those products up. As
for the computer function, if the sizes are not compatible have the function
return a 1 X 1 matrix with its only entry being 0.

Given the following testing program, the output is below. Note that if you do
not do the extra credit you should comment out the matrix multiplication on line
121.

#include <cstdlib>
#include <ctime>

Fall 2024

COSC 220

Homework #4: Operator Ouverloading

3 #include <iostream>
4

5 #include "Matrix.h"
6

7 using namespace std;
8

9 int main () {

10 srand (time (0));
11

12 Matrix A(3, 5, 3.14);
13 Matrix B = A;

14 Matrix C;

15

16 A.display(7);

17 cout << endl;

18

19 for (int i = 0;
20 for (int J = 0;
21 A.set (1,
22

23 A.display(7);

24 cout << endl;

25

26 A.set (10, 3, -15);
27 A.display (7);

28 cout << endl;

29

30 A.set (1, 3, -15);
31 A.display(7);

32 cout << endl;

33

34 cout << A.get (2,
35 cout << A.get (2,
36 cout << endl;

37 B.display();

38 cout << endl;

39

40 C =A = B;

41

42 A.display(7);

43 cout << endl;

44 C.display(6);

45 cout << endl;

46

a7 for (int i = 0;
48 for (int j =
49 B.set (i,
50

51 for (int i1 = 0;
52 for (int j = 0;
53 C.set (i,
54

55 B.display (7);

56 cout << endl;

57 C.display(7);

58 cout << endl;

59

60 A =B + C;

61

62 A.display (7);

63 cout << endl;

64

65 A =B - C;

66

i < A.getRows (); 1i++)
j < A.getCols(); J++)

% 1000) / 10.0);

<< endl;
<< endl;

i < B.getRows (); i++)
j < B.getCols(); Jj++)

$ 10);

°

i < C.getRows(); i++)
j < C.getCols(); j++)

% 10);

Fall 2024

COSC 220 Homework #4: Operator Ouverloading

67 A.display (7);

68 cout << endl;

69

70 for (int 1 = 0; 1 < A.getRows(); i++)
71 for (int j = 0; j < A.getCols(); j++)
72 A.set (i, Jj, (rand() % 1000) / 10.0);
73

74 A.display (7);

75 cout << endl;

76

7 B =3 % A;

78 B.display(7);

79 cout << endl;

80

81 B=AxT7;

82 B.display(7);

83 cout << endl;

84

85 B=2x*xA-"7x C;

86 B.display (7);

87 cout << endl;

88

89 A.display (7);

90 cout << endl;

91

92 A[2]1[2] = 123;

93 A[1]1[3] = -15;

94 A[0][4] = -25;

95

96 A.display (7);

97 cout << endl;

98 cout << A[O0][1] << " " << A[1][4] << "™ "™ << A[2][3] << " " << endl;
99

100 // cout << A[10][11] << endl; // Error
101

102 cout << A << endl << endl;

103

104 Matrix D (3, 4);

105 Matrix E(4, 2);

106

107 for (int i = 0; i < D.getRows(); 1i++)
108 for (int j = 0; j < D.getCols(); j++)
109 D[i][j] = rand() % 11 - 5;

110

111 for (int i = 0; i < E.getRows(); 1i++)
112 for (int j = 0; j < E.getCols(); Jj++)
113 E[i][Jj] = rand() % 11 - 5;

114

115 D.display (7);

116 cout << endl;

117

118 E.display(7);

119 cout << endl;

120

121 B =D x E;

122 B.display (7);

123 cout << endl;

124

125 cout << B << endl << endl;

126

127 B = B.transpose();

128 B.display (7);

129 cout << endl;

130

Fall 2024 8

COSC 220

Homework #4: Operator Ouverloading

131
132
133
134

cout << B << endl << endl;

return 0;

}

The output would be

3.14
.14
3.14

w

66
65.9
24.2

Index out of bounds.

66
65.9
24.2

66
65.9
24.2

72.8
Index out
0

3.14 3.14
3.14 3.14
3.14 3.14

3.14
.14
3.14

w

3.14
3.14
3.14

28.8
71.1
96.7

86.4
213.3
290.1

3.14 3.14 3.14
3.14 3.14 3.14
3.14 3.14 3.14
16.1 71.2 79.1
1.2 91.3 67.1
35 72.8 54.9
16.1 71.2 79.1
1.2 91.3 67.1
35 72.8 54.9
16.1 71.2 79.1
1.2 91.3 -15
35 72.8 54.9
of bounds.
3.14 3.14 3.14
3.14 3.14 3.14
3.14 3.14 3.14
3.14 3.14 3.14
3.14 3.14 3.14
3.14 3.14 3.14
3.14 3.14 3.14 3.
3.14 3.14 3.14 3.
3.14 3.14 3.14 3.
1 8 2
4 2 6
0 9 7
7 7 3
3 4 0
2 8 8
8 15 5
7 6 6
2 17 15
-6 1 -1
1 -2 6
-2 1 -1
63.9 26.5 50.9
64.8 13.7 17.6
4.1 98.9 3.7
191.7 79.5 152.7
194.4 41.1 52.8
12.3 296.7 11.1

3.14

3.14

3.14

63.7

98.2

85

63.7

98.2

85

63.7

98.2

85

3.14

3.14

3.14
14
14
14

6

8

4

0

6

4

6

14

8

6

2

0

20.3

32.6

56

60.9

97.8

168

Fall 2024

COSC 220

Homework #4: Operator Ouverloading

201.
497.
676.

-5.
93.
137.

28.
71.
96.

28.
71.
96.

8
1
-

447.3
453.
28.7

(o)}

78.8
108.
-5.

@0 O

63.9
64.
4.1

[e¢]

63.9
64.
4.

= oo

63.9 32.6 3.7
[[28.8 63.9 26.5 50.9 -25][71.1

4

-3

3

Wk o N

2

-14
=22

-1
-5
-5

-5
-4
-5

0

-31
40
-10

185.
95.
692.

-0.
141.

26.
13.
98.

26.
13.

1

5

23

[[2 -31][-14 40][-22 -10]]

2

-31

-14
40

22
10

[[2 -14 -22][-31 40 -101]]

356.
123.
25.9

N W

80.
35.
-48.6

N oo

50.9
17.6

50.9
-15
3.7

N

142.1
228.2
392

40.6
23.2
84

20.3
32.6
56

-25

32.6
56

64.8 13.7 -15 32.6]1[96.7 4.1 123 3.7 56]]

Fall 2024

10

