OO0
OOOn0nod
OOoOoOoOonod
OdOooOoOoOoonO
1000
1000
O0Oo0d
aoaOoao
o000

E Namespaces

<
(@)
Z
w
o
o
<

Introduction

Namespaces are an ANSI C++ feature that allows programmers to create a scope for global
identifiers. They are useful in preventing errors when two or more global declarations use
the same name.

For example, assume you are a programmer in the accounting department of a business.
Your company has purchased two libraries of C++ code from a software vendor. One of the
libraries'is designed to-handle’ customer accounts, and‘contains a class object named
payable. The other library'is designed to handle company payroll, and also has a class
object named payable. You are writing a program that integrates both libraries, but the
compiler generates an error because the two'class objects have the samé name. You cannot
modify the libraries because the software vendor does not ‘sell the source code, only libraries
of object code.

This problem can be solved when the software vendor places each library in its own
namespace. Each namespace has its own name, which must be used to qualify the name of
its members. For instance, the payable object that is part of the customer accounts library
might exist in a namespace named customer, while the object that is part of the employee
payroll library might exist in a namespace named payrol1. When you, the application pro-
grammer, work with the objects, you must specify the namespace of which the object is a
member. One way of accomplishing this is by extending the name of the object with the
namespace name, using the scope resolution operator. For example, the payable object that
is a member of the customer namespace is specified as customer: :payable, and the object
that is a member of the payrol1 namespace is specified as payrol1::payable. Another way
to specify the namespace is by placing a using namespace statement in the source file that
references the namespace’s member object. For example, the following statement (placed
near the beginning of a source file) instructs the compiler that the file uses members of the
customer namespace.

usi ng namespace customer;

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

2 Appendix E: Namespaces

Likewise, the following statement instructs the compiler that the source file uses members of
the payrol1 namespace:

using namespace payroll;

When a using namespace statement has been placed in a source file, it is no longer necessary
for statements in that source file to qualify the names of the namespace’s members with the
namespace name and the scope resolution operator.

Defining a Namespace
A namespace is defined in the following manner:
namespace namespace_name

{

declarations..

For example, look at Program E-1. It defines the test namespace, which has three members:
X, Y, and z.

Program E-1

1 /] Demonstrates a 'simple namespace
2 #include '<iostream>
3 using namespace std;
4
5 namespace test
6 {
7 int x, y, z;
8 }
9
10 int main()
1M1 {
12 test::x = 10;
13 test::y = 20;
14 test::z = 30;
15 cout << "The values are:\n";
16 cout << test::x << " " << test::y
17 << " " << test::z << endl;
18 return 0;
19 }

Program Output

The values are:
10 20 30

In Program E-1, the variables x, y, and z are defined in the test namespace’s scope. Each
time the program accesses one of these variables, test:: must precede the variable name.
Otherwise, a compiler error will occur.

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Appendix E: Namespaces

Program E-2 demonstrates how programmers can use namespaces to resolve naming
conflicts. The program defines two namespaces, test1 and test2. Both namespaces have
variables named x, y, and z as members.

Program E-2

1 /I Demonstrates two namespaces

2 #include <iostream>

3 using namespace std;

4

5 namespace test1

6 {

7 int x, y, z;

8 }

9

10 namespace test2

11 |

12 int x, y, z;

13}

14

15 1int main()

16 {

17 test1::x,=.10;

18 test1::y =.20;

19 test1::z = ,30;

20 cout << "The testl values are:\n";
21 cout << testl::x << " " << testl::.y
22 << " " << test1::z << endl;
23 test2::x = 1;

24 test2::y = 2;

25 test2::z = 3;

26 cout << "The test2 values are:\n";
27 cout << test2::x << " " << test2::y
28 << " " << test2::z << endl;
29 return 0;

30 }

Program Output

The test1 values are:
10 20 30
The test2 values are:

123

An alternative approach to qualifying the names of namespace members is to use the using
namespace statement. This statement tells the compiler which namespace to search for an
identifier, when the identifier cannot be found in the current scope. Program E-3 demon-
strates the statement.

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

4 Appendix E: Namespaces

Program E-3

Contents of nsdemo.h
1 /] This file defines a namespace named demo.

2 [/ In the demo namespace a class named NsDemo
3 /] is declared, and an instance of the class
4 [/ named testObject is defined.

5

6 namespace demo

7 A

8 class NsDemo

9 {

10 public:

11 int x, y, z;

12 b

13

14 NsDemo testObject;

15 }

Contents of Main File, PrF-3.cpp
1 I/ A demonstration of the using namespace statement.

2 #include <iostream>

3 #include "nsdemo.h"

4 using namespace std;

5 using namespace demo;

6

7 dint main()

8 {

9 testObject.x = 10;

10 testObject.y = 20;

11 testObject.z = 30;

12 cout << "The values are:\n"
13 << testObject.x << " "
14 << testObject.y << " "
15 << testObject.z << endl;
16 return 0;

17 '}

Program Output

The values are:
10 20 30

The using namespace demo; statement eliminates the need to precede testObject with
demo: :. The compiler automatically uses the namespace demo to find the identifier.

ANSI C++ and the std Namespace

All the identifiers in the ANSI standard header files are part of the std namespace. In ANSI
C++, cin and cout are written as std::cin and std: :cout. If you do not wish to specify
std:: with cin or cout (or any of the ANSI standard identifiers), you must write the follow-
ing statement in your program:

using namespace std;

© 2018 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

