
COSC 120 Project #3: Pictures or Poker Fall 2022

Contents

1 Introduction 1

2 Grading 1

3 Pictures Project 2

4 Poker Game Project 7

4.1 Program Runs . 7

4.2 Project Specifications . 10

4.3 Determining the Type of Hand . 11

4.4 Determining the Winner of Hand . 12

1 Introduction

In this project you have a choice of one of two programs to write. One is on images that can
be produced using complex numbers and the other is a multi-player game for 5-card draw poker
(without betting). You have the choice of one of two projects, do one and only one of
these. As it states in the syllabus.

Projects are to be done strictly on your own and as with all assignments the sharing
of files and code is strictly prohibited and constitutes an act of Academic Misconduct.
Furthermore the use of any electronic medium, such as code repositories, forums, blogs,
message boards, email, etc. is strictly prohibited and constitutes an act of Academic
Misconduct.

The only person you may discuss this with in any form is me. You may use the textbook, the
textbook example code, and the class example code that is posted on the MyClasses site.

When you are ready to submit your work create a folder called Project03. Put all the code
files needed for the project in the folder. Do not include the files that the IDE creates, I just want
the code files. Zip the entire Project03 folder up into a single zip file and submit it.

2 Grading

The program itself should, of course, be nicely formatted and commented and should follow all the
other rules of good programming style. Make sure you are following all the coding and documentation
standards of the class that are published on the MyClasses site for this class.

The grading of the project will take two forms, a sample run and an inspection of the code. If
the program does not run you will receive a zero for that portion. So even if the program is not
complete you will get a better grade for a partial program that runs verses a program that does not
run. So I would suggest a completion in stages approach. The run portion of the grading will test
the user interface for usability and conforming to the specifications I have outlined above. The code
inspection portion of the grade will involve commenting, readability, correct indentation, variable
names, structure and style, correctness, and conforming to specifications.

I am looking for clean, easy to read, code. A good use of functions without overuse. Commenting
that gets the point across concisely. An easy to use interface with nice looking output.

1

COSC 120 Project #3: Pictures or Poker Fall 2022

You have a choice of one of two projects,

do one and only one of these.

3 Pictures Project

This project is for you to build a Complex number class, that will handle the basic arithmetic
functions, streaming, constructions, and some comparison functions for complex numbers.

A complex number is a number of the form a + bi where a and b are real numbers and i is the
imaginary unit, i =

√
−1. a is called the real part and b is called the imaginary part, note that b

is the imaginary part and not bi. If we have two complex numbers a + bi and c + di then the four
arithmetic functions are defined as,

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)− (c + di) = (a− c) + (b− d)i

(a + bi) · (c + di) = (ac− bd) + (bc + ad)i

(a + bi)/(c + di) =
a + bi

c + di
=

ac + bd

c2 + d2
+

bc− ad

c2 + d2
i

In addition, the modulus of a complex number a + bi is
√
a2 + b2.

Create the Complex class that has the following functions and overloads. The class must have
both header and implementation files with all implementation code in the cpp file, that is, no inline
code. Since complex numbers are not a native data type in C++ your class will store two doubles,
one for the real part and one for the imaginary part. This is the only data you will need to store.
The operations defined above will simply be manipulations of these values.

• Default constructor setting the value of the complex number to 0.

• Constructor taking the real and imaginary parts as parameters.

• Constructor taking just the real part and setting the imaginary part to 0.

• Destructor.

• Functions to get and set the real parts and imaginary parts.

• A function to set both the real and imaginary parts.

• Overload the +, –, *, and / operators. Each operation will require three overloads. Complex
and Complex, Complex and double, and finally double and Complex. So expressions like z +
z, z + 5, and 5 + z will all work with each operation.

• Overload += and –= for Complex and Complex.

• Overload the ˆ symbol for exponentiation with integer exponents. So zˆ5 or zˆ-2 will work
but you do not need to overload it for other types of exponents. If you look at the testing
programs that were supplied you will notice that we put parentheses around the exponent
expressions, for example, we write (zˆ2)+c instead of just zˆ2+c. This is needed because
the order of presidents of these symbols in C++ do not match the order of presidents in
mathematics. In C++ the symbol ˆ is the logical XOR, logical connectors have a very low order
of presidents, far below the other arithmetic operators (even below the streaming operators).
Although C++ allows you to change the meaning of the arithmetic operators it does not allow
you to change the presidents order of them. That is a good thing, think about the havoc that
could result if you made + a higher presidents than *. Although the reason we just gave for

2

COSC 120 Project #3: Pictures or Poker Fall 2022

not being able to alter the presidents order is most compelling, the real reason is tied up in
computational theory and compiler/language design.

• Overload the logical operators == and != between two complex numbers. You do not need
to overload any of the others since there is not a standard ordering of the complex number
system.

• Overload the assignment operator, this is really not needed for this data type but is good
practice.

• Create a mod function to return the modulus of the complex number. That is, z.mod()
would be the modulus of z.

• Overload the input and output streaming operators. The output operator should print out
a + bi in a nice form. As in the examples below. The input operator should take two doubles
with a space between them to load into the real and imaginary parts respectively.

Once your class is written, test it with the following program. You may not alter this program.
Make sure that all of your functions are named correctly so that this testing program runs without
editing. In the files distributed with this project you will find the ComplexClassTester.cpp file,
which is the code below.

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <string>

#include "Complex.h"

void print(Complex z) {
cout << z << endl;

}

int main() {
Complex z;
Complex x(3, 7);
Complex y(-4);
Complex w(0, 2);

cout << x << ", " << y << ", " << z << ", " << w << endl;
cout << x.getReal() << ", " << x.getImag() << endl;

z.setReal(-5);
z.setImag(19);
cout << z << endl;

z.set(-12345, 471);
cout << z << endl;

cout << endl;
z.set(5, -8);
cout << z << endl;
cout << z + x << endl;
cout << z + 4 << endl;
cout << 4 + z << endl;
cout << endl;
cout << z - x << endl;
cout << z - 4 << endl;
cout << 4 - z << endl;
cout << endl;
cout << z * x << endl;
cout << z * 4 << endl;

3

COSC 120 Project #3: Pictures or Poker Fall 2022

cout << 4 * z << endl;
cout << endl;
cout << z / x << endl;
cout << z / 4 << endl;
cout << 4 / z << endl;
cout << endl;

w = z;
cout << w << ", " << x << endl;
w += x;
print(w);

cout << endl;

w = z;
cout << w << ", " << x << endl;
w -= x;
print(w);

cout << (w ˆ 2) << endl;
cout << (w ˆ 3) << endl;
cout << endl;

cout << z.mod() << endl;
cout << endl;

if (w == z)
cout << "w == z" << endl;

else
cout << "w != z" << endl;

if (w != z)
cout << "w != z" << endl;

else
cout << "w == z" << endl;

cout << endl;

cout << "Input a complex number by simply entering " << endl;
cout << "the real and imaginary parts with a space " << endl;
cout << "between them. " << endl;
cout << "c = ";
cin >> z;
cout << "c = " << z << endl;

return 0;
}

Your output should look exactly like the run below.

3 + 7i, -4, 0, 2i
3, 7
-5 + 19i
-12345 + 471i

5 - 8i
8 - 1i
9 - 8i
9 - 8i

2 - 15i
1 - 8i
-1 + 8i

4

COSC 120 Project #3: Pictures or Poker Fall 2022

71 + 11i
20 - 32i
20 - 32i

-0.706897 - 1.01724i
1.25 - 2i
0.224719 + 0.359551i

5 - 8i, 3 + 7i
8 - 1i

5 - 8i, 3 + 7i
2 - 15i
-221 - 60i
-1342 + 3195i

9.43398

w != z
w != z

Input a complex number by simply entering
the real and imaginary parts with a space
between them.
c = 2 -7
c = 2 - 7i

Once you have this working, create a new project, copy your complex class files over to the
new project, also copy the bitmap_image.hpp file to the new project. This file is contained
in the project files that accompany the project. For the main program use the following code
with no alterations. This is also contained in the project files that accompany the project, it is in
ComplexImageCreator.cpp.

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <string>

#include "Complex.h"

#include "bitmap_image.hpp"

int main() {
int size;
double cr;
double ci;
unsigned int maxiter = 1000;
double boarderRatio;
double colorExponent;
double bailout;

cout << "Input the image size (in pixels): ";
cin >> size;
cout << "Input the real value of c: ";
cin >> cr;
cout << "Input the imaginary value of c: ";
cin >> ci;
cout << "Input the maximum iteration (100-1,000): ";
cin >> maxiter;
cout << "Input the boarder ratio (0-1): ";
cin >> boarderRatio;
cout << "Input the color exponent (0-1): ";
cin >> colorExponent;

5

COSC 120 Project #3: Pictures or Poker Fall 2022

cout << "Input the bailout radius (>= 4): ";
cin >> bailout;

const unsigned int width = size;
const unsigned int height = size;

bitmap_image pic(width, height);
pic.clear();

Complex z, c(cr, ci);

cout << "Creating Image" << endl;
for (unsigned int y = 0; y < height; ++y) {

for (unsigned int x = 0; x < width; ++x) {
double zr = (4.0 * x / width - 2.0);
double zi = (4.0 * y / height - 2.0);
z.set(zr, zi);

unsigned int n = 0;
while (n < maxiter) {

z = (z ˆ 2) + c;

if (z.mod() > bailout) {
int index = 0;

if (n > maxiter * boarderRatio)
index = 255;

else if (maxiter != n)
index = (int) (pow(1.0 * n / maxiter, colorExponent) *

255);

pic.set_pixel(x, y, index, index, index);
n = maxiter;

}
n++;

}
}

}

pic.save_image("image.bmp");

cout << "Done" << endl;
return 0;

}

Compile, and run the program. When asked for input, type in the following values.

Input the image size (in pixels): 800
Input the real value of c: -.8
Input the imaginary value of c: .156
Input the maximum iteration (100-1,000): 1000
Input the boarder ratio (0-1): .25
Input the color exponent (0-1): .25
Input the bailout radius (>= 4): 4

The result will be a bitmap image file stored in your project’s working directory. Open the image
file in an image viewer and if it is not a really cool image then you may have something wrong with
the Complex class.

Some other interesting values of c you may wish to try are,

• c = −0.52 + 0.57i

6

COSC 120 Project #3: Pictures or Poker Fall 2022

• c = 0.295 + 0.55i

• c = −0.624 + 0.435i

• c = i

• c = −1.25

• c = 0.285 + 0.01i

• c = −0.70176− 0.3842i

• c = −0.835− 0.2321i

• c = −0.8 + 0.156i

• c = −0.8i

4 Poker Game Project

The objective of this project is to create a program that will play the poker game of five card draw
for between 2 and 6 players. In the game of five card draw each player is dealt 5 cards then each
player is allowed to throw away up to three cards and have them replaced with new cards from the
top of the deck. We will not play the version where you can draw 4 cards if you have an Ace. So
when the players get the initial 5 cards these are dealt in the normal manner, one card being dealt
to player 1, then one to player 2, then one to player 3, and so on cycling back to player 1 for the
second card of each hand and so on. When the player throws away any cards the cards are replaced
all at once from the top of the deck. So if player 1 throws away 2 cards these are replaced by the
top two cards from the deck.

The program should work as follows. The user is first asked how many players will be playing
the game. This input should be between 2 and 6 and the program should catch any errors in the
input and if there are, ask the user for another input. The program will then deal the cards to each
player (this will not be shown on the screen). Then one by one each player will be asked how many
cards they would like to draw. This input must be between 0 and 3 cards, again catching any errors
in the input. If the number they want to draw is greater than 0 the program should ask for the card
positions to be thrown away, one by one. These inputs should be between 1 and 5, 1 representing
the first card, 2 the second and so on. Again catch all input errors. Here there could be another
error that is not simply inputting an integer between 1 and 5. If the user inputs a card number that
they have already input the program should not replace that card again. This would be like being
dealt a card and then throwing that same card away for another card, this is not legal in poker.
After each player has had the chance to draw the program should print out the hands of all the
players and declare a winner. At this point the program ends.

4.1 Program Runs

Input number of players 2-6: 3

Player 1: AD 2S 4S 4D 6C --- One Pair
Number of cards to draw: Input the number of cards to draw 0-3: 2
Input the number of the card to replace 1-5: 2
Input the number of the card to replace 1-5: 5

Player 2: 5H 10S QD QS KH --- One Pair
Number of cards to draw: Input the number of cards to draw 0-3: 2

7

COSC 120 Project #3: Pictures or Poker Fall 2022

Input the number of the card to replace 1-5: 1
Input the number of the card to replace 1-5: 2

Player 3: 3S 3C 6S 7D 8C --- One Pair
Number of cards to draw: Input the number of cards to draw 0-3: 3
Input the number of the card to replace 1-5: 3
Input the number of the card to replace 1-5: 4
Input the number of the card to replace 1-5: 5

Player 1: AD 2H 4S 4D KS --- One Pair
Player 2: 3H 4C QD QS KH --- One Pair
Player 3: 3S 3C 8D 9H KC --- One Pair

Player 2 won this hand.

Input number of players 2-6: 1
Input was not between 2 and 6, try again
Input number of players 2-6: 8
Input was not between 2 and 6, try again
Input number of players 2-6: 3

Player 1: 6H 7S 8S JH QH --- High Card
Number of cards to draw: Input the number of cards to draw 0-3: 3
Input the number of the card to replace 1-5: 1
Input the number of the card to replace 1-5: 1
This card was already replaced, please select another card.
Input the number of the card to replace 1-5: 6
Input was not between 1 and 5, try again
Input the number of the card to replace 1-5: 2
Input the number of the card to replace 1-5: 2
This card was already replaced, please select another card.
Input the number of the card to replace 1-5: 1
This card was already replaced, please select another card.
Input the number of the card to replace 1-5: 3

Player 2: 6C 8H 9D 10C JS --- High Card
Number of cards to draw: Input the number of cards to draw 0-3: 1
Input the number of the card to replace 1-5: 1

Player 3: AD 2H 3D 9S KH --- High Card
Number of cards to draw: Input the number of cards to draw 0-3: 3
Input the number of the card to replace 1-5: 2
Input the number of the card to replace 1-5: 3
Input the number of the card to replace 1-5: 4

Player 1: 4S 4D 7C JH QH --- One Pair
Player 2: AS 8H 9D 10C JS --- High Card
Player 3: AD 5D 8C JD KH --- High Card

Player 1 won this hand.

8

COSC 120 Project #3: Pictures or Poker Fall 2022

Input number of players 2-6: 4

Player 1: 5S 5D 6C JH JD --- Two Pair
Number of cards to draw: Input the number of cards to draw 0-3: 1
Input the number of the card to replace 1-5: 3

Player 2: AH 3D 5H 8C 9S --- High Card
Number of cards to draw: Input the number of cards to draw 0-3: 3
Input the number of the card to replace 1-5: 2
Input the number of the card to replace 1-5: 3
Input the number of the card to replace 1-5: 4

Player 3: AS 3S 4S QH KD --- High Card
Number of cards to draw: Input the number of cards to draw 0-3: 2
Input the number of the card to replace 1-5: 2
Input the number of the card to replace 1-5: 3

Player 4: 2H 9D 9C JC KH --- One Pair
Number of cards to draw: Input the number of cards to draw 0-3: 2
Input the number of the card to replace 1-5: 1
Input the number of the card to replace 1-5: 4

Player 1: AC 5S 5D JH JD --- Two Pair
Player 2: AH 3H 9S 10D 10C --- One Pair
Player 3: AS 2D QS QH KD --- One Pair
Player 4: 4C 6S 9D 9C KH --- One Pair

Player 1 won this hand.

Input number of players 2-6: 3

Player 1: 2D 3S 3D 7D 8C --- One Pair
Number of cards to draw: Input the number of cards to draw 0-3: 3
Input the number of the card to replace 1-5: 1
Input the number of the card to replace 1-5: 4
Input the number of the card to replace 1-5: 5

Player 2: 4D 5H 6D 7H 9D --- High Card
Number of cards to draw: Input the number of cards to draw 0-3: 1
Input the number of the card to replace 1-5: 5

Player 3: AD 6C 6H 8S 10C --- One Pair
Number of cards to draw: Input the number of cards to draw 0-3: 2
Input the number of the card to replace 1-5: 4
Input the number of the card to replace 1-5: 5

Player 1: AS 3C 3S 3D QC --- Three of a Kind
Player 2: 4D 5H 6D 7H 8D --- Straight
Player 3: AD 2H 6C 6H JH --- One Pair

Player 2 won this hand.

9

COSC 120 Project #3: Pictures or Poker Fall 2022

In the example below, I also printed the deck of cards after the deck was shuffled so that you
can better see how the cards are dealt to each player at the beginning and also during the drawing
phase of the game.

6S 9S AH 8D 10C 6C 5S KS 2H QS AD 5C 9H 2C 8S 6D AC 10S 4H 9C 7H 3D JH
2S 3S 6H 2D 7D 9D 5H 4C 3C 10H 8H KH 8C KD JS 7C 4D AS QH 7S QC JD KC
4S QD 10D JC 5D 3H

Input number of players 2-6: 3

Player 1: 5S 6S 8D 9H QS --- High Card
Number of cards to draw: Input the number of cards to draw 0-3: 1
Input the number of the card to replace 1-5: 5

Player 2: AD 2C 9S 10C KS --- High Card
Number of cards to draw: Input the number of cards to draw 0-3: 3
Input the number of the card to replace 1-5: 2
Input the number of the card to replace 1-5: 3
Input the number of the card to replace 1-5: 4

Player 3: AH 2H 5C 6C 8S --- High Card
Number of cards to draw: Input the number of cards to draw 0-3: 3
Input the number of the card to replace 1-5: 2
Input the number of the card to replace 1-5: 3
Input the number of the card to replace 1-5: 4

Player 1: 5S 6S 6D 8D 9H --- One Pair
Player 2: AD AC 4H 10S KS --- One Pair
Player 3: AH 3D 7H 8S 9C --- High Card

Player 2 won this hand.

4.2 Project Specifications

In this project you must incorporate the following, at the very least.

1. You must create three class structures for this project, each with their own declaration file (.h)
and implementation file (.cpp), the classes and their functions are below. All data members
must be private.

(a) Card Class: The card class is an object representing a single card. The data needs to
hold a face value and suit. This class will also need accessors and mutators. It should
handle the conversion of the data to a string (such as 4H, 2D, AS) so that other functions
or classes can print the card value out without the need to redo the conversions. You
will need to sort cards so you will want a “greater” function or overload the comparison
operators. An “equal to” function may also come in handy, or overload the comparison.

(b) Deck Class: This class is for the deck of cards object. It should hold a set of 52 cards,
standard poker deck. An obvious choice is either an array or vector of card objects.
Its constructor will need to create the cards in the deck. You will also need a way to
determine where the top of the deck is so that you know the next card to be dealt. This
class should have methods for shuffling, dealing a card, and printing the deck (helps to
determine if gameplay is correct).

10

COSC 120 Project #3: Pictures or Poker Fall 2022

(c) Poker Hand Class: This class will represent one player’s hand. Hence it should hold
a set of 5 card objects, array or vector. You may also want to store the number of
cards that are currently in their hand, can be used during the dealing of cards from
the deck into the hand so you know what slot to put the new card in. You will need
functions for adding a card to the hand, printing the hand, sorting the hand, clearing the
hand, replacing a card (accessors and mutators), determining the type of hand (algorithm
below), determining the value of a hand (algorithm below), and a function to determine
if one hand is greater then another (helps for finding the winner). Although there are
numerous ways to determine a hand type and winners of a poker hand you are required
to implement the algorithms discussed below.

2. The main will control the gameplay. It will create a single deck and either an array or vector
of poker hands (players) that is of the needed size. Deal the cards to each player, ask for the
number of cards to draw and then which cards to replace. Do the replacement for each player,
print the final hands out, their types, and who won the hand. The gameplay output is to look
like the examples above, you do not need to print the deck out at the start like I did in the
last example, that was just for illustration. You will want to do this while you are coding so
that you know the initial deal and draws are being handled correctly, but not in the finished
product.

3. There must be error checking on all user inputs. You may assume that they always type in an
integer but all ranges and duplications must be checked.

4. The hands must be sorted by card face value before printing them out.

5. The hand type must be displayed when the hand is printed. A description of 5-card poker
hand types and which type wins over another type are listed at the end of this handout. I also
give you the algorithm for doing this below.

6. The winner of the hand must be displayed. I give you the algorithm for doing this below.

4.3 Determining the Type of Hand

Determining the type of hand is easier then it may seem at first sight. One suggestion is to create
an array with 13 cells and then for each face value of the cards in a hand increment the respective
cell. So if index 0 represents a 2, index 1 a 3 and so on, we have the following examples.

• 4S 4C 5C KD AC 0 0 2 1 0 0 0 0 0 0 0 1 1

• 9D 9C 9H JD JC 0 0 0 0 0 0 0 3 0 2 0 0 0

• 2C 10S JS QH KC 1 0 0 0 0 0 0 0 1 1 1 1 0

• 9C 10S JS QH KC 0 0 0 0 0 0 0 1 1 1 1 1 0

• 5D 5C 5H 7D QC 0 0 0 3 0 1 0 0 0 0 1 0 0

• 5D 5C 5H 5S QC 0 0 0 4 0 0 0 0 0 0 1 0 0

From these examples it should be clear how you can use this counting array to determine the
type of hand you have. Note that in the first example there is a 2 in the array and ones elsewhere
indicating a single pair. Example 2 has a 3 and 2 in the array hence a full house. Example 3 has
all 1’s and 0’s and the 1’s are not in a row, so this is high card and the high card is a King, the last
position of a 1. The fourth example has 5 1’s in a row, hence a straight. Note that with a straight
the Ace can be both high and low. That is A 2 3 4 5 and 10 J Q K A are both straights. The fifth

11

COSC 120 Project #3: Pictures or Poker Fall 2022

example is three of a kind and the final example is four of a kind. Note that the flush and straight
flush would not be incorporated here but if the player has a flush then all of the card suits would
be identical.

4.4 Determining the Winner of Hand

You will need to be able to compare two hands to see which is better. Note that there are cases
in Poker where there is a tie. For example, two straights with the same high card would be a tie.
There are, of course, many other cases where ties occur.

This is probably the most involved portion of the program. Since you know the type of hand, you
can determine that a full house wins over two pair fairly easily, but what if two players both have a
straight? Then you need to look at the high card in each case. Furthermore, in this situation the
Ace could be a high card or a low card. Even more interestingly, what if two players have the same
two pair, then you need to look at the “kicker”. There are numerous ways to solve this problem but
the one you will implement is as follows. This is a scheme that will associate each possible hand
with a unique number in such a way that if one hand beats out another then the winning hand will
have the larger value.

Note that the maximum value of a long (or long long on Windows) is 9, 223, 372, 036, 854, 775, 807.
The most significant digit is a 9 and interestingly enough there are 9 types of poker hands. There
are also six blocks of three digits that follow the 9 and your hand has only 5 cards in it. So it seems
plausible that you can store all the information about the specifics of the hand in these positions.

Let’s look at a few examples. Say we have this hand, which is of course one pair but we need to
look at the other cards as well.

Player 1: 5S 6S 6D 8D 9H --- One Pair

Say for a pair we use the type number 1 (since we would probably use 0 for high card) then we
would start with a value of

1, 000, 000, 000, 000, 000, 000

The most important part of the pair is the actual pair, here that is a 6 so we will put 6 in the
next block of three numbers, now the value is

1, 006, 000, 000, 000, 000, 000

From here we just have single cards left so we will use the next blocks to store their values from
highest to lowest, now the value of the hand is

1, 006, 009, 008, 005, 000, 000

Now if we had two players with a pair as below.

Player 1: 5S 6S 6D 8D 9H --- One Pair
Player 2: AD AC 4H 10S KS --- One Pair

The value of player 1 is as we calculated 1, 006, 009, 008, 005, 000, 000 and using the same scheme
the value of player 2 is 1, 014, 013, 010, 004, 000, 000. So player 2 has a larger value and hence would
win the hand, as they should since the pair of Aces would win over a pair of sixes.

If the pairs were the same in the case below,

Player 1: 5S 6S 6D 8D 9H --- One Pair
Player 2: AD 6C 6H 10S KS --- One Pair

12

COSC 120 Project #3: Pictures or Poker Fall 2022

With these two hand the value of player 1 is 1, 006, 009, 008, 005, 000, 000 and the value of player
2 is 1, 006, 014, 013, 010, 000, 000. So player 2 still has a larger value and hence would win the hand,
as they should since the next highest card, the Ace, would win over the nine.

If you had two different types then the most significant digits will be different. For example, say
that 2 pair has a type of 2 then the values of the following hands would be 2, 011, 005, 014, 000, 000, 000
and 1, 010, 014, 009, 003, 000, 000 respectively, hence player 1 would win.

Player 1: AC 5S 5D JH JD --- Two Pair
Player 2: AH 3H 9S 10D 10C --- One Pair

At this point you should see how you would proceed to create a scheme for the other hand types.
Specifically,

• High Card: Start with 0, 000, 000, 000, 000, 000, 000 (that is 0, but we put in the 0 blocks for
illustration). Put the face values of each of the cards in the hand in the 0 blocks in descending
order. For example, the following hands have the following values.

2S 5D 6H 7S JC 11,007,006,005,002,000
AD 3S 7H 10H KD 14,013,010,007,003,000
2S 3S 9H QD KH 13,012,009,003,002,000

• One Pair: Start with 1, 000, 000, 000, 000, 000, 000, put the pair face value in the first 0 block
and the other three face values i each subsequent block, in descending order. For example, the
following hands have the following values.

5S 6S 6D 8D 9H 1,006,009,008,005,000,000
AD 6C 6H 10S KS 1,006,014,013,010,000,000
AH 3H 9S 10D 10C 1,010,014,009,003,000,000

• Two Pair: Start with 2, 000, 000, 000, 000, 000, 000, put the highest pair face value in the first
0 block and the lower pair face value in the second block. Finally put the last card face value
in the third block. For example, the following hands have the following values.

AC 5S 5D JH JD 2,011,005,014,000,000,000
AD AC 10H 10S KS 2,014,010,013,000,000,000
3D 3H 9S 10D 10C 2,010,003,009,000,000,000

• Three of a Kind: Start with 3, 000, 000, 000, 000, 000, 000, put the face value of the three of a
kind in the first 0 block and the other two cards in the second and third 0 blocks in descending
order. For example, the following hands have the following values.

5C 5S 5D 7H JD 3,005,011,007,000,000,000
AD 10C 10H 10S KS 3,010,014,013,000,000,000
3D 3H 3S 10D JC 3,003,011,010,000,000,000

• Straight: Start with 4, 000, 000, 000, 000, 000, 000, put the face values of each of the cards in the
hand in the 0 blocks in descending order. For example, the following hands have the following
values.

2S 3H 4H 5S 6D 4,006,005,004,003,002,000
AD 10H JC QD KS 4,014,013,012,011,010,000
7C 8C 9H 10D JS 4,013,012,009,003,002,000

13

COSC 120 Project #3: Pictures or Poker Fall 2022

In this case you really only need the highest card value in the straight since the others would
be determined by it. So alternatively you could put the highest card face value in the first 0
block and not worry about the others. With this scheme you would have,

2S 3H 4H 5S 6D 4,006,000,000,000,000,000
AD 10H JC QD KS 4,014,000,000,000,000,000
7C 8C 9H 10D JS 4,013,000,000,000,000,000

• Flush: Start with 5, 000, 000, 000, 000, 000, 000, put the face values of each of the cards in the
hand in the 0 blocks in descending order. For example, the following hands have the following
values.

2S 5S 6S 7S JS 5,011,007,006,005,002,000
AD 3D 7D 10D KD 5,014,013,010,007,003,000
2H 3H 9H QH KH 5,013,012,009,003,002,000

• Full House: Start with 6, 000, 000, 000, 000, 000, 000, put the face value of the three of a kind
in the first 0 block and the pair face value in the second block. For example, the following
hands have the following values.

2S 2D 7S 7C 7D 6,007,002,000,000,000,000
AD AS AH 10D 10C 6,014,010,000,000,000,000
2H 2C 2D QH QD 6,013,002,000,000,000,000

• Four of a Kind: Start with 7, 000, 000, 000, 000, 000, 000, put the face value of the four of a
kind in the first 0 block and the fifth card face value in the second block. For example, the
following hands have the following values.

2S 7H 7S 7C 7D 7,007,002,000,000,000,000
AD AS AH AC 10C 7,014,010,000,000,000,000
9H QC QD QH QS 7,013,009,000,000,000,000

• Straight Flush: Start with 8, 000, 000, 000, 000, 000, 000, then as with the straight, you could
put the face values in descending order on the 0 blocks or just the high card in the first 0
block. For example, the following hands have the following values.

2S 3S 4S 5S 6S 8,006,005,004,003,002,000
AD 10D JD QD KD 8,014,013,012,011,010,000
7C 8C 9C 10C JC 8,013,012,009,003,002,000

Or using the alternative method,

2S 3S 4S 5S 6S 8,006,000,000,000,000,000
AD 10D JD QD KD 8,014,000,000,000,000,000
7C 8C 9C 10C JC 8,013,000,000,000,000,000

Note that in either case this also takes care of the highest hand possible, the Royal Flush.

14

Winning Poker Hands

Straight
Flush

Five cards in sequence, of the same suit. In the event of
a tie: Highest rank at the top of the sequence wins. The
best possible straight flush is known as a royal flush,
which consists of the ace, king, queen, jack and ten of a
suit. A royal flush is an unbeatable hand.

Four of a
Kind

Four cards of the same rank, and one side card or
‘kicker’. In the event of a tie: Highest four of a kind
wins.

Full
House

Three cards of the same rank, and two cards of a
different, matching rank. In the event of a tie: Highest
three matching cards wins.

Flush

Five cards of the same suit. In the event of a tie: The
player holding the highest ranked card wins. If
necessary, the second-highest, third-highest, fourth-
highest, and fifth-highest cards can be used to break the
tie. If all five cards are the same ranks, it is a tie. The
suit itself is never used to break a tie in poker.

Straight

Any five consecutive cards of different suits. In the
event of a tie: Highest ranking card at the top of the
sequence wins. Note: The Ace may be used at the top or
bottom of the sequence, and is the only card which can
act in this manner. A,K,Q,J,T is the highest (Ace high)
straight; 5,4,3,2,A is the lowest (Five high) straight.

Three of
a Kind

Any three cards of the same rank. In the event of a tie:
Highest ranking three of a kind wins.

Two Pair

Any two cards of the same rank together with another
two cards of the same rank. In the event of a tie:
Highest pair wins. If players have the same highest pair,
highest second pair wins. If both players have two
identical pairs, highest side card wins. If side cards are
identical it is a tie.

One Pair

Two cards of a matching rank, and three unrelated side
cards. In the event of a tie: Highest pair wins. If players
have the same pair, the highest side card wins, and if
necessary, the second-highest and third-highest side card
can be used to break the tie.

High
Card

Any hand that does not qualify under a category listed
above. In the event of a tie: Highest card wins, and if
necessary, the second-highest, third-highest, fourth-
highest and smallest card can be used to break the tie.

