COSC 120 Homework #12: Operator Overloading Fall 2022

1 Introduction

Each exercise should be its own separate project.

Remember to follow the coding and documentation standards for the class listed
on the MyClasses pages.

When you are ready to submit your work create a folder called Homework12 in that
folder have separate folders for each project, one folder per project. Put all the code files
needed for that project in its respective folder. Do not include the files that the IDE creates,
I just want the code files. Zip the entire Homework12 folder up into a single zip file and
submit it.

2 Exercises

1. In the last homework you created a class called IntList that stored a size, capacity,
and a pointer to an integer. Here you will add in some operators.

The class specification is given below. The first set of functions are as in the last
homework and the new functions and operators are below those, descriptions of the
new functions are below.

class IntList {

private:
int size = 0;
int capacity = 0;

int xlist = nullptr;

public:
IntList ();
“IntList ();

void set (int, int);

int get (int);

int get_size();

int get_capacity();

void push_back (int);

void push_front (int);

int pop_back();

int pop_front();

void concat (const IntListé&);
void increase_capacity();
void sort ();

void print ();

// New Functions

void clear ();

IntList (const IntListé&);

const IntList operator=(const IntListé&);

int& operator[] (const int¢g);

IntList operator+ (const IntListé&);
void operator +=(const IntList&);

bool operator ==(const IntListé&);




COSC 120 Homework #12: Operator Overloading Fall 2022

}i

bool operator !=(const IntListé&);

friend ostream& operator << (ostream&, const IntListé&);

clear: Will clear the contents of the integer list.
IntList (const IntListé&): Is the copy constructor.
operator=: Overloaded assignment statement.

operator[]: Overloaded array accessor. If the index is out of bounds then the
program should display an error and halt.

operator+: Will concatenate the two lists and return the result. Neither of the
two lists in the expression are to be altered.

operator+=: Will concatenate the two lists and store the result in the left list
of the expression.

operator==: Overloaded equal operator should return true if both lists are
identical and false if they differ.

operator!=: Overloaded not equal operator should return true if the lists differ
and false if they are the same.

operator <<: Output stream operator should output the list elements on one
line with a space between each element.

Once these functions are written the following main program will produce the following
output.

#include <iostream>
#include "IntList.h"

using namespace std;

void doNothing (IntList 1) {

}

cout << 1 << endl;
1[4] 1;
1[0] 1029;

int main () {

IntList 1listl, 1list2, 1list3;

listl.push_back (1
listl.push_back (-
listl.push_back (3
listl.push_back (7
listl.print();

cout << listl.get_size() << " " << listl.get_capacity() << endl;

5);
4) ;
)i
)i

listl.push_back(17);
listl.print();
cout << listl.get_size() << " " << listl.get_capacity() << endl;

for (int i = 1; i <= 10; 1i++)
list2.push_back (i) ;




COSC 120

Homework #12: Operator Overloading

Fall 2022

list2.print ();
cout << list2.get_size() << "
cout << list2.get (5)

cout << list2.get (15)

<< endl;

list2.set (5,
list2.set (15,
list2.print();

1234);
-5);

list2
list2
cout

.push_front (3);
.print () ;

<< list2.get_size() << "
cout
cout
cout

<< list2.pop_front ()
<< list2.pop_front ()
<< list2.pop_back()

list2.print();

cout << list2.get_size() << "
cout << endl;

listl.print();

list2.print () ;

cout << endl;
listl.concat (1list2);
listl.print ();

cout << listl.get_size() << "
list2.print();

cout << list2.get_size() << "
cout << endl;
listl.push_back(101);
listl.print();

cout << listl.get_size()

listl.sort ();
listl.print();
cout << listl.get_size() << "

//

New function testing
cout << "New function testing

listl.clear();
listl.push_back(5);

listl.print();

for (int 1 = 1; 1 <= 10; i++)

<< endl;

" << list2.get_capacity()

" << list2.get_capacity ()

<< endl;
<< endl;
<< endl;

" << list2.get_capacity ()

listl.get_capacity()

list2.get_capacity ()

listl.get_capacity()

listl.get_capacity ()

listl.push_back(3 * i + 1);

listl.print();

list2 = listl;
cout << endl;
listl.print();
list2.print ();

listl.set (3,
listl.set (7,

-12);
12345);

<<

<<

<<

<<

<<

<<

<<

<< endl;

endl;

endl;

endl;

endl;

endl;

endl;

endl;




COSC 120

Homework #12: Operator Overloading

Fall 2022

cout << endl;
listl.print();
list2.print();

cout << 1listl[3] << endl;
cout << 1ist2[3] << endl;
cout << list2[4] << endl;
cout << 1list2[7] << endl;

// cout << 1ist2[100]

<< endl; // Error causes program exit.

// cout << 1list3[1] << endl; // Error causes program exit.

cout << list2 << endl;

list2[4] = -16;
list2[1] = -2;
cout << list2 << endl;

list3 = listl + 1list2;
cout << endl;

cout << listl << endl;
cout << list2 << endl;

cout << list3 << endl;

if (listl == 1list2)
cout << "listl ==

if (listl != 1list2)
cout << "listl !=

if (listl == 1listl)
cout << "listl ==

doNothing (list2);
cout << list2 << endl;

list2 += 1list3;
cout << list2 << endl;

return 0;

Output:

15 -4 3 7

4 4

15 -4 3 7 17

5 8
123456782910
10 16

6

list2" << endl;

list2" << endl;

listl" << endl;

List bounds error, returning 0.

0

List bounds error.

1 2 3 451234 7 8 9 10
3123451234 7 8 9 10

11 16

3

1

10

2 3451234 7 8 9
8 16




COSC 120 Homework #12: Operator Overloading Fall 2022

15 -4 3 7 17
2 345 1234 7 8 9

15 -4 3717 2 3 45 1234 7 8 9

13 13
2 34512347 8 9
8 16

15 -4 3717 2 3 45 1234 7 8 9 101

14 26

-4 2334577891517 101 1234

14 26

New function testing ~~~"" 7T
5

54 7 10 13 16 19 22 25 28 31

54 7 10 13 16 19 22 25 28 31
54 7 10 13 16 19 22 25 28 31

54 7 -12 13 16 19 12345 25 28 31
54 7 10 13 16 19 22 25 28 31

=12

10

13

22

54 7 10 13 16 19 22 25 28 31

5 -2 7 10 -16 16 19 22 25 28 31

54 7 -12 13 16 19 12345 25 28 31

5 -2 7 10 -16 16 19 22 25 28 31

54 7 -12 13 16 19 12345 25 28 31 5 -2 7 10 -16 16 19 22 25 28 31

listl != list2

listl == 1listl

5 -2 7 10 -16 16 19 22 25 28 31

5 -2 7 10 -16 16 19 22 25 28 31

5 -2 7 10 -16 16 19 22 25 28 31 5 4 7 =12 13 16 19 12345 25 28 31 5 -2 7 10 -16 16 19 22 25 28 31

2. Now we are going to take the integer list from above and create a set structure. A set
is a collection of objects without repetition. Here we will create a set of integers. The
STL contains a set structure and although it is a bit different than a mathematical set
you can do some of these manipulations with this set structure. For this exercise you
may not use any STL functionality including vectors. The specification to the class is
below and descriptions follow.

class IntSet {

private:
int size = 0;
int capacity = 0;

int xlist = nullptr;

void removeDuplicates();
void increase_capacity();
void push_back (int) ;

public:
IntSet ();
IntSet (const IntSets&);
“IntSet ();

int get_size();

void add(const IntSet&);
void add(int);

bool in(int);

bool isEmpty();




COSC 120 Homework #12: Operator Overloading Fall 2022

void sort ();
void print();

void clear();
const IntSet operator=(const IntSet&);

IntSet operator+ (const IntSeté&);
IntSet operator-(const IntSeté&);
IntSet operatorx (const IntSeté&);

bool operator ==(const IntSeté&);

bool operator !=(const IntSeté&);

bool operator > (const IntSets);
7

bool operator <(const IntSeté&)

friend ostream& operator << (ostreamé&, const IntSet&);
}i

The functions increase_capacity, push_back, get_size, add, in, and sort
as well as the constructors and destructors are the same as in the IntList class and
should require little to no alteration. The i sEmpty function will return true if the set
is empty and false otherwise. The print function will display the contents of the list
with a comma between the entries and enclosed in {}. Clear will remove the contents
of the set. The removeDuplicates function will remove any duplicate entries in
the set. The overloaded operators are as follows, the = is assignment of one set to
another. The + is the union and * is the intersection. The — is set difference, set
difference is defined s A — B means the set of all elements in the set A that are not in
the set B. The logical operators == is set equality, that is the sets contain the same
elements, != being the opposite. The > would be the superset and < would be the
subset. So if A < B was true then A is a subset of B and if A > B is true then B
is a subset of A. Finally the << output stream operator displays the set as the print
function does. Once the class is written the following testing program will produce the
following output.

#include <iostream>

#include "IntSet.h"

using namespace std;

int main () {
srand (time (0));

IntSet setl, set2, set3;
cout << setl << endl;

for (int 1 = 1; i <= 10; 1i++)
setl.add (i) ;

cout << setl << endl;

for (int i = 5; i <= 15; i++)
setl.add(i);

cout << setl << endl;

setl.add(-5);
cout << setl << endl;




COSC 120

Homework #12: Operator Overloading

Fall 2022

setl.sort ();
cout << setl << endl;

setl.clear();
cout << setl << endl;

if (setl.isEmpty())
cout << "setl is empty." << endl;

cout << endl;

for (int i = 1; i <= 10; 1i++)
setl.add(i);

for (int 1 = 5; 1 <= 15; i++)
set2.add (1) ;

for (int i = -15; 1 <= -7; i++)
set2.add (i) ;

cout << setl << endl;
cout << set2 << endl;

set3 = setl + set2;
cout << set3 << endl;

set3 = setl * set2;
cout << set3 << endl;

set3 = setl - set2;
cout << set3 << endl;

set3 = set2 - setl;
cout << set3 << endl;

set3 = set2 - set2;
cout << set3 << endl;

cout << endl;
if (set2.in(8))

cout << "8 is in set 2." << endl;

if (set2.in(100))
cout << "100 is in set 2." << endl;

cout << endl;
setl.clear();

for (int 1 = 1; i <= 10; 1i++)
setl.add(i);

set2 = setl;

for (int i = 100; i <= 110; i++)
set2.add (i) ;

cout << setl << endl;
cout << set2 << endl;

cout << (setl < set2) << endl;
cout << (setl > set2) << endl;
cout << (setl == set2) << endl;
cout << (setl != set2) << endl;
cout << (set2 == set2) << endl;




COSC 120 Homework #12: Operator Overloading Fall 2022

setl.clear();
set2.clear();

cout << endl;

for (int 1 = 0; i < 10; i++)
setl.add(rand() % 100 + 1);

for (int i = 0; i < 10; i++)
set2.add(rand() % 100 + 1);

cout << setl << endl;
cout << set2 << endl;

setl.add(set2);
cout << endl;
cout << setl << endl;

cout << set2 << endl;

return 0;

Program output:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

, 8, 9, 10, 11, 12, 13, 14, 15, -5}
(-5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

(s, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, -15, -14, -13, -12, -11, -10, -9, -8, -7}

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, -15, -14, -13, -12, -11, -10, -9, -8, -7}
{5, 6, 7, 8, 9, 10}

{1, 2, 3, 4}

(11, 12, 13, 14, 15, -15, -14, -13, -12, -11, -10, -9, -8, -7}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110}
1

0

0

1

1

{39, 52, 66, 25, 11, 88, 62, 97, 34}
{67, 52, 31, 40, 74, 14, 27, 100, 63, 64}

{39, 52, 66, 25, 11, 88, 62, 97, 34, 67, 31, 40, 74, 14, 27, 100, 63, 64}
{67, 52, 31, 40, 74, 14, 27, 100, 63, 64}

3. For the final program use the set class you created in the previous exercise to create the
following guessing game. Create a set of 100 integers between the values of 1 and 1000
randomly. Have the user guess a number in the set. If they guess a correct number
in the set they win the game. If they do not guess correctly tell them the number of
numbers in the set that are within 10 of the number they guessed. That is, if they




COSC 120

Homework #12: Operator Overloading

Fall 2022

guess g and it is not in the set tell them the number of numbers in the set that are in
the range [g — 10, g + 10]. The player will get 10 tries to guess a number in the set.
If they do not guess any number in the set then they lose the game. Two runs of the

game are below.

Guess a number (try 1): 100

You did not guess a number
There are 2 numbers in the

Guess a number (try 2): 110

You did not guess a number
There are 1 numbers in the
Guess a number (try 3): 90
You did not guess a number
There are 3 numbers in the
Guess a number (try 4): 95
You did not guess a number
There are 1 numbers in the
Guess a number (try 5): 85
You did not guess a number
There are 4 numbers in the
Guess a number (try 6): 86
You did not guess a number
There are 4 numbers in the
Guess a number (try 7): 87
You did not guess a number
There are 4 numbers in the
Guess a number (try 8): 88
You did not guess a number
There are 4 numbers in the
Guess a number (try 9): 89
You did not guess a number
There are 3 numbers in the

Guess a number (try 10): 84

in the set.

set within

in the set.

set within

in the set.

set within

in the set.

set within

in the set.

set within

in the set.

set within

in the set.

set within

in the set.

set within

in the set.

set within

Game Over: You did not guess a number

Guess a number (try 1): 10
You did not guess a number
There are 2 numbers in the
Guess a number (try 2): 20
You did not guess a number
There are 0 numbers in the
Guess a number (try 3): 5

You did not guess a number
There are 2 numbers in the
Guess a number (try 4): 7

You did not guess a number
There are 2 numbers in the
Guess a number (try 5): 8

You did not guess a number
There are 2 numbers in the
Guess a number (try 6): 9

You did not guess a number
There are 2 numbers in the
Guess a number (try 7): 4

You did not guess a number
There are 2 numbers in the
Guess a number (try 8): 3

in the set.

set within

in the set.

set within

in the set.

set within

in the set.

set within

in the set.

set within

in the set.

set within

in the set.

set within

You guessed a number in the set.

10

10

10

10

10

10

10

10

10

in

10

10

10

10

10

10

10

of

of

of

of

of

of

of

of

of

the set.

of

of

of

of

of

of

of

your

your

your

your

your

your

your

your

your

your

your

your

your

your

your

your

guess.

guess.

guess.

guess.

guess.

guess.

guess.

guess.

guess.

guess.

guess.

guess.

guess.

guess.

guess.

guess.




