
COSC 120 Homework #10: Structs & Dynamic Memory Fall 2022

1 Introduction

Each exercise should be its own separate project.

Remember to follow the coding and documentation standards for the class listed
on the MyClasses pages.

When you are ready to submit your work create a folder called Homework10 in that
folder have separate folders for each project, one folder per project. Put all the code files
needed for that project in its respective folder. Do not include the files that the IDE creates,
I just want the code files. Zip the entire Homework10 folder up into a single zip file and
submit it.

2 Exercises

1. Write a program that stores the following data about a soccer player in a structure:

• Player’s Name

• Player’s Number

• Points Scored by Player

The name of the structure must be Player. The program should keep a vector of
players, called team. Each element is for a different player on the team. The main
that you must use for the program is below. There is also an example run below. You
will create the following functions.

• int menuselect() : This will print out the following menu to the screen and
take in (and return) the selection number. Validate the user input to make sure
that they type in a number between 1 and 6 inclusively.

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection:

• void addPlayer(vector<Player> &) : This will take the player informa-
tion from the user, create a Player with this information, and add that player to
the team vector. Validate user input so that the number of scored points is not
negative and make sure the player number is larger than zero and does not match
any other player number.

• void removePlayer(vector<Player> &) : This will print out a list of
players an the team and allows the user to select which player to remove from the

1



COSC 120 Homework #10: Structs & Dynamic Memory Fall 2022

team. The selection is to be by a list number and there should be an option 0 to
skip the deletion and not delete anyone. For example,

Team List
---------
0: Skip
1: Don Spickler
2: John Doe
3: Sam Spade
Remove Player:

• Player findMVP(const vector<Player> &) : This should find the MVP
of the team, the player with the most points scored, and return a Player struct
of that person. If there is more than one player with a maximum score you may
simply return any of them with the maximum score.

• int getTotalPoints(vector<Player> &) : Calculates and returns the
total points scored by the team.

• void printPlayerInfo(Player) : Prints the player information in the
struct. For example,

John Doe
Number: 23
Points Scored: 15

• void printTeamInfo(vector<Player> &) : This will print out the list
of team members (does not need to be sorted in any way), the total points scored
by the team, and the name of the MVP. For example,

Don Spickler
Number: 12
Points Scored: 5

John Doe
Number: 23
Points Scored: 15

Sam Spade
Number: 25
Points Scored: 10

Total Team Points = 30
MVP is John Doe

The main must be the following with no alterations.

int main() {
vector<Player> team;
bool running = true;

while (running) {
int selection = menuselect();

switch (selection) {
case 1:

addPlayer(team);
break;

case 2:
removePlayer(team);

2



COSC 120 Homework #10: Structs & Dynamic Memory Fall 2022

break;
case 3:

if (team.size() > 0)
printPlayerInfo(findMVP(team));

else
cout << "No players on the team." << endl;

break;
case 4:

cout << "Total Team Points = " << getTotalPoints(team) << endl;
break;

case 5:
printTeamInfo(team);
break;

case 6:
running = false;

}
}

return 0;
}

Example Program Run:

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection: 1

Input Player Name: Don Spickler
Input Player Number: 12
Input Player’s Points: 5

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection: 1

Input Player Name: John Doe
Input Player Number: -5
Invalid input, try again.
Input Player Number: 12
Invalid input, try again.
Input Player Number: 23
Input Player’s Points: 15

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit

3



COSC 120 Homework #10: Structs & Dynamic Memory Fall 2022

Selection: 1

Input Player Name: Sam Spade
Input Player Number: 23
Invalid input, try again.
Input Player Number: 25
Input Player’s Points: 10

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection: 3

John Doe
Number: 23
Points Scored: 15

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection: 4

Total Team Points = 30

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection: 5

Don Spickler
Number: 12
Points Scored: 5

John Doe
Number: 23
Points Scored: 15

Sam Spade
Number: 25
Points Scored: 10

Total Team Points = 30
MVP is John Doe

Options
-------
1: Add Player
2: Remove Player
3: Find MVP

4



COSC 120 Homework #10: Structs & Dynamic Memory Fall 2022

4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection: 2

Team List
---------
0: Skip
1: Don Spickler
2: John Doe
3: Sam Spade
Remove Player: 0

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection: 5

Don Spickler
Number: 12
Points Scored: 5

John Doe
Number: 23
Points Scored: 15

Sam Spade
Number: 25
Points Scored: 10

Total Team Points = 30
MVP is John Doe

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection: 2

Team List
---------
0: Skip
1: Don Spickler
2: John Doe
3: Sam Spade
Remove Player: 1

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit

5



COSC 120 Homework #10: Structs & Dynamic Memory Fall 2022

Selection: 5

John Doe
Number: 23
Points Scored: 15

Sam Spade
Number: 25
Points Scored: 10

Total Team Points = 25
MVP is John Doe

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection: 3

John Doe
Number: 23
Points Scored: 15

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection: 4

Total Team Points = 25

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection: 5

John Doe
Number: 23
Points Scored: 15

Sam Spade
Number: 25
Points Scored: 10

Total Team Points = 25
MVP is John Doe

Options
-------
1: Add Player
2: Remove Player

6



COSC 120 Homework #10: Structs & Dynamic Memory Fall 2022

3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection: 2

Team List
---------
0: Skip
1: John Doe
2: Sam Spade
Remove Player: 1

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection: 3

Sam Spade
Number: 25
Points Scored: 10

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection: 4

Total Team Points = 10

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit
Selection: 5

Sam Spade
Number: 25
Points Scored: 10

Total Team Points = 10
MVP is Sam Spade

Options
-------
1: Add Player
2: Remove Player
3: Find MVP
4: Calculate Total Team Points
5: Print Team Information
6: Quit

7



COSC 120 Homework #10: Structs & Dynamic Memory Fall 2022

Selection: 6

2. This exercise is to create a structure that acts like an STL vector. This one will simply
store integers and have only a fraction of the functionality but it will require you to
code several functions that the vector preforms with respect to memory management.

Create a struct called IntList that will store a size, capacity, and a pointer to an
integer (array), as below. The capacity is the amount of space in the array that is
pointed to by list. The size is how many elements are currently in the list. So if your
array pointed to by list has 25 cells and you are using just the first 13 of those cells
then the size is 13 and the capacity is 25.

struct IntList {
int size = 0;
int capacity = 0;
int *list = nullptr;

};

Now create the following functions to be used on the IntList. The prototypes are
below and descriptions of these functions follow.

void set(IntList&, int, int);
int get(const IntList&, int);
int get_size(const IntList&);
int get_capacity(const IntList&);
void push_back(IntList&, int);
void push_front(IntList&, int);
int pop_back(IntList&);
int pop_front(IntList&);
void concat(IntList&, const IntList&);
void increase_capacity(IntList&);
void destroy(IntList&);
void sort(IntList&);
void print(IntList&);

• set: Will take the list and two integers, the first is the position to place the
element and the second is the element to put into the array. If the position is out
of bounds the function should display an error that you are out of bounds and do
nothing to the array.

• get: Will take the list and a position and return the element in the array at that
position. If the position is out of bounds the function should display an error that
you are out of bounds and return 0.

• get_size: Will return the size of the list, that is, the number of elements in the
list.

• get_capacity: Will return the capacity of the list, that is, the number of cells
available for storage.

• push_back: This will insert the integer onto the back of the list. If the capacity
of the array is not large enough for the entry to be added the increase_capacity
function should be called to adjust the size of the array.

8



COSC 120 Homework #10: Structs & Dynamic Memory Fall 2022

• push_front: This will insert the integer onto the front of the list. If the capacity
of the array is not large enough for the entry to be added the increase_capacity
function should be called to adjust the size of the array.

• pop_back: This will remove the integer from the back of the list and return it.

• pop_front: This will remove the integer from the front of the list and return it.

• concat: This will concatenate the two lists together and store the result in the
first list parameter. The new capacity and size are to be the sum of the sizes of the
two input lists. That is, they should be the smallest size that will accommodate
the two lists.

• increase_capacity: This will increase the capacity of the list. If the list is
empty, size 0, then the new capacity is to be 1. Otherwise the capacity should
be doubled. When the capacity is increased the values in the array and the size
should no be altered. So if the current capacity is 8 with a size of 3 storing the
numbers 5, 2, and 9 then when the capacity is increased to 16 it should still have
a size of 3 storing the numbers 5, 2, and 9.

• destroy: This will delete the array storage from memory.

• sort: This will sort the list from lowest to highest. Use either the bubble sort,
selection sort, or insertion sort to do this. Do not use or even include the algorithm
library.

• print: This will print the list on a single line with a space or two between the
elements.

Once these functions are written the following main program will produce the following
output.

int main() {
IntList list1, list2;

push_back(list1, 15);
push_back(list1, -4);
push_back(list1, 3);
push_back(list1, 7);
print(list1);
cout << get_size(list1) << " " << get_capacity(list1) << endl;
push_back(list1, 17);
print(list1);
cout << get_size(list1) << " " << get_capacity(list1) << endl;

for (int i = 1; i <= 10; i++)
push_back(list2, i);

print(list2);
cout << get_size(list2) << " " << get_capacity(list2) << endl;

cout << get(list2, 5) << endl;
cout << get(list2, 15) << endl;

set(list2, 5, 1234);
set(list2, 15, -5);
print(list2);

push_front(list2, 3);

9



COSC 120 Homework #10: Structs & Dynamic Memory Fall 2022

print(list2);
cout << get_size(list2) << " " << get_capacity(list2) << endl;

cout << pop_front(list2) << endl;
cout << pop_front(list2) << endl;
cout << pop_back(list2) << endl;

print(list2);
cout << get_size(list2) << " " << get_capacity(list2) << endl;

cout << endl;
print(list1);
print(list2);

cout << endl;
concat(list1, list2);
print(list1);
cout << get_size(list1) << " " << get_capacity(list1) << endl;
print(list2);
cout << get_size(list2) << " " << get_capacity(list2) << endl;

cout << endl;
push_back(list1, 101);
print(list1);
cout << get_size(list1) << " " << get_capacity(list1) << endl;

sort(list1);
print(list1);
cout << get_size(list1) << " " << get_capacity(list1) << endl;

destroy(list1);
destroy(list2);

return 0;
}

Output:

15 -4 3 7
4 4
15 -4 3 7 17
5 8
1 2 3 4 5 6 7 8 9 10
10 16
6
List bounds error, returning 0.
0
List bounds error.
1 2 3 4 5 1234 7 8 9 10
3 1 2 3 4 5 1234 7 8 9 10
11 16
3
1
10
2 3 4 5 1234 7 8 9
8 16

15 -4 3 7 17
2 3 4 5 1234 7 8 9

15 -4 3 7 17 2 3 4 5 1234 7 8 9
13 13
2 3 4 5 1234 7 8 9

10



COSC 120 Homework #10: Structs & Dynamic Memory Fall 2022

8 16

15 -4 3 7 17 2 3 4 5 1234 7 8 9 101
14 26
-4 2 3 3 4 5 7 7 8 9 15 17 101 1234
14 26

3. This exercise is a simple use of the structure and functions you created in the previous
exercise. Create a new project and copy all the code used for the IntList structure
over to the new project. Now write a main that uses IntList and its functions to
roll a pair of dice the number of times the user selects. Store the sum of the two die for
each individual roll into a IntList structure. Then go through the rolls and count
all of the 2’s, 3’s, 4’s, . . . , 12’s. These counts should be stored into another IntList
structure. Finally print out a list of the counts and a list of the probabilities for each
roll. You may only use the IntList structure and its functions to store the data, no
arrays, no vectors, not any other type of data structure. Also, in the main you may
not access any of the fields of the IntList structure directly, all access is to be done
through the support functions.

Example Program Run:

Input the number of rolls: 1000000

Counts
======
2: 27552
3: 55946
4: 83232
5: 111158
6: 138927
7: 166512
8: 138379
9: 111200
10: 83569
11: 55633
12: 27892

Probabilities
=============
2: 0.027552
3: 0.055946
4: 0.083232
5: 0.111158
6: 0.138927
7: 0.166512
8: 0.138379
9: 0.1112
10: 0.083569
11: 0.055633
12: 0.027892

11


