
COSC 120 Homework #13: Recursion Fall 2022

1 Introduction

Each exercise should be its own separate project.

Remember to follow the coding and documentation standards for the class listed
on the MyClasses pages.

When you are ready to submit your work create a folder called Homework13 in that
folder have separate folders for each project, one folder per project. Put all the code files
needed for that project in its respective folder. Do not include the files that the IDE creates,
I just want the code files. Zip the entire Homework13 folder up into a single zip file and
submit it.

2 Exercises

1. You may recall that Pascal’s triangle from your previous mathematics classes. The
entries in Pascal’s triangle are called combinations since if we want to know how many
ways to select k objects from a set of n objects we simply go to the nth row and kth

column of the triangle and read off the number. The row and column numbers start
at 0. So to find out how many ways you can select 2 objects from a set of 5 we go to
row number 5 and column number 2 and see that there are 10 ways to choose 2 from
5. We denote n choose k mathematically as(

n
k

)

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

You may also recall that the way to get any entry in the middle of the triangle you
simply take the sum of the entry above the one you are calculating and the entry one
above and one to the left of the one you are calculating. So in mathematical terms,(

n
k

)
=

(
n− 1
k

)
+

(
n− 1
k − 1

)

1



COSC 120 Homework #13: Recursion Fall 2022

Of course, if n or k is 0 then the value is 1, if n = k the value is 1, and we will define
anything outside these ranges the value is 0. That is, if n or k are negative or if k > n
we will simply have the program return 0. Create a function,

long comb(long n, long k)

That will return n choose k recursively by first checking the stopping conditions de-
scribed above and then recursing on n− 1 choose k and n− 1 choose k − 1.

Then write a program that uses this recursive function to calculate n choose k. A
couple runs are below.

Enter n and k (integer) with a space between them: 5 2
5 choose 2 = 10

Enter n and k (integer) with a space between them: 10 4
10 choose 4 = 210

Enter n and k (integer) with a space between them: 6 3
6 choose 3 = 20

Enter n and k (integer) with a space between them: 12 12
12 choose 12 = 1

Enter n and k (integer) with a space between them: 15 16
15 choose 16 = 0

Enter n and k (integer) with a space between them: 15 7
15 choose 7 = 6435

2. As you know, a Palindrome is a string that is the same written in either direction. For
example, “A Toyota” or “Eva, can I see bees in a cave?”. We can determine if a string
is a palindrome recursively. Take a string and compare the first letter with the last
letter, if the letters are the same you compare the second and second to last, and so
on until you get to the middle of the string. Create a function,

bool isPal(const string& str, int startIndex, int endIndex)

that will return false if the characters in the start and end are not the same, true if it
makes it to the middle of the string and recurses to the next letter positions to check
otherwise. Create a program to check input palindromes using this recursive function.
A couple runs are below.

Enter a string, no spaces and all lower case: evacaniseebeesinacave
evacaniseebeesinacave is a palindrome.

Enter a string, no spaces and all lower case: atoyota
atoyota is a palindrome.

Enter a string, no spaces and all lower case: help
help is not a palindrome.

3. In the study of chaos and dynamics there are two sequences, like the Fibonacci sequence
but more complex, that come up. These are sometimes called Q numbers and D
numbers. The D sequence is defined to be D(1) = 1, D(2) = 1, and

D(n) = D(D(n− 1)) + D(n− 1 −D(n− 2))

2



COSC 120 Homework #13: Recursion Fall 2022

The Q sequence is defined to be Q(1) = 1, Q(2) = 1, and

Q(n) = Q(n−Q(n− 1)) + Q(n−Q(n− 2))

Obviously both of these functions are recursive.

Write a recursive function D that takes in a single long parameter n and returns a long
that is the value of D(n). Then write a recursive function Q that takes in a single long
parameter n and returns a long that is the value of Q(n). Once these functions have
been written create a main that will ask the user for a value of n and print out each of
the values of the Q and D functions from 1 to n. That is, D(1), D(2), D(3), . . . , D(n)
and the sequence Q(1), Q(2), Q(3), . . . , Q(n). All of the printing is to be done in the
main and no printing is to be done in the functions. A sample run is below,

Input n: 25
Q Numbers: 1 1 2 3 3 4 5 5 6 6 6 8 8 8 10 9 10 11 11 12 12 12 12 16 14
D Numbers: 1 1 2 2 2 3 4 4 4 4 5 6 7 8 8 8 8 8 8 9 10 10 10 11 13

4. In class we discussed the Towers of Hanoi puzzle and its recursive solution. We will
extend this puzzle to one using 4 pegs instead of three. As you may suspect the 4 peg
version can be solved in fewer moves since you will have two temporary pegs instead
of just one.

Before we get into the 4 peg version take the code for the three peg version and add in
the ability for the hanoi function to count the number of moves that have been made.
This is probably easiest done by adding an integer parameter to the function, passed
by reference, and each time a move is made increment the counter.

Now create another recursive function called hanoi4 that will do the 4 peg version.
Here is how the 4 peg version works. If the number of disks is 0 then there is nothing
to do, just return from the function. If the number of disks is 1, just move from the
starting peg to the ending peg. If the number of disks is 2 or more then first solve the
problem for n− 2 disks (yes, n− 2 not n− 1) from the start peg to the first temporary
peg, using the second temporary peg and the end peg as the first and second temporary
pegs respectively. Then do three moves, start peg to second temporary peg, start peg
to end peg, then the second temporary peg to the end peg. Then solve the problem
again on n − 2 disks from the first temporary peg to the end peg using the start peg
and the second temporary peg as the first and second temporary pegs respectively.
Also include the move counting like you did with the three peg version.

Write a main that will ask the user for the number of disks, have the program print
out the list of moves for both the 3 peg and 4 peg versions along with the number of
moves for each. Runs on 3, 4, and 5 disks are below. In each of these we have the
starting peg as A, the ending peg as B and the temporary peg as C for the three peg
version and pegs C and D for the four peg version.

Enter the number of disks: 3
The solution for n = 3 disks. Using 3 pegs.
Move A to B

3



COSC 120 Homework #13: Recursion Fall 2022

Move A to C
Move B to C
Move A to B
Move C to A
Move C to B
Move A to B
Number of moves in the solution = 7

The solution for n = 3 disks. Using 4 pegs.
Move A to C
Move A to D
Move A to B
Move D to B
Move C to B
Number of moves in the solution = 5

Enter the number of disks: 4
The solution for n = 4 disks. Using 3 pegs.
Move A to C
Move A to B
Move C to B
Move A to C
Move B to A
Move B to C
Move A to C
Move A to B
Move C to B
Move C to A
Move B to A
Move C to B
Move A to C
Move A to B
Move C to B
Number of moves in the solution = 15

The solution for n = 4 disks. Using 4 pegs.
Move A to B
Move A to C
Move B to C
Move A to D
Move A to B
Move D to B
Move C to D
Move C to B
Move D to B
Number of moves in the solution = 9

Enter the number of disks: 5
The solution for n = 5 disks. Using 3 pegs.
Move A to B
Move A to C
Move B to C
Move A to B
Move C to A
Move C to B
Move A to B
Move A to C

4



COSC 120 Homework #13: Recursion Fall 2022

Move B to C
Move B to A
Move C to A
Move B to C
Move A to B
Move A to C
Move B to C
Move A to B
Move C to A
Move C to B
Move A to B
Move C to A
Move B to C
Move B to A
Move C to A
Move C to B
Move A to B
Move A to C
Move B to C
Move A to B
Move C to A
Move C to B
Move A to B
Number of moves in the solution = 31

The solution for n = 5 disks. Using 4 pegs.
Move A to D
Move A to B
Move A to C
Move B to C
Move D to C
Move A to D
Move A to B
Move D to B
Move C to A
Move C to D
Move C to B
Move D to B
Move A to B
Number of moves in the solution = 13

5


