COSC 220 Project #2: Linked Lists

Contents
1 Introduction & Instructions

2 Adding More Functionality to the Linked List Class
2.1 Linked List Class with a Tail
2.1.1 Test Program for Linked List with Tail
2.1.2 Program Output
2.2 Doubly Linked List Class
2.2.1 Test Program for Doubly Linked List
2.2.2 Program Output
2.3 Extra Credit: Doubly Linked List Class with an Iterator
2.3.1 Test Program for Doubly Linked List with Iterator
2.3.2 Program Output

3 Algorithm and Structure Analysis
3.1 Timing Processes in General
3.2 Timing Insertions Lo

3.3 Timing Sorts

4 Application: Scalable Vector Graphics (SVG) Files
4.1 Shape Inheritance Hierarchy Description
4.2 User Interface Specifications
4.2.1 User Interface Specifications Details
4.3 SVG Object and File Syntax
4.3.1 Rectangle & Square
4.3.2 Circle
4.3.3 Triangle L
4.3.4 SVG File Structure
4.3.5 Calculating the View Box Values
4.4 More Details for the Application
4.4.1 User Friendliness L
4.4.2 Database Data Structureo

Fall 2024

COSC 220 Project #2: Linked Lists

4.4.3 Modularityo)
444 Memory Management Lo Lo 5Y)
4.5 Extra Credit: Dialog Boxes 55

1 Introduction & Instructions

When you are finished submit all your work through the MyClasses page for this class. Create
a directory called Project02, put each programming exercise into its own subdirectory of this
directory, zip the entire Project02 directory up into the file Project02.zip, and then submit
this zip file to Project #2.

Make sure that you:

e Follow the coding and documentation standards for the course as published in the
MyClasses page for the class.

e Check the contents of the zip file before uploading it. Make sure all the files are
included.

e Make sure that the file was submitted correctly to MyCLasses.

All non-templated class structures are to have their own guarded specification file (.h)
and implementation file (.cpp) that has the same name as the class. All templated class
structures are to be guarded and written entirely in their (.h) file. No inline coding in the
class specification. In addition you must create a make file that compiles and links the
project on a Linux computer with a Debian or Debian branch flavor.

This project is set up as a series of exercises centered around linked lists, their function
and uses. So it is more of a couple homework/lab assignments instead of a single large
application program.

2 Adding More Functionality to the Linked List Class

Here we will be creating two new classes that are built on the linked list class we went over
in lecture. The first will add a tail pointer and more convenience functions to the list and
the second will be to convert that list into a doubly linked list. There is a third exercise that
is for extra credit and it is to additionally add an iterator to the doubly linked list structure
to increase the efficiency of the structure.

Fall 2024 2

COSC 220 Project #2: Linked Lists

2.1 Linked List Class with a Tail

For this exercise we will add some functionality to the linked list structure that we developed
in class and turn it into a more general use structure.

Our first step is to make the bare bones linked list class we developed from the text into
a more useful general storage structure (sometimes referred to as a collection class). Take
the templated linked class we developed in lecture, use the third one that has the ListNode
as an inner class structure and do the following.

1. Change the name of the class to TLinkedList. We may be including several different
linked list structures in some of these programs and we do not want the names to match.
I would also change the name of the file to TLinkedList .h, again to keep filenames
from clashing.

2. Although we will not be writing any inline code for these structures you may keep the
inline code of the constructor of the ListNode inner class, for now.

3. Change the name of the appendNode function to push_back. This is a more common
name for the C++ STL operation of appending data to the end of a list.

4. Add in another pointer to a ListNode called tail to the private section of the TLinkedList
class. We will of course keep the head pointer to the front of the list, the new tail pointer
is to always point to the last node in the linked list. If the list is empty, then the tail
pointer, as with the head pointer is to be nullptr.

5. Update the push_back, insertNode, and deleteNode functions to correctly keep
the tail pointing to the last node in the list. If the list is empty then the tail, as with
the head, should be nullptr. The insertNode and deleteNode functions will not
change too much but the push_back function will be drastically different. Since you
have a pointer to the last item you only need to attach the new node to the tail and
then adjust the tail to the new node.

6. Add in a copy constructor and overloaded assignment operator.
7. Add in a push_front function that will add a new node to the beginning of the list.

8. Add a pop_front function that will remove the first node in the list and return the
value stored in that node. Here we have a small problem. What if the list is empty?
In this case we clearly cannot return a value since no value exists. We have actually
encountered this before in different situations but worked around it. We could simply
return a default object (type T) but there is a problem with this, a default value does
not signal an error of any kind and the default value is a legitimate value making it
seem like there is an element returned when there was no element to return. This
is where the use of exceptions come in handy. If we throw an exception (crash the
program) we do not need to return a value from the function and at the same time
communicate that an error has occurred. In the main, if we place this function call in

Fall 2024 3

COSC 220 Project #2: Linked Lists

10.

11.

12.

13.

14.

15.

16.

17.

18.

a try-catch block we can also stop the program from crashing. We can use the simplest
case of exception handling here to produce exactly what we need. We could be fancier
with the exception handling structure but it is really not needed. So if we try to pop
the front with an empty list we will throw an exception with string type that simply
says Empty List Exception.

Add a pop_back function that will remove the last node in the list and return the value
stored in that node. Same setup as pop_front function in that a string exception of
Empty List Exception is returned if the list is empty.

Add in a function peekHead that takes no parameters and returns the value stored
in the first node. In this function, unlike pop_ front, no nodes are to be deleted from
the list. Again we run the risk of trying to peek into an empty list. If the list is empty
the function should throw an exception string of Null Pointer Exception.

Add in a function peekTail that takes no parameters and returns the value stored in
the last node. In this function no nodes are to be deleted from the list. Again we run
the risk of trying to peek into an empty list. If the list is empty the function should
throw an exception string of Null Pointer Exception.

Add in a function clear that takes no parameters and removes all the nodes from
the list.

Add in a function length that takes no parameters and returns the number of nodes
in the list.

Add in a function get that takes one integer parameter of the index to return (thinking
of the list as an array). The function should return the value of the node at the given
index position. Here we run into two possible problems, what if the list is empty
and what if the index is outside the bounds of the list? If the list is empty have the
function throw an exception with string Empty List Exception and if the index
is outside the bounds of the array have the function throw an exception with string
Index Out of Bounds Exception.

Add in a function set that takes two parameters, an integer parameter of the index to
alter (thinking of the list as an array) and the second a value of type T to store in the
node. The same two possible problems could happen here as with the get function,
handle them the same way as you did with get.

Overload the indexing operator []. Again, there are the same considerations here as
with get and set. Handle them in the same manner.

Keep the displayList function as in the example code.

Add in a stream out operator that displays the list contents on one line with commas
between the elements and square brackets around the entire list, for example,

[7489, 4279, 3010, 987654321, 2352]

Fall 2024 4

COSC 220 Project #2: Linked Lists

19.

Add in a sort function that will create a new list with the same contents as the original
list but in sorted order. As we discussed in class, all we need to do is create an empty
list, then for each element in the original list, insert it into the new list. Finally we will
return the new list. The original list will be unaltered. So for example, the following
will replace list L2 with a sorted version of L1, but L1 will not change.

L2 = Ll.sort();
If we did want to alter L1 to sorted form all we would need to do is,

L1 = Ll.sort();

Make sure you test for memory leaks, very easy to get them when dealing with linked
lists. Also, with the indexing operator overloaded you may be tempted to take the lazy way
out when writing the copy constructor or overloaded assignment operator. Don’t do it. The
most efficient way is to traverse the list with pointers. The fewer times you need to move a
pointer down the list the faster the execution will be. I will be looking at the efficiency of
your code.

2.1.1 Test Program for Linked List with Tail

#include <ctime>
#include <iostream>

#include "TLinkedList.h"

using namespace std;

template <class T> void displayHeadTail (TLinkedList<T> &);

void div(string s = "") {
cout << "\n" << § << " — \n\n";

}

int main () {
srand (time (0));
TLinkedList<int> 1st;

div ("Push back and delete tests ");

1st
1st
1st
1st

1st

.push_back (12)
.push_back (4) ;
.push_back (54);
.push_back (10)

’

’
I

.displayList();

cout << endl;
displayHeadTail (1st);

1lst
1lst
1lst

1st

.push_back (101) ;
.push_back (17);
.push_back (21);

.displayList();

cout << endl;
displayHeadTail (1st);

Fall 2024)

COSC 220 Project #2: Linked Lists

lst.deleteNode (12);

lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.deleteNode (101);

lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.deleteNode (1234);

lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.deleteNode (21);

lst.displayList () ;
cout << endl;
displayHeadTail (1st);

lst.push_back
1st.push_back
lst.push_back
1st.push_back

112);
14);
154) ;
110);

lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.clear();
displayHeadTail (1st);

div ("Insert Tests ");

lst.clear();
lst.insertNode (45);
lst.displayList () ;
cout << endl;
displayHeadTail (1st);

lst.insertNode (21);
lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.insertNode (57);
lst.displayList () ;
cout << endl;
displayHeadTail (1st);

for (int i = 0; 1 < 10; i++)
lst.insertNode (rand() % 100);

lst.displayList();
cout << endl;
displayHeadTail (1st);

div ("Push front tests ");

lst.clear();

Fall 2024 6

COSC 220 Project #2: Linked Lists

lst.push_front (12);
lst.displayList () ;
cout << endl;
displayHeadTail (1st);

lst.push_front (15);
lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.push_front (25);
lst.displayList();
cout << endl;
displayHeadTail (1st);

for (int i = 0; i < 10; i++)
lst.push_front (rand() % 100);

lst.displayList () ;
cout << endl;
displayHeadTail (1st);

div ("Pop front and back with indexing tests ");

try {
cout << lst.pop_front () << endl;
lst.displayList () ;
cout << endl;
displayHeadTail (1st);

cout << lst.pop_front () << endl;
lst.displayList();

cout << endl;

displayHeadTail (1st);

cout << lst.pop_front () << endl;
lst.displayList () ;

cout << endl;

displayHeadTail (1st);

cout << lst.pop_front () << endl;
lst.displayList();

cout << endl;

displayHeadTail (1st);

cout << lst.pop_back() << endl;
lst.displayList () ;

cout << endl;

displayHeadTail (1st);

cout << lst.pop_back() << endl;
lst.displayList();

cout << endl;

displayHeadTail (1st);

cout << lst.pop_back() << endl;
lst.displayList();

cout << endl;

displayHeadTail (1st);

} catch (string err) {
cout << err << endl;

Fall 2024 7

COSC 220 Project #2: Linked Lists

try {
cout << 1lst[5] << endl;
cout << 1lst[2] << endl;
cout << 1lst[6] << endl;

cout << 1lst[21] << endl;
} catch (string err) {
cout << err << endl;

}

lst.displayList();
cout << endl;

try {
1st[5] = 17;
1st[1] = 29;
1st[3] = 11;
1st[52] = 7;

} catch (string err) {
cout << err << endl;

}

lst.displayList();
cout << endl;
displayHeadTail (1st);

try {
lst.set (5, —-17);
lst.set (1, -29);
lst.set (3, -11);
lst.set (52, -7);

} catch (string err) {
cout << err << endl;

}

lst.displayList () ;
cout << endl;
displayHeadTail (1st);

div("CC and = tests ");

TLinkedList<int> L1;
for (int i = 0; i < 5; i++)
L1l.push_back(rand() % 10000 + 1);

TLinkedList<int> L2 = LI1;
TLinkedList<int> L3 (L1);

Ll.displayList();
cout << endl;
L2.displayList();
cout << endl << endl;
L3.displayList();
cout << endl;

L1[3] 1234567;
L3[3] = 7654321;

Ll.displayList();
cout << endl;
L2.displayList ();
cout << endl;
L3.displayList();
cout << endl << endl;

Fall 2024 8

COSC 220

Project #2: Linked Lists

L3 = L2 = L1;

Ll.displayList();
cout << endl;
L2.displayList();
cout << endl;
L3.displayList();
cout << endl << endl;

L1[3] = 987654321;
L2[1] = -25;

Ll.displayList();
cout << endl;
L2.displayList();
cout << endl;
L3.displayList();
cout << endl << endl;

L1l = L1;
L1l.displayList ();
cout << endl;

div ("Sort and Stream Tests ");

cout << L1 << endl;
cout << L2 << endl;
cout << L3 << endl;
cout << endl;

Ll = Ll.sort();
L2 L2.sort ();
L3 = L3.sort();

cout << L1 << endl;
cout << L2 << endl;
cout << L3 << endl;

return 0O;

}

template <class T> void displayHeadTail (TLinkedList<T> &L) {
cout << "Head: ";
try {
cout << L.peekHead() << endl;
} catch (string s) {
cout << s << endl;

}

cout << "Tail: ";
try {

cout << L.peekTail() << endl;
} catch (string s) {

cout << s << endl;

}

2.1.2 Program Output

Push back and delete tests ---————"-—"""""""""""""""""""""7""-

12 4 54 10
Head: 12
Tail: 10

Fall 2024

COSC 220 Project #2: Linked Lists

12 4 54 10 101 17 21

Head: 12

Tail: 21

4 54 10 101 17 21
Head: 4

Tail: 21

4 54 10 17 21
Head: 4

Tail: 21

4 54 10 17 21
Head: 4

Tail: 21

4 54 10 17

Head: 4

Tail: 17

4 54 10 17 112 14 154 110
Head: 4

Tail: 110

Head: Null pointer exception.
Tail: Null pointer exception.

Insert Tests ——————————————————————————

45

Head: 45
Tail: 45
21 45
Head: 21
Tail: 45
21 45 57
Head: 21
Tail: 57
2 21 24 25 30 31 44 45 50 52 57 90 95
Head: 2
Tail: 95

Push front tests ---—-—————"-"—-"-"--""-"""-"""""""""""--—

12

Head: 12
Tail: 12
15 12
Head: 15
Tail: 12
25 15 12
Head: 25
Tail: 12
36 97 16 5 69 20 30 0 76 89 25 15 12
Head: 36
Tail: 12

Pop front and back with indexing tests --——————---"--"-"""""""""""-—-———————

36

97 16 5 69 20 30 0 76 89 25 15 12
Head: 97

Tail: 12

97

16 5 69 20 30 0 76 89 25 15 12
Head: 16

Tail: 12

16

5 69 20 30 0 76 89 25 15 12
Head: 5

Fall 2024 10

COSC 220

Project #2: Linked Lists

Tail:
5

69 20
Head:
Tail:
12

69 20
Head:
Tail:
15

69 20
Head:
Tail:
25

69 20
Head:
Tail:
89

30

Index
69 20
Index
69 29
Head:
Tail:
Index
69 -2
Head:
Tail:

CC an

5407
5407

5407
5407
5407
5407

5407
5407
5407

5407
5407
5407

5407
Sort
[5407
[5407
[5407
[2624

[_251
[2624

12

30 0 76 89 25 15 12
69
12

30 0 76 89 25 15
69
15

30 0 76 89 25
69
25

30 0 76 89
69
89

Out of Bounds Exception
30 0 76 89

Out of Bounds Exception
30 11 76 17

69

17

Out of Bounds Exception
9 30 -11 76 -17

69

=17

d = tests ~——"—"""""""""""""""""""————————

2904 2624 9758 9234
2904 2624 9758 9234

2904 2624 9758 9234
2904 2624 1234567 9234
2904 2624 9758 9234
2904 2624 7654321 9234

2904 2624 1234567 9234
2904 2624 1234567 9234
2904 2624 1234567 9234

2904 2624 987654321 9234
-25 2624 1234567 9234
2904 2624 1234567 9234

2904 2624 987654321 9234

and Stream Tests —-—————-———-—————————————————————————

, 2904, 2624, 987654321,

9234]

, —-25, 2624, 1234567, 9234]
, 2904, 2624, 1234567, 9234]

, 2904, 5407, 9234, 987654321]
2624, 5407, 9234, 1234567]
, 2904, 5407, 9234, 1234567]

Fall 2024

11

COSC 220 Project #2: Linked Lists

2.2 Doubly Linked List Class

Take the linked list class with tail you constructed in the last exercise and convert it to a
doubly linked list. As always the head still points to the first node and tail always points
to the last node. In this structure, the ListNode will have two list node pointers, the usual
one to the next node and now one to the previous node. The last node’s next pointer will
be nullptr and the first node’s previous pointer will be nullptr as well. We did discuss the
possibility of setting up a circular list but we will go that route here. This implementation
has the advantage of nullptrs on each end to designate where the list stops.

1. Rename the class DLinkedList, again so that the names do not clash. Also rename
the header file DLinkedList .h.

2. Update the displayList function to take in two boolean parameters, the first will deter-
mine if the printout of the list is to be vertical or horizontal. True for vertical and false
for horizontal, defaulted to false. The second parameter is to designate if the list is to
be displayed in forward order or reverse order. True for reverse and false for forward,
defaulted to false.

3. Revise all the functions from the singly linked list to work for the doubly linked list.
Some functions will not require any alteration but many will. Certainly, any function
that is revising the list, adding nodes, or deleting nodes will need to be reworked. Test
your work extensively to make sure that all the links are were they need to be, you
will probably need to do more testing then just the example testing programs I give
you here.

4. Add in a reverse function that will return a new list in reverse order of the current
list. The current list should be unaltered. For example,
L2 = Ll.reverse();

will update L2 to be a new list in reverse order of L1, but L1 is not changed by this
operation. If we wanted to alter L1 to its reverse order we could simple do the following
command.

L1 = Ll.reverse();

5. Make sure that there are no memory errors or leaks.

2.2.1 Test Program for Doubly Linked List

#include <ctime>
#include <iostream>

#include "DLinkedList.h"
using namespace std;

template <class T> void displayHeadTail (DLinkedList<T> &);

Fall 2024 12

COSC 220

Project #2: Linked Lists

void div(string s = "")

}

cout << "\n" << s <<

int main () {

srand (time (0));

DLinkedList<int> 1st;

div ("Push back and delete tests ");

lst.push_back
1st.push_back
1lst.push_back
1st.push_back

(12);
(4);
(54) ;
(10);
lst.displayList () ;
cout << endl;

displayHeadTail (1st);

lst.push_back (101);
lst.push_back(17);
lst.push_back (21);

lst.displayList();
cout << endl;

displayHeadTail (1st);

lst.deleteNode (12);

lst.displayList () ;
cout << endl;

displayHeadTail (1st);

lst.deleteNode (101);

lst.displayList ();
cout << endl;

displayHeadTail (1st);

lst.deleteNode (1234);

lst.displayList ();
cout << endl;

displayHeadTail (1st);

lst.deleteNode (21);

lst.displayList ();
cout << endl;

displayHeadTail (1st);

lst.push_back(llZ),
lst.push_back (1

lst.push_back(154),
lst.push_back (110);

lst.displayList();
cout << endl;

displayHeadTail (1st);

div ("Print reversed

lst.displayList();
cout << endl;

") ;

Fall 2024

13

COSC 220 Project #2: Linked Lists

lst.displaylList (false, true);
cout << endl;

div ("Insert Tests ");
lst.clear();
displayHeadTail (1st);

lst.clear();
1lst.insertNode (45);
lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.insertNode (21);
lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.insertNode (57);
lst.displayList();
cout << endl;
displayHeadTail (1st);

for (int i = 0; i < 10; i++)
lst.insertNode (rand() % 100);

lst.displayList () ;
cout << endl;
displayHeadTail (1st);

div ("Push front tests ");

lst.clear();
lst.push_front (12);
lst.displayList () ;
cout << endl;
displayHeadTail (1st);

lst.push_front (15);
lst.displayList();
cout << endl;
displayHeadTail (1st);

1st.push_front (25);
lst.displayList () ;
cout << endl;
displayHeadTail (1st);

for (int 1 = 0; i < 10; i++)
lst.push_front (rand() % 100);

lst.displayList();
cout << endl;
displayHeadTail (1st);

div ("Pop front and back with indexing tests ");
try {
cout << lst.pop_front () << endl;

lst.displayList();
cout << endl;
displayHeadTail (1st);

cout << lst.pop_front () << endl;

Fall 2024 14

COSC 220 Project #2: Linked Lists

lst.displayList();
cout << endl;
displayHeadTail (1st);

cout << lst.pop_front () << endl;
lst.displayList();

cout << endl;

displayHeadTail (1st);

cout << lst.pop_front () << endl;
lst.displayList();

cout << endl;

displayHeadTail (1st);

cout << lst.pop_back() << endl;
lst.displayList();

cout << endl;

displayHeadTail (1st);

cout << lst.pop_back() << endl;
lst.displayList () ;

cout << endl;

displayHeadTail (1st);

cout << lst.pop_back () << endl;
lst.displayList();

cout << endl;

displayHeadTail (1st);

} catch (string err) {
cout << err << endl;

try {
cout << 1st[5] << endl;
cout << 1lst[2] << endl;
cout << 1st[6] << endl;

cout << 1lst[21] << endl;
} catch (string err) {
cout << err << endl;

}

lst.displayList ();
cout << endl;

try {
1st[5] = 17;
1st[1l] = 29;
1st[3] = 11;
1st[52] = 7;

} catch (string err) {
cout << err << endl;

}

lst.displayList();
cout << endl;
displayHeadTail (1st);

try {
lst.set (5, -17);
lst.set (1, -29);
lst.set (3, -11);
lst.set (52, -7);

} catch (string err) {

Fall 2024 15

COSC 220

Project #2: Linked Lists

cout << err << endl;

}

lst.displayList () ;
cout << endl;
displayHeadTail (1st);

div("CC and = tests ");

DLinkedList<int> L1;
for (int i = 0; 1 < 5; i++)
L1l.push_back(rand() % 10000 + 1);

DLinkedList<int> L2 = L1;
DLinkedList<int> L3 (L1l);

Ll.displayList();
cout << endl;
L2.displayList();
cout << endl << endl;
L3.displayList();
cout << endl;

L1[3] 1234567;
L3[3] = 7654321;

Ll.displayList();
cout << endl;
L2.displayList();
cout << endl;
L3.displayList();
cout << endl << endl;

L3 = L2 = L1;

Ll.displayList();
cout << endl;
L2.displayList();
cout << endl;
L3.displayList();
cout << endl << endl;

L1[3] = 987654321;
L2[1] = -25;

Ll.displayList();
cout << endl;
L2.displayList();
cout << endl;
L3.displayList();
cout << endl << endl;

L1 = L1;
cout << L1 << endl;
cout << endl;

div ("Reverse tests ");
L2 = Ll.reverse();
cout << L1 << endl;
cout << L2 << endl;

cout << endl;

L2.pop_£front () ;

Fall 2024

16

COSC 220

Project #2: Linked Lists

L2 .pop_back () ;
cout << L1 << endl;
cout << L2 << endl;
cout << endl;

div ("Sort tests ");

L2 = Ll.sort();
cout << L1 << endl;
cout << L2 << endl;
cout << endl;

L1 = Ll.sort();
cout << L1 << endl;
cout << endl;

return 0;

}

template <class T> void displayHeadTail (DLinkedList<T> &L)

cout << "Head: ";
try {

cout << L.peekHead() << endl;

} catch (string s) {
cout << s << endl;

}

cout << "Tail: ";
try {
cout << L.peekTail() << endl;

} catch (string s) {
cout << s << endl;

}

2.2.2 Program Output

Push back and delete tests

12 4 54 10

Head: 12

Tail: 10

12 4 54 10 101 17 21
Head: 12

Tail: 21

4 54 10 101 17 21
Head: 4

Tail: 21

4 54 10 17 21
Head: 4

Tail: 21

4 54 10 17 21
Head: 4

Tail: 21

4 54 10 17

Head: 4

Tail: 17

4 54 10 17 112 14 154 110
Head: 4

Tail: 110

Print reversed ————————————————————————————

4 54 10 17 112 14 154 110

{

Fall 2024

17

COSC 220 Project #2: Linked Lists

110 154 14 112 17 10 54 4
Insert Tests —————————————————————————

Head: Null pointer exception.
Tail: Null pointer exception.

45

Head: 45
Tail: 45
21 45
Head: 21
Tail: 45
21 45 57
Head: 21
Tail: 57
0 14 21 45 49 51 52 53 54 57 61 81 96
Head: O
Tail: 96

Push front tests --—-———"—"""""""""""""""""""————

12

Head: 12
Tail: 12
15 12
Head: 15
Tail: 12
25 15 12
Head: 25
Tail: 12
70 19 34 3 17 21 23 64 50 25 25 15 12
Head: 70
Tail: 12

Pop front and back with indexing tests ---—-——-———-—--"—-"--"--"--"-"-"""-"""""""-———-

70

19 34 3 17 21 23 64 50 25 25 15 12
Head: 19

Tail: 12

19

34 3 17 21 23 64 50 25 25 15 12
Head: 34

Tail: 12

34

3 17 21 23 64 50 25 25 15 12
Head: 3

Tail: 12

3

17 21 23 64 50 25 25 15 12
Head: 17

Tail: 12

12

17 21 23 64 50 25 25 15
Head: 17

Tail: 15

15

17 21 23 64 50 25 25

Head: 17

Tail: 25

25

17 21 23 64 50 25

Head: 17

Tail: 25

Fall 2024 18

COSC 220

Project #2: Linked Lists

25

23

Index Out of Bounds Exception
17 21 23 64 50 25

Index Out of Bounds Exception
17 29 23 11 50 17

Head: 17

Tail: 17

Index Out of Bounds Exception
17 -29 23 -11 50 -17

Head: 17

Tail: -17

CC and = tests — == ———

4260 9038 6717 5417 8489
4260 9038 6717 5417 8489

4260 9038 6717 5417 8489
4260 9038 6717 1234567 8489
4260 9038 6717 5417 8489
4260 9038 6717 7654321 8489

4260 9038 6717 1234567 8489
4260 9038 6717 1234567 8489
4260 9038 6717 1234567 8489

4260 9038 6717 987654321 8489
4260 —-25 6717 1234567 8489
4260 9038 6717 1234567 8489

[4260, 9038, 6717, 987654321, 8489]

Reverse tests ————————————————— ——

[4260, 9038, 6717, 987654321, 8489]
[8489, 987654321, 6717, 9038, 4260]

[4260, 9038, 6717, 987654321, 8489]
[987654321, 6717, 9038]

Sort tests ——=—-——mmmmmm s

[4260, 9038, 6717, 987654321, 8489]
[4260, 6717, 8489, 9038, 987654321]

[4260, 6717, 8489, 9038, 987654321]

2.3 Extra Credit: Doubly Linked List Class with an Iterator

This exercise is not required for the project. It is adding an iterator like structure to the
doubly linked list from the previous exercise. Although I would like it if everyone tried this
exercise it does have details that can be a bit frustrating and difficult to implement and
debug. The concept is fairly easy and the implementation is really not that bad but it is
also easy to code yourself into a corner that may be difficult to fix. So give yourself some

time and patience if you give this a try.

Fall 2024

19

COSC 220 Project #2: Linked Lists

I said above that this will be an “iterator like” structure to our list. C+-+ defines the
specific criteria for a full iterator structure, you can find these criteria online.

https://en.cppreference.com/w/cpp

If you create a full iterator then your structure will integrate smoothly into functions
from the algorithm library. We will not need to go that far for our purpose. So we will
construct a class that will be able to access nodes of our doubly linked list and move freely
in either direction through the structure and, at the same time, hide the underlying pointer
manipulation from the code that is outside the list class structure. In addition, this en-
hancement to our class structure will enable some more base C++ functionality that can
be applied to our list class. Specifically, range-based loops can be used to traverse it. Take
the finished version of the doubly linked list class from the previous exercise and add in the
following.

1. As we saw with the STL list class, there is an extra node that is at the end of the
list and is pointed to by an end pointer that we can get (in iterator form) with the
end() command. This object is like a sentinel value that designates the end of the
list and although it is in the list it is really not holding data we put in the list. You
will see this type of thing again if you continue the study of data structures. Next
semester in COSC 320 you will look at, and hopefully create, a tree structure called
a red-black tree. These trees are used “under the hood” in the STL for objects like
the map and multimap. In the red-black tree, there is a node called NIL that serves a
similar purpose as our sentinel list node except that there are many nodes that point
to it.

Add in another ListNode pointer called endnode alongside our head and tail pointers.
The DLinkedList constructors will create a new ListNode and point endnode to
it. So now endnode will be the last node in the list but it is not a data holding
node. Head still points to the first node and tail still points to the last data holding
node, which is the node that is pointing to the endnode. When the list is empty, the
endnode still exists, the head is pointing to endnode and tail is nullptr.

2. Now we will discuss the specification for the iterator class. First we want to be able to
instantiate this class from outside the linked list, say in the main or other class, with
a syntax like that of the STL, for example,

DLinkedList<int>::iterator lstlIter

To do that we need to put the specification for the iterator in the public section of
the DLinkedList class. So iterator is simply an inner class and its name is just
iterator.

The iterator is an object that can move inside the list hence it needs to be able to point
to the nodes in the list. So the iterator needs to have as a data member a pointer to a
ListNode object, in fact this is the only data member it needs. As with the linked list,
we do not want this pointer to be visible outside the class since we want to control it.
Hence this pointer must be in the private section of the iterator specification. Putting
it in a protected section would be fine too but since we will probably not use inheritance

Fall 2024 20

COSC 220 Project #2: Linked Lists

of this structure a private section is fine. We do not want it to be in the public section
or else it will be visible outside the list class.

3. One thing that may come as a surprise is that even though the iterator is an inner
class of the linked list, the linked list cannot see private members of the iterator. So
although the iterator is contained in the linked list class it is still somewhat separate
from the linked list class. Not all languages are like this but the developers of C++
have their reasons. You will probably need, or at least it will be convenient for you,
to access this private pointer inside the Linked list class but of course not outside. To
do this you can friend the link list class to the iterator by adding the following line in
the specification of the iterator.

friend class DLinkedList;

4. At this point we can add in the iterator functionality, we will start with the specifica-
tion.

(a) Create a constructor that brings in a ListNode pointer, defaulted to nullptr, that
will just store the parameter pointer contents (address) into the pointer member
variable you created.

(b) Although we are dealing with pointers in this class we are not going to be con-
structing any new nodes, we are just pointing to them. So there is no reason to
overload the assignment or to create a copy constructor, the default ones from
C++ will do the trick.

(¢) We will need to overload operators for moving the iterator around the linked list,
that is, the ones that we normally use with pointers. Overload the pre and post ++,
pre and post ——, += with integer right operand, —= with integer right operand, +
with integer right operand, and — with integer right operand. Each of these should
return an iterator object of the result of the operation. This will allow for syn-
tax like, 1stIter = lstIter2 - 1; and lstIter = lstlIter2 += 1;.
Overload the == and != to return a boolean that compares the pointers, if they
are pointing to the same ListNode in the list then they are equivalent. Two more
operators are needed for an overload, the two de-referencing operators » and —>.
These will both return a reference to the value stored in the ListNode that is
being pointed to by the iterator.

5. For the implementation, we are going to remove all inline implementations of code.
In the previous versions of the linked list we had only one function, the ListNode
constructor, that was inlined. We are going to make this implementation not inline
and do all the iterator implementations after the list specification, as we usually do.

(a) First we will move the ListNode constructor outside the specification. I will be
nice and actually give this to you so you can see the structure of implementing
an inner class function outside the containing classes specification. First, in the
specification of the ListNode inner class our function prototype is simply,

ListNode (T nodeValue) ;

Fall 2024 21

COSC 220 Project #2: Linked Lists

The implementation of this function, which is sitting below the end of the list
specification, is
template <class T> DLinkedList<T>::ListNode::ListNode (T nodeValue) {

value = nodeValue;

next = prev = nullptr;

}

So the general structure is the template, DLinkedList<T> then scope into
the ListNode class, then scope to the function ListNode (T nodeValue).
Finally write the block of code that defines the function. Note that if the function
has a return type then it goes between the template and DLinkedList<T>. You
will follow the same style when implementing the iterator functions.

(b) Now implement the functionality for each of the iterator function and overloaded
operator. The header syntax follows the same style as in the ListNode example
above. So for the logical operators the header will look like

template <class T>
bool DLinkedList<T>::iterator::operator==(const iterator &right)

as you would expect. Of course, you would follow this with a block of code that
implements ==. There is a small exception when returning an inner class type,
as with all the arithmetic operator overloads. In these cases you are returning an
iterator, which is an inner class. The compiler needs a little help with this because
it will not see the return type of DLinkedList<T>::iterator as a data type.
As I said in class, the reserved word typename is not just an alternative to the
word class in the templating syntax, it is really more general and tells the compiler
that what follows is a data type. So your header syntax for these will look like
the following.

template <class T>
typename DLinkedList<T>::iterator DLinkedList<T>::iterator::operator++()

Note that we are simply putting t ypename before the

DLinkedList<T>::iterator
return type. The scoping chain down to the operator is as usual.

6. Now that we have a functional iterator we can add more functionality to the linked
list class that incorporates iterators.

(a) Add in a find function that takes in a single parameter of templated type and
returns an iterator to the position of the first node in the list that matches the
input value. If the value is not found in the list then the iterator should be
pointing to the end node.

(b) Add in a begin function that returns an iterator to the first node of the list. If
the list is empty then this iterator will be pointing to the end node.

(¢) Add in an end function that returns an iterator to the end node of the list.

Fall 2024 22

COSC 220 Project #2: Linked Lists

()

Add in an insert function that takes parameters of an iterator and a templated
value. The function is to insert the value in a new ListNode and place that
ListNode in the list at the position directly before the place where the iterator
is pointing. As a consequence, if the iterator is at the first node then the new
node is inserted at the front of the list and if the iterator is pointing to the end
node then the new node is appended to the end of the list. Don’t forget the tail is
pointing to the last true data node and may need to be adjusted in this operation.

Add in a remove function that takes a single parameter of an iterator. The
function is to delete the node that the iterator is pointing to. Obviously, you are
not to delete the end node, but the others are fair game. Again do not forget
about the tail.

One nifty consequence, besides allowing us to be more efficient in our algorithms, is that
now range-based loops will work with our structure.

2.3.1 Test Program for Doubly Linked List with Iterator

#include
#include

#include

<ctime>
<iostream>

"DLinkedList.h"

using namespace std;

template <class T> void displayHeadTail (DLinkedList<T> &);
template <class T> class Thing {
private:
T =d;
public:
Thing (T val = T()) {
d = new T;
*d = val;
}i
“Thing () { delete d; }

Thing (const Thing &ob3j) {
d = new T;

*d =
}i

* (ob7j.d);

const Thing operator=(const Thing &right) {

*d =

* (right.d);

return *this;

}

void set (T a) { *d = a; }

T get ()
friend

{ return xd; }
ostream &operator<<(ostream &out, Thing &t) {

out << xt.d;
return out;

}
}i

void div(string s = "") {
cout << "\n" << g << " \n\n";

}

Fall 2024

23

COSC 220 Project #2: Linked Lists

int main () {
srand (time (0));
DLinkedList<int> 1st;

div ("Push back and delete tests ");

lst.push_back
lst.push_back
lst.push_back
lst.push_back

(12);
(4);

(54);
(10);

’

lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.push_back (101);
lst.push_back(17);
1st.push_back (21);

lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.deleteNode (12);

lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.deleteNode (101);

lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.deleteNode (1234);

lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.deleteNode (21);

lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.push_back
lst.push_back
lst.push_back
lst.push_back

112);
14);
154) ;
110) ;

lst.displayList();
cout << endl;
displayHeadTail (1st);

div ("Print reversed ");
lst.displayList();

cout << endl;

lst.displayList (false, true);

cout << endl;

div("Insert Tests ");

Fall 2024 24

COSC 220

Project #2: Linked Lists

lst.clear();
displayHeadTail (1st);

lst.clear();
lst.insertNode (45);
lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.insertNode (21);
lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.insertNode (57);
lst.displayList();
cout << endl;
displayHeadTail (1st);

for (int i = 0; i < 10; i++)
lst.insertNode (rand() % 100);

lst.displayList () ;
cout << endl;
displayHeadTail (1st);

div ("Push front tests ");

lst.clear();
lst.push_front (12);
lst.displayList () ;
cout << endl;
displayHeadTail (1st);

lst.push_front (15);
lst.displayList();
cout << endl;
displayHeadTail (1st);

lst.push_front (25);
lst.displayList () ;
cout << endl;
displayHeadTail (1st);

for (int 1 = 0; i < 10; i++)
lst.push_front (rand() % 100);

lst.displayList();
cout << endl;
displayHeadTail (1st);

div ("Pop front and back with indexing tests

try {
cout << lst.pop_front () << endl;
lst.displayList();
cout << endl;
displayHeadTail (1st);

cout << lst.pop_front () << endl;
lst.displayList();

cout << endl;

displayHeadTail (1st);

")

Fall 2024

25

COSC 220 Project #2: Linked Lists

cout << lst.pop_front () << endl;
lst.displayList () ;

cout << endl;

displayHeadTail (1st);

cout << lst.pop_front () << endl;
lst.displayList();

cout << endl;

displayHeadTail (1st);

cout << lst.pop_back() << endl;
lst.displayList();

cout << endl;

displayHeadTail (1st);

cout << lst.pop_back() << endl;
lst.displayList () ;

cout << endl;

displayHeadTail (1st);

cout << lst.pop_back() << endl;
lst.displayList();

cout << endl;

displayHeadTail (1st);

} catch (string err) {
cout << err << endl;

try {
cout << 1st[5] << endl;
cout << 1lst[2] << endl;
cout << 1st[6] << endl;

cout << 1lst[21] << endl;
} catch (string err) {
cout << err << endl;

}

lst.displayList();
cout << endl;

try {
1st[5] = 17;
1st[1l] = 29;
1st[3] = 11;
1st[52] = 7;

} catch (string err) {
cout << err << endl;

}

lst.displayList();
cout << endl;
displayHeadTail (1st);

try {
lst.set (5, -17);
lst.set (1, -29);
lst.set (3, -11);
lst.set (52, -7);

} catch (string err) {
cout << err << endl;

}

lst.displayList();

Fall 2024 26

COSC 220 Project #2: Linked Lists

cout << endl;
displayHeadTail (1st);

div("CC and = tests ");

DLinkedList<int> L1;
for (int i = 0; i < 5; i++)
L1l.push_back(rand() % 10000 + 1);

DLinkedList<int> L2 = L1;
DLinkedList<int> L3 (L1);

Ll.displayList();
cout << endl;
L2.displayList();
cout << endl;
L3.displayList();
cout << endl << endl;

L1[3] 1234567;
L3[3] = 7654321;

Ll.displayList();
cout << endl;
L2.displayList();
cout << endl;
L3.displayList();
cout << endl << endl;

L3 = L2 = L1;

Ll.displayList();
cout << endl;
L2.displayList();
cout << endl;
L3.displayList();
cout << endl << endl;

L1[3] = 987654321;
L2[1] = -25;

Ll.displayList();
cout << endl;
L2.displayList();
cout << endl;
L3.displayList();
cout << endl << endl;

L1 = L1;
cout << L1 << endl;
cout << endl;

~

div ("Reverse tests

L2 = Ll.reverse();
cout << L1 << endl;
cout << L2 << endl;
cout << endl;

L2.pop_front ();

L2 .pop_back () ;

cout << L1 << endl;
cout << L2 << endl;
cout << endl;

Fall 2024 27

COSC 220

Project #2

;- Linked Lists

div ("Sort tests

")

L2 = Ll.sort();
cout << L1 << endl;
cout << L2 << endl;
cout << endl;

L1 = Ll.sort();
cout << L1 << endl;
cout << endl;

div("Iterator Tests ");

cout << L1 << endl;
DLinkedList<int>::iterator lstIter

Ll.begin();

for (DLinkedList<int>::iterator it
mw

cout << *it <<
cout << endl;

lstIter += 2;
*1lstIter 12345;

for (DLinkedList<int>::iterator it
A\l

cout << *it <<
cout << endl;

// Even a range-based for loop works

for (auto element
cout << element
cout << endl;

for (int element
cout << element
cout << endl;

// Default CC and
lstIter Ll.end()

it

Ll.begin(); I'= Ll.end(); it++)

= Ll.begin(); it != Ll.end(); it++)
"w.
4

with this structure.

L1)
<< " ",.
L1)
<< " ll,.

work as well with the iterator,

’

cout << xlstIter << endl;

lstIter
lstIter += 3;
DLinkedList<int>::
cout << *lstIter2
lstIter2—-—;

cout << xlstlIter2
lstIter2 2;
cout << xlstIter2
lstIter2 5;
cout << xlstIter2
lstIter2 += 2;
cout << xlstIter2
lstIter2 += 200;
cout << xlstIter2
——lstlIter2;

cout << xlstIter2
—-—1lstIter2;

cout << xlstIter2
++1lstIter2;

cout << xlstIter2

Ll.begin();

iterator
<< endl;

lstIter2 (lstIter);

<< endl;

<< endl;
<< endl;
<< endl;
<< endl;
<< endl;
<< endl;

<< endl;

cout << xlstlIter << endl;

lstIter

Ll.begin();

no need to overload.

Fall 2024

28

COSC 220 Project #2: Linked Lists

lstIter2 = lstlIter += 2;
cout << *1lstlIter2 << endl;
cout << xlstIter << endl;

lstIter2 = lstlIter++;
cout << xlstIter2 << endl;
cout << xlstIter << endl;

lstIter2 = ++1lstIter;
cout << xlstIter2 << endl;
cout << xlstIter << endl;

lstIter2 = lstIter—--;
cout << xlstIter2 << endl;
cout << xlstlIter << endl;

lstIter2 = —--1lstlIter;
cout << xlstIter2 << endl;
cout << xlstlIter << endl;

L2 = L1;

cout << L1 << endl;
cout << L2 << endl;

lstIter = Ll.begin();
lstIter2 = L2.begin();

lstIter += 2;
lstIter2 += 3;
*1lstIter = 23;
*1lstIter2 = 42;

cout << L1 << endl;
cout << L2 << endl;

if (L1.find(23) != Ll.end()) {
cout << "23 found" << endl;
} else {

cout << "23 not found" << endl;

}

if (L1.£find(123) != Ll.end()) {
cout << "123 found" << endl;
} else {

cout << "123 not found" << endl;
}

lstIter = L1.£find(23);
cout << xlstIter << endl;
lstIter++;

cout << xlstIter << endl;

lstIter = Ll.end() - 1;

cout << xlstIter << endl;
lstIter = Ll.begin() + 2;
cout << xlstIter << endl;

DLinkedList<int x> 14;

for (int i = 0; 1 < 10; i++) |
int *nint = new int;
+nint = rand() % 100;
L4 .push_back (nint);

Fall 2024 29

COSC 220 Project #2: Linked Lists

}

for (DLinkedList<int «*>::iterator it = L4.begin(); it !'= Ld.end(); it++)
cout << *xit << " ";
cout << endl;

// Remove the new ints we created.
for (DLinkedList<int x*>::iterator it = L4.begin(); it !'= L4.end(); it++)
delete *it;

div("Iterator Insert Tests ");
cout << L1 << endl;

lstIter = Ll.begin() + 3;
Ll.insert (lstIter, 12345);
cout << L1 << endl;
displayHeadTail (L1);
Ll.insert (Ll.begin(), 54321);
cout << L1 << endl;
displayHeadTail (L1);
Ll.insert (Ll.end (), 77777);
cout << L1 << endl;
displayHeadTail (L1);

div("Iterator Remove Tests ");
cout << L1 << endl;
lstIter = Ll.begin() + 2;
Ll.remove (lstlIter);

cout << L1 << endl;
displayHeadTail (L1);
Ll.remove (L1l.begin());
cout << L1 << endl;
displayHeadTail (L1);
Ll.remove (Ll.end());

cout << L1 << endl;
displayHeadTail (L1);
Ll.remove (Ll.end() - 1);
cout << L1 << endl;
displayHeadTail (L1);

cout << Ll.isEmpty () << endl;

while (!L1.isEmpty()) {
Ll.remove (L1l.begin())
cout << L1 << endl;
displayHeadTail (L1);

}

cout << Ll.isEmpty () << endl;

’

// Go too far.

Ll.remove (L1l.begin());

cout << L1 << endl;

cout << Ll.isEmpty () << endl;

DLinkedList<Thing<double>> Things;

for (int i = 0; 1 < 10; i++) {
double t = 1.0 x rand() / RAND_MAX;
Thing<double> thing(t);
Things.push_back (thing);

}

DLinkedList<Thing<double>>::iterator thingit;
for (DLinkedList<Thing<double>>::iterator it = Things.begin();
it != Things.end(); it++)

Fall 2024 30

COSC 220 Project #2

;- Linked Lists

cout << xit << " ";
cout << endl;

DLinkedList<Thing<double> x> PThings;
DLinkedList<Thing<double> *>::iterator pthingit;
for (int i = 0; 1 < 15; i++) |
double t = 1.0 * rand() / RAND_MAX;
Thing<double> xthing = new Thing<double>;
thing->set (t);
PThings.push_back (thing);
}

for (DLinkedList<Thing<double> x>::iterator it = PThings.begin();
it != PThings.end(); it++)
cout << it->get () << " ";
cout << endl;

for (auto element : PThings)
cout << element->get () << " ";
cout << endl;

for (auto element : PThings)
element—>set (element->get () + 1);

for (auto element : PThings)
cout << element->get () << " ";
cout << endl;

// Delete the things created for the list.
for (auto element : PThings)
delete element;

return 0O;

}

template <class T> void displayHeadTail (DLinkedList<T> &L) {
cout << "Head: ";
try {
cout << L.peekHead() << endl;
} catch (string s) {
cout << s << endl;

}

cout << "Tail: ";
try {

cout << L.peekTail() << endl;
} catch (string s) {

cout << s << endl;

}

2.3.2 Program Output

Push back and delete tests -—————--"—""""""""""""""""""""""———

12 4 54 10

Head: 12

Tail: 10

12 4 54 10 101 17 21

Head: 12

Tail: 21

4 54 10 101 17 21

Head: 4

Tail: 21

Fall 2024 31

COSC 220 Project #2: Linked Lists

4 54 10 17 21

Head: 4

Tail: 21

4 54 10 17 21
Head: 4

Tail: 21

4 54 10 17
Head: 4

Tail: 17

4 54 10 17 112 14 154 110
Head: 4

Tail: 110

Print reversed —————————

4 54 10 17 112 14 154 110
110 154 14 112 17 10 54 4

Insert Tests ——————————————————————————————————

Head: Null pointer exception.
Tail: Null pointer exception.

45

Head: 45
Tail: 45
21 45
Head: 21
Tail: 45
21 45 57
Head: 21
Tail: 57
17 21 27 45 55 57 66 70 78 85 88 92 96
Head: 17
Tail: 96

Push front tests --——"-—"-"""""""""""""""""""""""-

12

Head: 12
Tail: 12
15 12
Head: 15
Tail: 12
25 15 12
Head: 25
Tail: 12
71 94 14 36 23 92 98 10 83 1 25 15 12
Head: 71
Tail: 12

Pop front and back with indexing tests ---———------"""""""""""""—"—————————

71

94 14 36 23 92 98 10 83 1 25 15 12
Head: 94

Tail: 12

94

14 36 23 92 98 10 83 1 25 15 12
Head: 14

Tail: 12

14

36 23 92 98 10 83 1 25 15 12
Head: 36

Tail: 12

Fall 2024 32

COSC 220 Project #2: Linked Lists
36

23 92 98 10 83 1 25 15 12

Head: 23

Tail: 12

12

23 92 98 10 83 1 25 15

Head: 23

Tail: 15

15

23 92 98 10 83 1 25

Head: 23

Tail: 25

25

23 92 98 10 83 1

Head: 23

Tail: 1

1

98

Index Out of Bounds Exception

23 92 98 10 83 1

Index Out of Bounds Exception

23 29 98 11 83 17

Head: 23

Tail: 17

Index Out of Bounds Exception

23 =29 98 -11 83 -17

Head: 23

Tail: -17

CC and = tests ————————""—"——"—————————————————
1492 2788 5785 9531 5209

1492 2788 5785 9531 5209

1492 2788 5785 9531 5209

1492 2788 5785 1234567 5209

1492 2788 5785 9531 5209

1492 2788 5785 7654321 5209

1492 2788 5785 1234567 5209

1492 2788 5785 1234567 5209

1492 2788 5785 1234567 5209

1492 2788 5785 987654321 5209

1492 -25 5785 1234567 5209

1492 2788 5785 1234567 5209

[1492, 2788, 5785, 987654321, 5209]
Reverse tests -—————""""""""""""""""""""""——————
[1492, 2788, 5785, 987654321, 5209]
[5209, 987654321, 5785, 2788, 1492]
[1492, 2788, 5785, 987654321, 5209]
[987654321, 5785, 2788]

Sort tests -—————+1—f+"—"H—"""—"—"—""""""""""""""""—-=
[1492, 2788, 5785, 987654321, 5209]
[1492, 2788, 5209, 5785, 987654321]

Fall 2024

33

COSC 220

Project #2: Linked Lists

[1492, 2788, 5209, 5785, 987654321]

Iterator Tests -

[1492, 2788, 5209, 5785, 987654321]
1492 2788 5209 5785 987654321

1492 2788 12345 5785 987654321
1492 2788 12345 5785 987654321
1492 2788 12345 5785 987654321

0

5785

12345

1492

1492

12345

0

987654321

5785

987654321

5785

12345

12345

12345

5785

987654321

987654321

987654321

5785

12345

12345

[1492, 2788, 12345, 5785, 987654321]
[1492, 2788, 12345, 5785, 987654321]
[1492, 2788, 23, 5785, 987654321]
[1492, 2788, 12345, 42, 987654321]
23 found

123 not found

23

5785

987654321

23

22 49 8 77 76 52 56 46 30 52

Iterator Insert Tests ——————-——————————————————————

[1492, 2788, 23, 5785, 987654321]

[1492, 2788, 23, 12345, 5785, 987654321]
Head: 1492

Tail: 987654321

[54321, 1492, 2788, 23, 12345, 5785, 987654321]

Head: 54321
Tail: 987654321

[54321, 1492, 2788, 23, 12345, 5785, 987654321,

Head: 54321
Tail: 77777

Iterator Remove Tests ——————-———-———————————————————

[54321, 1492, 2788, 23, 12345, 5785, 987654321,

[54321, 1492, 23, 12345, 5785, 987654321,
Head: 54321
Tail: 77777
[1492, 23, 12345, 5785, 987654321, 77777]
Head: 1492

Fall 2024

34

COSC 220 Project #2: Linked Lists

Tail: 77777

[1492, 23, 12345, 5785, 987654321, 77777]
Head: 1492

Tail: 77777

[1492, 23, 12345, 5785, 987654321]

Head: 1492

Tail: 987654321

0

[23, 12345, 5785, 987654321]
Head: 23

Tail: 987654321

[12345, 5785, 987654321]
Head: 12345

Tail: 987654321

[5785, 987654321]

Head: 5785
Tail: 987654321
[987654321]

Head: 987654321

Tail: 987654321

[]

Head: Null pointer exception.
Tail: Null pointer exception.
1

]

.924959 0.30594 0.466223 0.889388 0.585376 0.4654 0.52507 0.352107 0.177954 0.662577

.778294 0.0873852 0.353592 0.180575 0.370474 0.872852 0.925937 0.128912 0.66548 0.0576207 0.252175
.778294 0.0873852 0.353592 0.180575 0.370474 0.872852 0.925937 0.128912 0.66548 0.0576207 0.252175
.77829 1.08739 1.35359 1.18058 1.37047 1.87285 1.92594 1.12891 1.66548 1.05762 1.25218 1.10401 1.35

R O OO —

Push back and delete tests -——————"—""""""""""""""""""""""""-

12 4 54 10

Head: 12

Tail: 10

12 4 54 10 101 17 21
Head: 12

Tail: 21

4 54 10 101 17 21
Head: 4

Tail: 21

4 54 10 17 21
Head: 4

Tail: 21

4 54 10 17 21
Head: 4

Tail: 21

4 54 10 17

Head: 4

Tail: 17

4 54 10 17 112 14 154 110
Head: 4

Tail: 110

Print reversed —————————————

4 54 10 17 112 14 154 110
110 154 14 112 17 10 54 4

Insert Tests ——————————————————————————

Head: Null pointer exception.
Tail: Null pointer exception.

Fall 2024 35

COSC 220 Project #2: Linked Lists

45

Head: 45
Tail: 45
21 45
Head: 21
Tail: 45
21 45 57
Head: 21
Tail: 57
4 5 16 21 21 29 45 57 69 77 77 85 90
Head: 4
Tail: 90

Push front tests ---—-—-">-""""""""""""""""""""—-——

12

Head: 12
Tail: 12
15 12
Head: 15
Tail: 12
25 15 12
Head: 25
Tail: 12
3 75 78 90 36 49 81 46 67 22 25 15 12
Head: 3
Tail: 12

Pop front and back with indexing tests -————-------"—""-—-————————————————

3

75 78 90 36 49 81 46 67 22 25 15 12
Head: 75

Tail: 12

75

78 90 36 49 81 46 67 22 25 15 12
Head: 78

Tail: 12

78

90 36 49 81 46 67 22 25 15 12
Head: 90

Tail: 12

90

36 49 81 46 67 22 25 15 12
Head: 36

Tail: 12

12

36 49 81 46 67 22 25 15

Head: 36

Tail: 15

15

36 49 81 46 67 22 25

Head: 36

Tail: 25

25

36 49 81 46 67 22

Head: 36

Tail: 22

22

81

Index Out of Bounds Exception
36 49 81 46 67 22
Index Out of Bounds Exception
36 29 81 11 67 17

Fall 2024 36

COSC 220

Project #2: Linked Lists

Head: 36

Tail: 17

Index Out of Bounds Exception
36 =29 81 -11 67 -17

Head: 36

Tail: -17

CC and = tests —————————————————

2340 8560 5916 9362 586
2340 8560 5916 9362 586
2340 8560 5916 9362 586

2340 8560 5916 1234567 586
2340 8560 5916 9362 586
2340 8560 5916 7654321 586

2340 8560 5916 1234567 586
2340 8560 5916 1234567 586
2340 8560 5916 1234567 586

2340 8560 5916 987654321 586
2340 -25 5916 1234567 586
2340 8560 5916 1234567 586

[2340, 8560, 5916, 987654321, 586]

Reverse tests - ———————————————— ——

[2340, 8560, 5916, 987654321, 586]
[586, 987654321, 5916, 8560, 2340]

[2340, 8560, 5916, 987654321, 586]
[987654321, 5916, 8560]

Sort tests === e

[2340, 8560, 5916, 987654321, 586]
[586, 2340, 5916, 8560, 987654321]

[586, 2340, 5916, 8560, 987654321]

Iterator Tests ———=————————————————————

[586, 2340, 5916, 8560, 987654321]
586 2340 5916 8560 987654321
586 2340 12345 8560 987654321
586 2340 12345 8560 987654321
586 2340 12345 8560 987654321
0

8560

12345

586

586

12345

0

987654321

8560

987654321

8560

12345

Fall 2024

37

COSC 220

Project #2: Linked Lists

12345
12345
8560
987654321
987654321
987654321
8560
12345
12345

[586, 2340, 12345, 8560, 987654321]
[586, 2340, 12345, 8560, 987654321]

[586, 2340, 23,

8560, 987654321]

[586, 2340, 12345, 42, 987654321]

23 found

123 not found
23

8560

987654321

23

7 92 29 6 10 78

Iterator Insert

[586, 2340, 23,
[586, 2340, 23,
Head: 586

Tail: 987654321

11 47 7 32

8560, 987654321]
12345, 8560, 987654321]

[54321, 586, 2340, 23, 12345, 8560, 987654321]

Head: 54321
Tail: 987654321

[54321, 586, 2340, 23, 12345, 8560, 987654321, 77777]

Head: 54321
Tail: 77777

Iterator Remove

Tests -——————"""""""""""""""""""""-———

[54321, 586, 2340, 23, 12345, 8560, 987654321, 77777]

[54321, 586, 23,
Head: 54321
Tail: 77777
[586, 23, 12345,
Head: 586

Tail: 77777
[586, 23, 12345,
Head: 586

Tail: 77777
[586, 23, 12345,
Head: 586

Tail: 987654321
0

12345, 8560, 987654321, 77777]

8560, 987654321, 77777]

8560, 987654321, 77777]

8560, 987654321]

[23, 12345, 8560, 987654321]

Head: 23
Tail: 987654321

[12345, 8560, 987654321]

Head: 12345
Tail: 987654321

[8560, 987654321]

Head: 8560
Tail: 987654321
[987654321]

Head: 987654321
Tail: 987654321
[]

Head: Null pointer exception.

Fall 2024

38

COSC 220 Project #2: Linked Lists

Tail: Null pointer exception.

1

[]

1

0.243001 0.936229 0.290208 0.336004 0.515189 0.551175 0.336719 0.589724 0.798326 0.641761
0.302737 0.215069 0.200152 0.0540039 0.0848019 0.407794 0.707379 0.319467 0.647166 0.17161
0.729682 0.943846 0.906085 0.879051 0.0825647

0.302737 0.215069 0.200152 0.0540039 0.0848019 0.407794 0.707379 0.319467 0.647166 0.17161
0.729682 0.943846 0.906085 0.879051 0.0825647

1.30274 1.21507 1.20015 1.054 1.0848 1.40779 1.70738 1.31947 1.64717 1.17161 1.72968 1.94385
1.90608 1.87905 1.08256

3 Algorithm and Structure Analysis

This part is going to test the speed of some standard operations between our different
structures of our single and double linked list, as well as the STL vector and STL list.

3.1 Timing Processes in General

There are many ways to time a process inside your code. We will use the chrono library that
is built into C++. If you have never used this library here is how you set it up.

First you include the chrono library with your other includes.
#include <chrono>

Second, you don’t need to include the sub-namespace but it makes the code a bit easier.
So we will, below the std namespace, add in,

using namespace std::chrono;

Now, inside your code, you can time a process using the following syntax.

auto start = high_resolution_clock::now();
// Process to time.
auto stop = high_resolution_clock::now();

auto duration = duration_cast<microseconds> (stop - start);
cout << "Time to append with linked list: " << duration.count() / 1000000.0
<< " seconds" << endl;

where you replace // Process to time. with a block of code or a function call to a
function you wish to time. So for example, if we wanted to time the bubble sort on an array
A we could use the block of code.

auto start = high_resolution_clock::now();
bubbleSort (A, size);
auto stop = high_resolution_clock: :now();

auto duration = duration_cast<microseconds> (stop - start);
cout << "Time to sort array with bubble sort: "
<< duration.count () / 1000000.0 << " seconds" << endl;

Remember that auto is a declaration and then the variable has that type from here on
out, so if you reuse start, stop, and duration to time another process you will remove the
auto declarations. For example,

Fall 2024 39

COSC 220 Project #2: Linked Lists

start = high_resolution_clock::now();
selectionSort (A, size);
stop = high_resolution_clock::now();

duration = duration_cast<microseconds> (stop - start);
cout << "Time to sort array with bubble sort: "
<< duration.count () / 1000000.0 << " seconds" << endl;

A note on this, notice that the duration will come out in microseconds, one one millionth
of a second. You can also use nanoseconds if you would like, one one billionth of a second.
Just change all the microseconds to nanoseconds and instead of dividing by 1000000.0 you
divide by 1000000000.0. If you do change to nanoseconds use nanoseconds the whole way
through, do not mix them since duration will be defined specifically to be one of these.

One very important aspect of using empirical timings to analyze algorithm efficiency is
that you do all your timings on the same machine. Doing some timings on one computer and
then doing other timings on another computer cannot be compared due to the differences
in hardware, operating systems, background processes, etc. Also, virtual machines add a
layer of operation, so I would do all my timings in the Linux lab unless you installed Linux
directly on the metal. Another thing you will want to do is to shut down extra applications
you do not need. Such as word processors, spreadsheets, browsers, games, etc. so that their
operation does not interfere with the running of your program.

Another consideration along these lines is that during a timing run your computer could
do a background process that is computationally intensive or resource intensive, such as,
accessing the hard drive, that may skew your timing results. You will want to run your
timing tests several times to see what times are consistent and use those times. Better yet
is to take several times, say 5 runs, and average the times together. You don’t need to do
that here but at least do several runs and discard times that do not fit with the others.

3.2 Timing Insertions

The first thing we are going to time is the speed of loading large amounts of data into some
of the standard data structures we have been working with and creating.

Whenever you learn about a new data structure, such as the linked list, you should test it
out against the other data structures you already know, like the STL array, list, and vector,
to see where it is more efficient and where it is less efficient. There are pros and cons to
every data structure. They may be more efficient in one manner but less efficient in another.

This exercise will test the speed of appending an element to the front and back of several
data structures.

1. In the main,

e Include the following: iostream, list, vector, ctime, cstdlib, chrono, and (obvi-
ously) the header file for the two linked list classes you created in the last part,
that is, your singly and doubly linked list, and the linked list class that is in
the example code (the ones we went over in lecture). If you did the extra credit

Fall 2024 40

COSC 220 Project #2: Linked Lists

exercise you can use either for the doubly linked list, you do not need to include
both.

e Have the program ask the user for the number of items to insert into the structures.

e Set up timing blocks to time that number of front insertions of random integers
into your linked list, your doubly linked list, the textbook linked list, the STL
vector, and the STL list. Report all these times in seconds. Obviously, all of the
templated types will be int.

We need to do two tricks for this timing. Since the textbook linked list does not
have a push front command nor does the vector. For the textbook linked list we
can simply insert smaller numbers, these will always be pushed onto the front.
For example, we could simply time,

for (int i = 0; 1 < trials; 1i++)
textlst.insertNode (trials - 1i);

For the vector, we can use its iterator. For example,

for (int i = 0; i < trials; i++)
vec.insert (vec.begin (), rand());

e Clear each of the structures outside the timing loops to get them ready for the
next set of timings. You may need to write a clear function for the textbook
linked list, it is simply the same code as the destructor but make sure you set the
head to nullptr at the end.

e Set up timing blocks to time that number of back insertions of random integers
into all five structures. Report all these times in seconds.

2. Run the program on data sizes of 10,000, 25,000, 50,000, 75,000, 100,000, 150,000,
200,000 items. An example of the output on my machine for 20,000 items is below.

Input the number of values to store: 20000

Time to push front with linked list: 0.003201 seconds

Time to push front with double linked list: 0.001403 seconds
Time to push front with textbook linked list: 0.000766 seconds
Time to insert at front with vector: 0.01481 seconds

Time to push front with STL linked 1list: 0.002042 seconds

Time to push back with linked list: 0.000539 seconds

Time to push back with double linked list: 0.000556 seconds
Time to push back with textbook linked list: 0.729477 seconds
Time to push back with vector: 0.000587 seconds

Time to push back with STL list: 0.001672 seconds

3. Using a spreadsheet, such as LibreOffice Calc or Excel, plot the data. You will want
to use an XY scatter chart with the sizes on the z-axis and times on the y-axis. Put
all five lines on the same graph, that is, all three linked lists, SLT list, and STL vector.

Fall 2024 41

COSC 220

Project #2: Linked Lists

4. In a word processor, you can use LibreOffice Writer, Word, or any word processor that
will allow you to export the document to a PDF file. LibreOffice Writer has a toolbar
button for this. In the document include tables of all the data you acquired from the
runs you did above, the charts you created from the data and the answers, in complete
sentences, to the following.

How do the times to insert at the front of each structure compare? Are they
consistent? Do the curves have the same shape (possibly indicating that they
have the same computational cost). Which structures perform about the same
and which are different?

How do the times to insert at the end of each structure compare? Are they
consistent? Do the curves have the same shape (possibly indicating that they
have the same computational cost). Which structures perform about the same
and which are different?

What part of the algorithms or the design of the data structures contribute to
the timing differences?

Export the document to a PDF file and include it with your code in the zip file
you upload.

3.3 Timing Sorts

This exercise will test the speed of the linked list insert function verses sorting an array of
the same elements with the Bubble Sort, Selection Sort, and the Insertion Sort. Recall that

we created

the insert function for the linked list to add in the elements in order. So using the

insert instead of append or pushback will result in a sorted list (from smallest to largest).

1. Copy over the two linked list classes you created in the first two exercises. Also include
these in the main.

2. Take the Bubble Sort, Selection Sort, and the Insertion Sort code below and template
the functions to work with any data type with valid relational operators. The ones
below are written for arrays of integers, so be careful on which variables need to be
changed to T and which stay as integers.

void

bubbleSort (int array([], int size) {

int maxElement;
int index;

for (maxElement = size - 1; maxElement > 0; maxElement--)

}

void

for (index = 0; index < maxElement; index++)
if (array[index] > array[index + 1])
swap (array[index], array[index + 1]);

selectionSort (int array[], int size) {

int minIndex, minValue;

for (int start = 0; start < (size - 1); start++) {

Fall 2024

42

COSC 220 Project #2: Linked Lists

minIndex = start;
minValue = array[start];
for (int index = start + 1; index < size; index++) {
if (array[index] < minValue) {
minValue = array[index];
minIndex = index;
}
}
swap (array [minIndex], arrayl[start]);

}

void insertionSort (int array[], int size) {
for (int itemsSorted = 1; itemsSorted < size; itemsSorted++) {
int temp = array[itemsSorted];
int loc = itemsSorted - 1;
while (loc >= 0 && arrayl[loc] > temp) {
array[loc + 1] = arrayl[loc];
loc = loc - 1;
}

array([loc + 1] = temp;

3. In the main, set the seed of the random number generator to the clock as usual.
4. Ask the user how many data items they wish to store.

5. Create empty linked lists of integers, an empty vector of integers, and a dynamic array
of integers of the size to store the data items.

6. Using the vector, populate the vector with the number of data items the user requested
each of which is a random integer. This is simply storing the random values so that
we can load them into each structure and hence time the sorting on the same data set.

7. Separately, time the process of inserting the data from the vector into the two linked
list structures. That is, take each element of the vector one at a time and use the list
insert function to insert it into the linked list, effectively, sorting the data.

8. Time the process of inserting the data from the vector into the array and then sorting
the array with the Bubble Sort.

9. Time the process of inserting the data from the vector into the array and then sorting
the array with the Insertion Sort.

10. Time the process of inserting the data from the vector into the array and then sorting
the array with the Selection Sort.

11. Run the program on sizes of 10,000, 25,000, 50,000, 75,000, and 100,000 items.

An example run on my laptop with 20,000 data items is below.

Input the number of values to store: 20000

Time to sort with linked list: 0.892987 seconds

Time to sort with double linked list: 0.861348 seconds
Time to sort array with bubble sort: 1.81093 seconds
Time to sort array with insertion sort: 0.251529 seconds
Time to sort array with selection sort: 0.447638 seconds

Fall 2024 43

COSC 220 Project #2: Linked Lists

4

12.

13.

Using a spreadsheet, such as LibreOffice Calc or Excel, plot the sort times verses the
number of data items. Put all five lines on the same chart. You will want to use an
XY scatter chart with the sizes on the x-axis and times on the y-axis.

In a word processor, you can use LibreOffice Writer, Word, or any word processor that
will allow you to export the document to a PDF file. LibreOffice Writer has a toolbar
button for this. In the document include tables of all the data you acquired from the
runs you did above, the charts you created from the data and the answers, in complete
sentences, to the following.

e How do the times for these three methods compare?

e Do the curves have approximately the same shape? That is, do they increase
along a parabolic-like curve, are they both straight lines, do they have the same
types of curves in about the same places?

e What do you think is accounting for the differences?

Export the document to a PDF file and include it with your code in the zip file you
upload.

Application: Scalable Vector Graphics (SVG) Files

This exercise is going to combine our work with the inheritance hierarchy we created with
the shapes examples and the doubly linked list to store the data. At the end we will export
the data to a scalable vector graphics (SVG) file that will allow us to view the objects in a
graphics viewer or web browser.

You will be creating all structures used in this program yourself. No use of STL or
algorithm library functions is permitted.

4.1 Shape Inheritance Hierarchy Description

1.

First we will update the shape classes inheritance hierarchy. The base class will still
be the Shape class. Its data members are going to change to the following,

bordercolor which is a string.

fillcolor which is a string.

borderwidth which is an integer.

opacity which is a double.
The shape class should have sets and gets for all the data members. The sets should,
of course, do validity checking.

The strings bordercolor and fillcolor must be from the following list, any other strings
are invalid values.

Fall 2024 44

COSC 220 Project #2: Linked Lists

black darkgreen lightgray red

blue darkorange lightgreen violet
brown darkred magenta yellow

cyan gold maroon transparent
darkblue gray navy

darkcyan green orange

darkgray lightcyan purple

Similarly, borderwidth should be at least 1 and opacity is to be between 0 and 1
inclusive.

3. Shape needs three more functions all of which are to be dynamically bound for poly-
morphism.

e A function getBounds that returns a pointer to an integer array which is purely
virtual.

e A void draw function.

e A svgcode function that returns a string.

We will discuss what these functions do at the end after we discuss the child classes.

4. A Rectangle class inherited off of Shape. The Rectangle class will have four integer
data members: tlx, tly, width, and height. The meaning of these values will become
evident as we go along but for now, the tlx and tly values are the (z,y) coordinates for
the top left vertex of the rectangle and the width and height are the width and height
of the rectangle. One thing to note is that we are using integer positions here because
they are going to correspond to pixel positions on an image.

Create getters and setters for each data member, as usual, validity check the setters.
The width and height must both be at least 1, but the tlx and tly do not have any
bounds stipulations.

5. A Square class inherited off of Rectangle. The square class does not need any additional
data or accessor/mutator functions.

6. A Circle class inherited off of Shape. The circle class will have three integer data
members, cx, cy, and radius. Again, the data will be made clearer as we go along. For
now, the cx and cy are the (z,y) coordinates of the center of the circle and radius is
the radius of the circle.

Create accessors and mutators for each of the data items. The radius must be at least
1 but there are no restrictions on cx and cy.

7. A Triangle class inherited off of Shape. The triangle class has one data member, a
pointer to an integer array. This array will store the 6 data items for the three vertices
of the triangle. So if the three vertices to the triangle are (z1,y1), (22, ¥2), and (x3,ys3),
the array will have the data x1,y1, T2, y2, T3, y3 in it in that order. Clearly we can get

Fall 2024 45

COSC 220 Project #2: Linked Lists

by on this with a stack memory array but I want this to be dynamic. Again, you want
accessors and mutators for this array, there are no bounds stipulations on the x and y
coordinate values.

4.2 User Interface Specifications

Before we continue with the details lets skip up to the main and describe the program goal
here. When the application is run the user will be presented with the following menu.

. Add Rectangle

. Add Square

. Add Triangle

. Add Circle

. Add Random Rectangles
. Add Random Squares

. Add Random Triangles
. Add Random Circles

9. Add Random Objects
10. View Object Database
11. View Object Database in SVG Format
12. Save SVG File

13. Clear Shape Database
14. Quit

Choice:

O Joy Ul b W

The first four options will ask the user for all the needed data to create one copy of the
intended object. The next four options will ask the user how many of those objects to create
and then create that many random desired objects. Option 9 will ask the user the number
of objects to create and it will create that many object selecting at random which of the
four objects to create. So if the user inputs 10 then that option could create 3 rectangles,
one square, 2 triangles, and 4 circles.

Option 10 prints to the console a list of all objects in the database with their attributes
in the following format. The first is a rectangle, second is a square, third is a triangle, and
last is the circle. This option simply prints out the size of the linked list (i.e. size of the
database) and then calls the draw function on each element in the database, polymorphism
takes care of the rest. Note that the border, fill, border width, and opacity are all stored
in the Shape base class, so use its draw function to print out this portion of the output, no
reason to redo the same code in the derived classes.

Number of Objects in Database = 4

Rectangle Anchor Point: (-547, -989) Width: 608 Height: 652 Border: lightgray
Fill: yellow Border Width: 4 Opacity: 0.587987

Rectangle Anchor Point: (37, -72) Width: 311 Height: 311 Border: yellow
Fill: darkorange Border Width: 1 Opacity: 0.262964

Triangle Points: (-247, -347) (=370, 944) (=727, -701) Border: yellow
Fill: transparent Border Width: 5 Opacity: 0.290014

Circle Center: (334, 310) Radius: 538 Border: lightgray Fill: black
Border Width: 1 Opacity: 0.897517

Fall 2024 46

COSC 220 Project #2: Linked Lists

Option 11 prints out the database but in SVG format for each object. We will discuss
the svg format in more detail later. For these objects the svg format is,

Number of Objects in Database = 4

<rect x="-547" y="-989" width="608" height="652" stroke="lightgray" fill="yellow"
stroke-width="4" opacity="0.587987" />

<rect x="37" y="-72" width="311" height="311" stroke="yellow" fill="darkorange"
stroke-width="1" opacity="0.262964" />

<polyline points="-247, -347 -370, 944 -727, -701 -247, -347" stroke="yellow"
fill="transparent" stroke-width="5" opacity="0.290014" />

<circle cx="334" cy="310" r="538" stroke="lightgray" fill="black" stroke-width="1"
opacity="0.897517" />

This option simply prints out the size of the linked list (i.e. size of the database) and
then calls the svgcode function on each element in the database, polymorphism takes care
of the rest. Note that the border, fill, border width, and opacity are all stored in the Shape
base class, so use its svgcode function to construct that portion of the string, no reason to
redo the same code in the derived classes. These are actually the text strings that will be
saved to the svg file to create the image. Again more on that later.

Option 12 asks the user for a filename. The program will then save the database contents
to an svg file that can be viewed with some graphics viewers and most web browsers, such
as firefox. If the user types in a filename that does not have a “.svg” extension then the
program should add it on automatically. That is, if the user types in imagel the file will be
imagel.svg.

Option 13 will clear the contents of the entire database. Option 14 will end the program.

Obviously we could make this far more user friendly by allowing the user to remove
portions of the database and edit entries that have been already entered. While this would
be nice to have it is not necessary here to get a feel for how the storage and inheritance
structures are working together. If this were a course in GUI design then these options,
along with several others, would be added.

4.2.1 User Interface Specifications Details

e Option #1: Add a single Rectangle. When the user selects to add a rectangle the
following sequence of inputs will come up. The program will ask for the x and y
coordinates of the upper left vertex to the rectangle (called the anchor point), then
the width and height of the rectangle. It will then print out a list of the colors we
are using (svg actually supports far more but 25 is enough), the user then selects the
border color from the list. The list is displayed again and the user selects the fill color
from the list. Finally, the program asks for the border width and the opacity level.
The range of acceptable values is given on the input line. If the user inputs something
outside that range the program will ask for the input again. Furthermore, the program
will also detect if the data type of the input is correct, so if the user inputs a string

Fall 2024 47

COSC 220

Project #2: Linked Lists

where they were supposed to input a number the program will not crash but instead
ask for a valid input. Again, more on that later.

Choice: 1

Input Upper Left X [-1000, 1000]: -102

Input Upper Left Y [-1000, 1000]: 123

Input Width [1, 1000]: 401

Input Height [1, 1000]: 500

1: black 2: blue 3: brown 4: cyan 5: darkblue

6: darkcyan 7: darkgray 8: darkgreen 9: darkorange 10: darkred

11: gold 12: gray 13: green 14: lightcyan 15: lightgray
16: lightgreen 17: magenta 18: maroon 19: navy 20: orange

21: purple 22: red 23: violet 24: yellow 25: transparent
Select Border Color: 4

1: black 2: blue 3: brown 4: cyan 5: darkblue

6: darkcyan 7: darkgray 8: darkgreen 9: darkorange 10: darkred

11: gold 12: gray 13: green 14: lightcyan 15: lightgray
16: lightgreen 17: magenta 18: maroon 19: navy 20: orange

21: purple 22: red 23: violet 24: yellow 25: transparent
Select Fill Color: 19

Input Border Width [1, 100]: 3

Input the Opacity [0, 1]: 0.75

With those inputs the following is a printout of the database entry for that object.

Anchor Point:
Border Width:

Rectangle
Fill: navy

(=102,

3

12

Opacity:

3) Width:
0.75

401

Height:

500

Border:

cyan

e Option #2: Add a single Square. When the user selects to add a square the following
sequence of inputs will come up. Note that these are the same options as the rectangle
except that you only need to input a side length in place of a height and width.

Choice: 2

Input Upper Left X [-1000, 1000]: 50

Input Upper Left Y [-1000, 1000]: 100

Input Side Length [1, 1000]: 200

1: black 2: blue 3: brown 4: cyan 5: darkblue

6: darkcyan 7: darkgray 8: darkgreen 9: darkorange 10: darkred

11: gold 12: gray 13: green 14: lightcyan 15: lightgray
16: lightgreen 17: magenta 18: maroon 19: navy 20: orange

21: purple 22: red 23: violet 24: yellow 25: transparent
Select Border Color: 16

1: black 2: blue 3: brown 4: cyan 5: darkblue

6: darkcyan 7: darkgray 8: darkgreen 9: darkorange 10: darkred

11: gold 12: gray 13: green 14: lightcyan 15: lightgray
16: lightgreen 17: magenta 18: maroon 19: navy 20: orange

21: purple 22: red 23: violet 24: yellow 25: transparent
Select Fill Color: 5

Input Border Width [1, 100]: 5

Input the Opacity [0, 1]: 1

With those inputs the following is a printout of the database entry for that object.

Fall 2024

48

COSC 220 Project #2: Linked Lists

Rectangle Anchor Point: (50, 100) Width: 200 Height: 200 Border: lightgreen
Fill: darkblue Border Width: 5 Opacity: 1

e Option #3: Add a single Triangle. When the user selects to add a triangle the following
sequence of inputs will come up. The first 6 ask for the coordinates of the three vertices.
The rest of the options are identical to the square and rectangle.

Choice: 3

Input x1 [-1000, 1000]: 23

Input yl [-1000, 1000]: 45

Input x2 [-1000, 1000]: 62

Input y2 [-1000, 1000]: 55

Input x3 [-1000, 1000]: 107

Input y3 [-1000, 1000]: 45

1: black 2: blue 3: brown 4: cyan 5: darkblue
6: darkcyan 7: darkgray 8: darkgreen 9: darkorange 10: darkred
11: gold 12: gray 13: green 14: lightcyan 15: lightgray
16: lightgreen 17: magenta 18: maroon 19: navy 20: orange
21: purple 22: red 23: violet 24: yellow 25: transparent

Select Border Color: 1

1: black 2: blue 3: brown 4: cyan 5: darkblue

6: darkcyan 7: darkgray 8: darkgreen 9: darkorange 10: darkred

11: gold 12: gray 13: green 14: lightcyan 15: lightgray
16: lightgreen 17: magenta 18: maroon 19: navy 20: orange

21: purple 22: red 23: violet 24: yellow 25: transparent

Select Fill Color: 25

Input Border Width [1, 100]: 2
Input the Opacity [0, 1]: 0.85

With those inputs the following is a printout of the database entry for that object.

Triangle Points: (23, 45) (62, 55) (107, 45) Border: black
Fill: transparent Border Width: 2 Opacity: 0.85

e Option #4: Add a single Circle. When the user selects to add a circle the following
sequence of inputs will come up. The first three ask for the coordinates of the center
and then the radius of the circle. The rest of the options are identical to the triangle,
square and rectangle.

Choice: 4

Input Center X [-1000, 1000]: -300
Input Center Y [-1000, 1000]: 200
Input Radius [1, 1000]: 123

1: black 2: blue 3: brown 4: cyan 5: darkblue

6: darkcyan 7: darkgray 8: darkgreen 9: darkorange 10: darkred

11: gold 12: gray 13: green 14: lightcyan 15: lightgray
16: lightgreen 17: magenta 18: maroon 19: navy 20: orange

21: purple 22: red 23: violet 24: yellow 25: transparent

Select Border Color: 6

1: black 2: blue 3: brown 4: cyan 5: darkblue
6: darkcyan 7: darkgray darkgreen darkorange 10: darkred
11: gold 12: gray 13: green 14: lightcyan 15: lightgray

[ee]
e

Fall 2024 49

COSC 220 Project #2: Linked Lists

16: lightgreen 17: magenta 18: maroon 19: navy 20: orange

21: purple 22: red 23: violet 24: yellow 25: transparent
Select Fill Color: 22

Input Border Width [1, 100]: 7

Input the Opacity [0, 1]: 0.777

With those inputs the following is a printout of the database entry for that object.

(=300, 200)
Opacity:

Radius: 123 Border: Fill: red

0.777

Center:
-

Circle
Border Width:

darkcyan

Options #5—#9: When the user selects to add in any of the randomly generated objects
a single input will appear asking for how many items to generate, between 0 and 100.
0 was included in case the user changes their mind and wants to back out.

For example, if the user selects #9, they will see,

Number of Objects to Add [0, 100]: 10

The database now looks like,

Number of Objects in Database = 10

Rectangle Anchor Point: (850, 611) Width: 746 Height: 354 Border: gold
Fill: orange Border Width: 2 Opacity: 0.187021

Rectangle Anchor Point: (28, -525) Width: 848 Height: 623 Border: purple
Fill: darkcyan Border Width: 4 Opacity: 0.29898

Rectangle Anchor Point: (140, 265) Width: 296 Height: 731 Border: lightgray
Fill: green Border Width: 4 Opacity: 0.924671

Circle Center: (-28, —-494) Radius: 246 Border: transparent Fill: brown
Border Width: 5 Opacity: 0.866525

Rectangle Anchor Point: (=730, 78) Width: 560 Height: 560 Border: darkgray
Fill: lightcyan Border Width: 3 Opacity: 0.347617

Triangle Points: (413, 878) (915, 982) (833, 817) Border: black Fill: transparent
Border Width: 2 Opacity: 0.592978

Circle Center: (341, -857) Radius: 829 Border: lightgray Fill: darkblue
Border Width: 1 Opacity: 0.134759

Circle Center: (=627, -701) Radius: 846 Border: red Fill: blue

Border Width: 3 Opacity: 0.241394

Rectangle Anchor Point: (=36, 414) Width: 237 Height: 237 Border: cyan
Fill: transparent Border Width: 5 Opacity: 0.400144

Rectangle Anchor Point: (=320, -984) Width: 294 Height: 239 Border: darkred
Fill: yellow Border Width: 2 Opacity: 0.327422

The other random options will create random objects of just the selected type.

Fall 2024

50

COSC 220 Project #2: Linked Lists

4.3 SVG Object and File Syntax

There are far more options and objects that are supported by SVG, we are just going to
discuss the ones that will allow you to create an image out of your database. Although there
are 4 objects you can create in your database only three SVG objects need to be discussed
(since the square and rectangle are both rectangles).

4.3.1 Rectangle & Square

For the rectangle the x and y is the position of the upper left vertex, the width and height
are the width and height.

(X;Y) width

height

So if you have a rectangle in your database the svgcode function should return a string
with the following format.

<rect x="850" y="611" width="746" height="354" stroke="gold" fill="orange"
stroke-width="2" opacity="0.187021" />

For this one the upper left coordinates are (850,611), remember this is in pixels, that is
dots on the screen. The width and height are 746 and 354 respectively. The border color is
gold, the fill color is orange, the border width is 2 and its opacity is 0.187021. With opacity,
0 is completely transparent and 1 is completely opaque. The square will produce the same
string except that the height and width will be equal.

4.3.2 Circle

For the circle, the cx and cy is the position of the center, the r is the radius of the circle.

Fall 2024 o1

COSC 220 Project #2: Linked Lists

<circle cx="-28" cy="-494" r="246" stroke="brown" fill="transparent"
stroke-width="5" opacity="0.866525" />

For this one the center coordinates are (—28, —494), and its radius r is 246. The border
color is brown, the fill color is transparent, the border width is 5 and its opacity is 0.866525.

4.3.3 Triangle
For the triangle we will use a polyline object, which is a set of connected straight line

segments. The points are listed with whitespace between them and the x and y values are
separated with a comma.

points="0,0 10,20 30,10 40,20"

(10,20) (40,20)

(30,10)

(0,0)

<polyline points="413, 878 915, 982 833, 817 413, 878" stroke="black"
fill="transparent" stroke-width="2" opacity="0.592978" />

For this one the points are (413,878), (915,982), (833,817), and then the last point is
the same as the first to connect the triangle. The border color is black, the fill color is
transparent, the border width is 2 and its opacity is 0.592978.

Fall 2024 52

COSC 220 Project #2: Linked Lists

4.3.4 SVG File Structure

The SVG file is simply a text file, no special formats to deal with like jpg or png files. The
first lines of the file are,

<?xml version="1.0" standalone="no"?>
<svg width="1000" height="1000" viewBox="-998 -996 1993 1993"
version="1.1" xmlns="http://www.w3.0rg/2000/svg">

All of this will not change except for the numbers after the viewBox, we will discuss how
to calculate these later. Then you put in each objects svg code that we discussed above.
Finally, you simply put </svg>as the last line. An example of a complete svg file is below.

<?xml version="1.0" standalone="no"?>

<svg width="1000" height="1000" viewBox="-1052 -661 2600 2600" version="1.1"
xmlns="http://www.w3.0rg/2000/svg">

<rect x="169" y="379" width="792" height="505" stroke="navy" fill="black"
stroke-width="4" opacity="0.931133" />

<rect x="-965" y="784" width="663" height="663" stroke="blue" fill="transparent"
stroke-width="5" opacity="0.910056" />

<rect x="-809" y="855" width="747" height="235" stroke="lightgreen" fill="darkcyan"
stroke-width="1" opacity="0.855887" />

<rect x="757" y="254" width="791" height="537" stroke="maroon" fill="transparent"
stroke-width="2" opacity="0.193971" />

<rect x="214" y="-169" width="276" height="505" stroke="lightgreen" fill="lightgreen"
stroke-width="5" opacity="0.620652" />

<circle cx="246" cy="-10" r="245" stroke="brown" fill="orange" stroke-width="1"
opacity="0.059643" />

<circle cx="-851" cy="192" r="201" stroke="darkcyan" fill="violet" stroke-width="5"
opacity="0.884747" />

<rect x="-828" y="804" width="123" height="123" stroke="lightgray" fill="darkorange"
stroke-width="1" opacity="0.310103" />

<rect x="169" y="-661" width="835" height="643" stroke="darkgray" fill="violet"
stroke-width="4" opacity="0.234912" />

<circle cx="448" cy="277" r="826" stroke="gold" fill="navy" stroke-width="3"
opacity="0.666855" />

</svg>

4.3.5 Calculating the View Box Values

The only function in the shape hierarchy we did not discuss yet is the purely virtual get-
Bounds function. Recall that this returns a pointer to a dynamic array of four integer
entries. So getBounds will allocate the memory for the array and populate the array with
the bounding box for the object. It will pass this pointer to the main that will calculate the
view box values and then the main will delete the array. The bounding box for an object is
the smallest rectangle that completely contains the object. The getBounds array is to store
the minimum z, maximum z, minimum ¥, and maximum y values for the bounding box in
that order. Hence this is the smallest rectangle bounds that contains each object.

Now to find the values for the view box. First find the minimum x, maximum z. minimum
y, and maximum y values for all objects in the scene. For example, say your bounding boxes
are

Fall 2024 93

COSC 220 Project #2: Linked Lists

[-12, 24, -4, 17]
[6, 72, 15, 50]
[-23, 50, 0, 711
[10, 20, 10, 20]

Then the scene minimums and maximums are [-23, 72, -4, 71]. Then find the
height and width of the total bounding box from the scene minimums and maximums. So
the width would be 72 — (—23) = 95 and the height would be 71 — (—4) = 75. Take the
maximum of the width and the height, in this case 95. Now the view box values are the
scene minimum z, the scene minimum y, and the max of the height and width for the view
boxes height and width. In this example it would be viewBox="-23 -4 95 95".

4.4 More Details for the Application

The following are some additional requirements of the program.

4.4.1 User Friendliness

We would like to make this program as user friendly as possible. One thing we can do at
this stage is use exception handling to take care of determining data types and data ranges
that the user types in and in the case where it is incorrect we can ask for the input again.
One thing we do not want is to ask for a number and if the user types in a string have the
program crash.

In the example code, in the CPP_Modules directory, in the Exceptions directory, in
the SystemExceptions directory, in the main.cpp file there is a function Input Integer
that catches system level exceptions from the stol and stod functions. This allows us to catch
input errors from the user. For example, in a run of the program in the input of a rectangle
I tried the following.

Input Upper Left X [-1000, 1000]: 78946
Input was not between -1000 and 1000.
Input Upper Left X [-1000, 1000]: Help
Input was not a numeric type.

Input Upper Left X [-1000, 1000]: 1.256
Input was not an integer.

Input Upper Left X [-1000, 1000]: 1000¢

Input was too large.
Input Upper Left X [-1000, 1000]: 100

Some of these inputs would have crashed the program if we were just using a cin. But with
the use of this Input Integer function we can keep the program from crashing. Take the
InputInteger function from the example and put it into your program. Update it as fol-
lows. Include three parameters, a string prompt, a long integer lower bound and long integer
upper bound. The string parameter prompt should replace the "Input an integer: "

Fall 2024 54

COSC 220 Project #2: Linked Lists

prompt in the function, the lower and upper bounds are to be the smallest and largest ac-
ceptable values for the input. If the input is out of range there should be a message about
that like the one in the example above, and of course ask for the input again.

Now create a similar function InputDouble that does the same thing as Input Integer
but the bounds are doubles and the return type is a double. All user input is to be done
through these two functions.

4.4.2 Database Data Structure

The database holding all of the shapes is to be your final version of the doubly linked list.
Although this is obvious since we are using polymorphism, the linked list will store Shape
pointers which point to each specific shape object in the database. If you were not able to
get a working version of the doubly linked list you may use the STL list to do the storage
but you will not earn full credit for this portion of the project.

4.4.3 Modularity

Break the program up into nice modular sections. Functions should be focused on small
particular tasks. Minimize the amount of code duplication and utilize reuse where possible.
Keep the code easily readable and revise any sections that are too cryptic.

4.4.4 Memory Management

There is a lot of dynamic memory allocation and memory management going on in this
application. Make sure that there are no memory errors, in reading, writing, jumping, etc.
as well as no leaks.

4.5 Extra Credit: Dialog Boxes

For some extra credit, this is purely optional, incorporate a save dialog box for saving the
svg file.

In the example code, in the CPP_Modules directory, in the TinyFileDialogs direc-
tory, there are two files tinyfiledialogs.h and tinyfiledialogs.cpp that contain
code for you to easily bring up the standard system dialog boxes for opening files, saving
files, selecting colors, message boxes, etc. There is also a readme file showing the general
syntax for the functions and a short main.cpp example program using these dialogs. If you
incorporate these then when the user selects option 12, instead of typing in a filename they
would see,

Fall 2024 5}

COSC 220 Project #2: Linked Lists

Save SVG File [>]
MName: ||]
Home 4 fkdon | Classes COsC220 Projects Project02 Code Exerd5) a
Deskto - -
= > Name w Size Type Modified
B Documents M test2.swg 13.2 kB Image Yesterday
3 Downloads ™| test3.svg 11.9kB Image Yesterday
M| testd.svg 24.7kB Image Yesterday
JI Music ™ test004.svg 11.9kB Image Yesterday
0 Pictures M| testDO5.svg 16.3 kB Image Yesterday
testo06.svg 13.1kB Image Yesterday
H videos ™ teston7.svg 644 bytes Image 12:32
B Exer05 B test008.svg 13 kB Image 14:36
M| Test.svg 13.1 kB Image Yesterday
il Books
B Classes
i POF
i Programming
SVG files (*.swg) ¥
Cancel 0K

They would then select a directory for storage and input a filename and click OK. At
this point the program will save the svg file. If the user selects Cancel then no file will be
saved. As with the text input route, if the extension is not “.svg” add it to the filename.
For this dialog box you should be selecting only single files and the filter should be set to
one file type, SVG Files with an extension of .svg.

Fall 2024 56

