COSC 120 Project #1: Pictures or Poker

Contents

1 Introduction 1

2 Grading 1

3 Pictures Project 2

4 Poker Game Project 7
4.1 Example Program Runs oL 7
4.2 Project Specifications 10
4.3 Determining the Type of Hand 13
4.4 Determining the Winning Hando oL 13

1 Introduction

In this project you have a choice of one of two programs to write. One is on images that can
be produced using complex numbers and the other is a multi-player game for 5-card draw poker
(without betting). You have the choice of one of two projects, do one and only one of
these. As it states in the syllabus.

Projects are to be done strictly on your own and as with all assignments the sharing
of files and code is strictly prohibited and constitutes an act of Academic Misconduct.
Furthermore the use of any electronic medium, such as code repositories, forums, blogs,
message boards, email, etc. is strictly prohibited and constitutes an act of Academic
Misconduct.

The only person you may discuss this with in any form is me. You may use the textbook, the
textbook example code, and the class example code that is posted on the MyClasses site.

When you are ready to submit your work create a folder called Project01. Put all the code
files needed for the project in the folder along with a makefile. Zip the entire Project01 folder up
into a single zip file and submit it.

2 Grading

The program itself should, of course, be nicely formatted and commented and should follow all the
other rules of good programming style. Make sure you are following all the coding and documentation
standards of the class that are published on the MyClasses site for this class.

The grading of the project will take two forms, a sample run and an inspection of the code. If
the program does not run you will receive a zero for that portion. So even if the program is not
complete you will get a better grade for a partial program that runs verses a program that does not
run. So I would suggest a completion in stages approach. The run portion of the grading will test
the user interface for usability and conforming to the specifications I have outlined above. The code
inspection portion of the grade will involve commenting, readability, correct indentation, variable
names, structure and style, correctness, and conforming to specifications.

I am looking for clean, easy to read, code. A good use of functions without overuse. Commenting
that gets the point across concisely. An easy to use interface with nice looking output.

Fall 202 1

COSC 120 Project #1: Pictures or Poker

You have a choice of one of two projects,
do one and only one of these.

3 Pictures Project

This project is for you to build a Complex number class, that will handle the basic arithmetic
functions, streaming, constructions, and some comparison functions for complex numbers.

A complex number is a number of the form a + bi where a and b are real numbers and i is the
imaginary unit, i = v/—1. a is called the real part and b is called the imaginary part, note that b
is the imaginary part and not bi. If we have two complex numbers a + bi and ¢ + di then the four
arithmetic functions are defined as,

(a+bi)+(c+di) = (a+c)+ (b+d)i
(a+bi)—(c+di) = (a—c)+(b—d)i
(a+bi)-(c+di) = (ac—bd)+ (bc+ ad)i
,) a+bi ac+bd bc—ad.
arbiflerd) =" = @rE T Er

In addition, the modulus of a complex number a + bi is Va? + b2.

Create the Complex class that has the following functions and overloads. The class must have
both header and implementation files with all implementation code in the cpp file, that is, no inline
code. Since complex numbers are not a native data type in C++ your class will store two doubles,
one for the real part and one for the imaginary part. This is the only data you will need to store.
The operations defined above will simply be manipulations of these values.

e Default constructor setting the value of the complex number to 0.

e Constructor taking the real and imaginary parts as parameters.

e Constructor taking just the real part and setting the imaginary part to 0.

Destructor.

Functions to get and set the real parts and imaginary parts.

A function to set both the real and imaginary parts.

Overload the 4, —, *, and / operators. Each operation will require three overloads. Complex
and Complex, Complex and double, and finally double and Complex. So expressions like z +
z,z + 5, and 5 + z will all work with each operation.

Overload += and —= for Complex and Complex.

Overload the ~ symbol for exponentiation with integer exponents. So z"5 or z" -2 will work
but you do not need to overload it for other types of exponents. If you look at the testing
programs that were supplied you will notice that we put parentheses around the exponent
expressions, for example, we write (z"2) +c instead of just z"2+c. This is needed because
the order of presidents of these symbols in C++ do not match the order of presidents in
mathematics. In C++ the symbol " is the logical XOR, logical connectors have a very low order
of presidents, far below the other arithmetic operators (even below the streaming operators).
Although C++ allows you to change the meaning of the arithmetic operators it does not allow
you to change the presidents order of them. That is a good thing, think about the havoc that
could result if you made + a higher president than *. Although the reason we just gave for

Fall 202 2

COSC 120 Project #1: Pictures or Poker

not being able to alter the presidents order is most compelling, the real reason is tied up in
computational theory and compiler/language design.

e Overload the logical operators == and != between two complex numbers. You do not need
to overload any of the others since there is not a standard ordering of the complex number
system.

e Overload the assignment operator, this is really not needed for this data type but is good
practice.

e Create a mod function to return the modulus of the complex number. That is, z.mod ()
would be the modulus of z.

e Overload the input and output streaming operators. The output operator should print out
a + bi in a nice form. As in the examples below. The input operator should take two doubles
with a space between them to load into the real and imaginary parts respectively.

Once your class is written, test it with the following program. You may not alter this program.
Make sure that all of your functions are named correctly so that this testing program runs without
editing. In the files distributed with this project you will find the ComplexClassTester. cpp file,
which is the code below.

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <string>

#include "Complex.h"

void print (Complex z) {
cout << z << endl;

}

int main () {
Complex z;
Complex x(3, 7);
Complex vy (-4);
Complex w (0, 2);

cout << x << ", "<y << ", "< oz << ", " << w << endl;
cout << x.getReal() << ", " << x.getImag() << endl;

z.setReal (-5);
z.setImag(19);
cout << z << endl;

z.set (-12345, 471);
cout << z << endl;

cout << endl;

z.set (5, -8);

cout << z << endl;
cout << z + x << endl;
cout << z + 4 << endl;
cout << 4 4+ z << endl;
cout << endl;

cout << z - x << endl;
cout << z - 4 << endl;
cout << 4 - z << endl;
cout << endl;

cout << z * x << endl;
cout << z *x 4 << endl;

Fall 202 3

COSC 120 Project #1: Pictures or Poker

cout << 4 % z << endl;
cout << endl;
cout << z / x << endl;
cout << z / 4 << endl;
cout << 4 / z << endl;
cout << endl;

w = z;
cout << w << ", " << x << endl;
w += X;

print (w) ;

cout << endl;

w = Z;
cout << w << ", " << x << endl;
w —= Xy

print (w);

cout << (w ~ 2) << endl;
cout << (w "~ 3) << endl;
cout << endl;

cout << z.mod() << endl;
cout << endl;

if (w == z2)

cout << "w == z" << endl;
else

cout << "w != z" << endl;
if (w != z2)

cout << "w != z" << endl;
else

cout << "w == z" << endl;

cout << endl;

cout << "Input a complex number by simply entering " << endl;

cout << "the real and imaginary parts with a space " << endl;
cout << "between them. " << endl;

cout << "c = ";

cin >> z;

cout << "¢ = " << z << endl;

return 0;

Your output should look exactly like the run below.

3+ 7i, -4, 0, 2i
3, 7

-5 4+ 191

-12345 + 4711

- 81
1i
- 81
- 81

O W o U1
|

2 — 151
1 - 8i
-1 + 81

Fall 202 4

COSC 120 Project #1: Pictures or Poker

71 + 111
20 - 321
20 - 321

-0.706897 - 1.017241
.25 - 21
0.224719 + 0.3595511

=

5 -28i, 3 + 71
8 — 1i

5 -8i, 3 + 71
2 - 151

-221 - 601
-1342 + 3195i

9.43398
w !=
w ! z

Input a complex number by simply entering
the real and imaginary parts with a space
between them.

c =2 -7

c=2-71i

Once you have this working, create a new directory, copy your complex class files over to the
new directory, also copy the bitmap_image.hpp file to the new directory. This file is contained
in the project files that accompany the project. For the main program use the following code
with no alterations. This is also contained in the project files that accompany the project, it is in
ComplexImageCreator.cpp.

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <string>

#include "Complex.h"
#include "bitmap_image.hpp"

int main () {
int size;
double cr;
double ci;
unsigned int maxiter = 1000;
double borderRatio;
double colorExponent;
double bailout;

cout << "Input the image size (in pixels): ";
cin >> size;

cout << "Input the real value of c: ";

cin >> cr;

cout << "Input the imaginary value of c: ";
cin >> cij;

cout << "Input the maximum iteration (100-1,000): ";
cin >> maxiter;

cout << "Input the border ratio (0-1): ";

cin >> borderRatio;

cout << "Input the color exponent (0-1): ";

cin >> colorExponent;

Fall 202 5

COSC 120 Project #1: Pictures or Poker

cout << "Input the bailout radius (>= 4): ";
cin >> bailout;

const unsigned int width = size;
const unsigned int height = size;

bitmap_image pic(width, height);
pic.clear();

Complex z, c(cr, ci);
cout << "Creating Image" << endl;

for (unsigned int y = 0; y < height; ++y) {
for (unsigned int x = 0; x < width; ++x) {

double zr = (4.0 * x / width - 2.0);
double zi = (4.0 % y / height - 2.0);
z.set (zr, zi);
unsigned int n = 0;
while (n < maxiter) {

z = (z ~ 2) + c;

if (z.mod() > bailout) {
int index = 0;

if (n > maxiter * borderRatio)
index = 255;
else
index = pow(l1.0 * n / maxiter, colorExponent) x 255;

pic.set_pixel(x, y, index, index, index);
n = maxiter;
}
n++;
}

pic.save_image ("image.bmp") ;

cout << "Done" << endl;
return 0;

Compile the program. Note that the bitmap_1image. hpp file is a header file with all the needed
code for the image processing. Hence it simply needs to be included in the main, as above, and not

compiled. So you will not add it to the makefile listing.

Run the program, and when asked for input, type in the following values.

Input the image size (in pixels): 800

Input the real value of c: -.8

Input the imaginary value of c: .156

Input the maximum iteration (100-1,000): 1000
Input the border ratio (0-1): .5

Input the color exponent (0-1): .5

Input the bailout radius (>= 4): 4

The result will be a bitmap image file stored in your project’s working directory. Open the image
file in an image viewer and if it is not a really cool image then you may have something wrong with

the Complex class.

Some other interesting values of ¢ you may wish to try are,

Fall 202

COSC 120 Project #1: Pictures or Poker

e c=—-0.52+0.57¢ c=0.28540.017

o ¢=0.295+ 0.55¢ e c=—0.70176 — 0.3842:
o ¢ = —0.624 4 0.4357 e c=—0.835—-0.2321¢

e c=i e c=—0.8+0.1567

e c=-125 o c=—-08

4 Poker Game Project

The objective of this project is to create a program that will play a single round of the poker game
five card draw for between 2 and 6 players. In the game of five card draw each player is dealt 5
cards then each player is allowed to throw away up to three cards and have them replaced with new
cards from the top of the deck. We will not play the version where you can draw 4 cards if you have
an Ace. So when the players get the initial 5 cards these are dealt in the normal manner, one card
being dealt to player 1, then one to player 2, then one to player 3, and so on cycling back to player
1 for the second card of each hand and so on. When the player throws away any cards the cards are
replaced all at once from the top of the deck. So if player 1 throws away 2 cards these are replaced
by the top two cards from the deck.

The program should work as follows. The user is first asked how many players will be playing
the game. This input should be between 2 and 6 and the program should catch any errors in the
input and if there are, ask the user for another input. The program will then deal the cards to each
player (this will not be shown on the screen). Then one by one each player will be asked how many
cards they would like to draw. This input must be between 0 and 3 cards, again catching any errors
in the input. If the number they want to draw is greater than 0 the program should ask for the card
positions to be thrown away, one by one. These inputs should be between 1 and 5, 1 representing
the first card, 2 the second and so on. Again catch all input errors. Here there could be another
error that is not simply inputting an integer between 1 and 5. If the user inputs a card number that
they have already input the program should not replace that card again. This would be like being
dealt a card and then throwing that same card away for another card, this is not legal in poker.
After each player has had the chance to draw the program should print out the hands of all the
players and declare a winner. At this point the program ends.

4.1 Example Program Runs
Input number of players 2-6: 3

Player 1: AD 2S 4S 4D oC - One Pair

Number of cards to draw: Input the number of cards to draw 0-3: 2
Input the number of the card to replace 1-5: 2

Input the number of the card to replace 1-5: 5

Player 2: 5H 10S QD QS KH - One Pair

Number of cards to draw: Input the number of cards to draw 0-3: 2
Input the number of the card to replace 1-5: 1

Input the number of the card to replace 1-5: 2

Player 3: 35 3C 6S 7D 8C - One Pair
Number of cards to draw: Input the number of cards to draw 0-3: 3
Input the number of the card to replace 1-5: 3

Fall 202 7

COSC 120 Project #1: Pictures or Poker

Input the number of the card to replace 1-5: 4
Input the number of the card to replace 1-5: 5

Player 1: AD 2H 435 4D KS - One Pair
Player 2: 3H 4C QD QS KH ——— One Pair
Player 3: 35 3C 8D 9H KC - One Pair

Player 2 won this hand.

Input number of players 2-6: 1
Input was not between 2 and 6, try again
Input number of players 2-6: 8
Input was not between 2 and 6
Input number of players 2-6: 3

try again

~

Player 1: 6H 7S 8S JH QH -——= High Card

Number of cards to draw: Input the number of cards to draw 0-3: 3
Input the number of the card to replace 1-5: 1

Input the number of the card to replace 1-5: 1

This card was already replaced, please select another card.
Input the number of the card to replace 1-5: 6

Input was not between 1 and 5, try again

Input the number of the card to replace 1-5: 2

Input the number of the card to replace 1-5: 2

This card was already replaced, please select another card.
Input the number of the card to replace 1-5: 1

This card was already replaced, please select another card.
Input the number of the card to replace 1-5: 3

Player 2: 6C 8H 9D 10C JS - High Card
Number of cards to draw: Input the number of cards to draw 0-3: 1
Input the number of the card to replace 1-5: 1

Player 3: AD 2H 3D 95 KH - High Card

Number of cards to draw: Input the number of cards to draw 0-3: 3
Input the number of the card to replace 1-5: 2

Input the number of the card to replace 1-5: 3

Input the number of the card to replace 1-5: 4

Player 1: 4s 4D 7C JH QH - One Pair
Player 2: AS 8H 9D 10C JS - High Card
Player 3: AD 5D 8C JD KH -——= High Card

Player 1 won this hand.

Input number of players 2-6: 4

Player 1: 55 5D e6C JH JD - Two Pair
Number of cards to draw: Input the number of cards to draw 0-3: 1

Fall 202 8

COSC 120 Project #1: Pictures or Poker
Input the number of the card to replace 1-5: 3

Player 2: AH 3D 5H 8C 9sS - High Card

Number of cards to draw: Input the number of cards to draw 0-3: 3
Input the number of the card to replace 1-5: 2

Input the number of the card to replace 1-5: 3

Input the number of the card to replace 1-5: 4

Player 3: AS 3S 4S QH KD - High Card

Number of cards to draw: Input the number of cards to draw 0-3: 2
Input the number of the card to replace 1-5: 2

Input the number of the card to replace 1-5: 3

Player 4: 2H 9D 9C JC KH - One Pair

Number of cards to draw: Input the number of cards to draw 0-3: 2
Input the number of the card to replace 1-5: 1

Input the number of the card to replace 1-5: 4

Player 1: AC 5S 5D JH JD - Two Pair

Player 2: AH 3H 9S 10D 10cC - One Pair

Player 3: AS 2D QS QH KD ——— One Pair

Player 4: 4C 6S 9D 9C KH - One Pair

Player 1 won this hand.

Input number of players 2-6: 3

Player 1: 2D 35S 3D 7D 8C - One Pair

Number of cards to draw: Input the number of cards to draw 0-3: 3
Input the number of the card to replace 1-5: 1

Input the number of the card to replace 1-5: 4

Input the number of the card to replace 1-5: 5

Player 2: 4D 5H 6D 7H 9D -——= High Card

Number of cards to draw: Input the number of cards to draw 0-3: 1
Input the number of the card to replace 1-5: 5

Player 3: AD 6C 6H 8S 10C - One Pair

Number of cards to draw: Input the number of cards to draw 0-3: 2
Input the number of the card to replace 1-5: 4

Input the number of the card to replace 1-5: 5

Player 1: AS 3C 35 3D QcC - Three of a Kind

Player 2: 4D 5H 6D 7H 8D ——= Straight

Player 3: AD 2H 6C 6H JH - One Pair

Player 2 won this hand.

In the example below, I also printed the deck of cards after the deck was shuffled so that you
can better see how the cards are dealt to each player at the beginning and also during the drawing
phase of the game.

Fall 202 9

COSC 120 Project #1: Pictures or Poker

6S 9S AH 8D 10C 6C 5S KS 2H QS AD 5C 9H 2C 8S 6D AC 10S 4H 9C 7H 3D JH
25 35S 6H 2D 7D 9D 5H 4C 3C 10H 8H KH 8C KD JS 7C 4D AS QH 7S QC JD KC
45 QD 10D JC 5D 3H

Input number of players 2-6: 3

Player 1: 55 6S 8D 9H O0QS - High Card
Number of cards to draw: Input the number of cards to draw 0-3: 1
Input the number of the card to replace 1-5: 5

Player 2: AD 2C 9S 10C KS - High Card

Number of cards to draw: Input the number of cards to draw 0-3: 3
Input the number of the card to replace 1-5: 2

Input the number of the card to replace 1-5: 3

Input the number of the card to replace 1-5: 4

Player 3: AH 2H 5C 6C 8S - High Card

Number of cards to draw: Input the number of cards to draw 0-3: 3
Input the number of the card to replace 1-5: 2

Input the number of the card to replace 1-5: 3

Input the number of the card to replace 1-5: 4

Player 1: 55 6S 6D 8D 9H - One Pair
Player 2: AD AC 4H 10S KS - One Pair
Player 3: AH 3D 7H 835 9C - High Card

Player 2 won this hand.

4.2 Project Specifications

In this project you must incorporate the following, at the very least.

1. You must create three class structures for this project, each with their own declaration file (.h)
and implementation file (.cpp), the classes and their functions are below. All data members
must be private. The Card and Deck classes can be updates of those you created in a previous
assignment.

(a) Card Class: The card class is an object representing a single card. The data needs to
hold a face value and suit. This class will also need accessors and mutators. It should
handle the conversion of the data to a string (such as 4H, 2D, AS) so that other functions
or classes can print the card value out without the need to redo the conversions. You will
need to sort cards so you will want to overload the comparison operators. Specifically,
the Card class should store the card face and suit as integers. The value should be 1 for
Ace, 2-10, 11 for Jack, 12 for Queen, and 13 for King. It should also have at least the
following functionality.

e Card(): Default constructor will set the value and suit both to 0, that is, a card
that does not exist.

e Card(int v, int s): Constructor that sets value to v and suit to s. You may
default these values to take care of the default constructor.

e string toStringFace (): Returns a string of the face value of the card, use A,
J, Q, and K for the face cards.

e string toStringSuit (): Returns a string of the suit of the card, use D, C, H,
and S.

Fall 2024 10

COSC 120

Project #1: Pictures or Poker

(b)

e string toString(): Returns a sting of the card in condensed form, for example,
2C, AS, JD, 10H. There should be no space between the value and the suit.

e string toString(bool space): Returns a sting of the card in condensed form,
for example, 2C, AS, JD, 10H. If space is true then there should be one space between
the value and the suit, for example, 2 C, A’ S, J D, 10 H. Again, you may default the
parameter to cover the previous function.

e Overload the six comparison operators that compare the values of the cards. Note
that the Ace can be played as either high or low, for comparison, we will consider it
low. So the Ace would come before the 2.

e bool isEqual (Card card2): Returns true is the two cards are identical, both
value and suit are the same. Returns false otherwise.

e Overload the stream out operator to stream the card output in condensed form, for
example, 2C, AS, JD, 10H.

Deck Class: This class is for the deck of cards object. It should hold a set of 52 cards,
standard poker deck. An obvious choice is an array of card objects. Its constructor
will need to create the cards in the deck. You will also need a way to determine where
the top of the deck is so that you know the next card to be dealt. As in the previous
assignment, you can include an integer member called top. This class should have methods
for shuffling, dealing a card, and printing the deck (helps to determine if gameplay is
correct). Specifically, at least the following need to be implemented.

e Deck (): Constructor that creates the deck of cards.

e void PrintDeck (): Prints out the deck in a single like using no space between
the value and suit for each card and one space between the cards.

e void ShuffleDeck (): Shuffles the deck of cards.

e Card dealCard(): Deals the next card off the top of the deck.

e Card getCard(int 1i): Gets the card at index i in the deck.

e void reset (): Resets the top to 0.

e Overload the stream out operator to output the entire deck of cards in its current

order. Each card should be output in condensed form with a single space between
consecutive cards. The output should be like the example above.

Poker Hand Class: This class will represent one player’s hand. Hence it should hold a set
of 5 card objects, use an array. You should also want to store the number of cards that
are currently in their hand, this will help organize the hand during the dealing of cards
from the deck into the hand so you know what slot to put the new card in. You will need
functions for adding a card to the hand, printing the hand, sorting the hand, clearing the
hand, replacing a card (accessors and mutators), determining the type of hand (algorithm
below), determining the value of a hand (algorithm below), and a function to determine
if one hand is greater then another (helps for finding the winner). Although there are
numerous ways to determine a hand type and winners of a poker hand you are required
to implement the algorithms discussed below. Specifically, you will need to implement at
least the following.

e PokerHand (): Constructor.

e clearHand (): Removes the cards from the hand in order to deal a new hand to
the player.

e addToHand (Card card): Places the parameter card into the hand in the next
position in the hand array, and then increment the number of cards in the hand.

e void PrintHand (): Prints out the hand on a single like using no space between
the value and suit for each card and one space between the cards.

e void PrintHand (int width): Prints out the hand on a single like using no
space between the value and suit for each card and uses width spaces to print the

Fall 202

11

COSC 120 Project #1: Pictures or Poker

card, right justifying the card. The output below uses this function with a width of
4.
55 6S 6D 8D 10H

e void sortHand(): Sorts the cards in the hand in ascending order by face value.
Note that this can be done using the overloaded comparison operators of the card class
and does not need any knowledge on the method of storage or the value designation
used for the card class. Also, the sort that is implemented is to be either, bubble,
selection, or insertion. Do not use the algorithms library.

e void replace (int pos, Card card): Replaces the card at position pos with
the new card.

e intx convertHandToArray (): In the algorithm below on determining the type
of hand the person has the hand is converted to an array of integers to make it
easier to computationally determine the hand type. This function takes the hand
and constructs the corresponding array, dynamically.

e bool isFlush (): Returns true if the hand is a flush, false otherwise.

e bool isStraight (): Returns true if the hand is a straight, false otherwise. Re-
member that the Ace can be either high or low.

e bool isFullHouse (): Returns true if the hand is a full house, false otherwise.

e bool isFourOfKind(): Returns true if the hand is a four of a kind, false other-
wise.

® bool isThreeOfKind(): Returns true if the hand is a three of a kind, false
otherwise.

e bool isTwoPair (): Returns true if the hand is two pair, false otherwise.

e bool isPair (): Returns true if the hand is one pair, false otherwise.

e long long getValue (): In the algorithm below on determining the winner there
is a method for converting the hand to a single number. This function does that
conversion and returns the hand value.

e Overload the six comparison operators between two poker hands that compare the
hand values returned by the getvalue function.

e string HandAndTypeToString (int width): This will return a string with
the hand followed by the hand type, as in the example below. The width is the
number of spaces used for each card, 4 in the example below.

AD AC 4H 10S KS - One Pair

e Overload the stream out operator that will output the hand with each card having 4
spaces. For example,

AD AC 4H 10S KS

2. The main will control the gameplay. It will create a single deck and an array of poker hands
(players) that is of the needed size. Deal the cards to each player, then for each player one at a
time ask for the number of cards to draw and then which cards to replace. Do the replacement
for each player, print the final hands out, their types, and who won the hand. The gameplay
output is to look like the examples above, you do not need to print the deck out at the start
like T did in the last example, that was just for illustration. You will want to do this while you
are coding so that you know the initial deal and draws are being handled correctly, but not in
the finished product.

3. There must be error checking on all user inputs. You may assume that they always type in an
integer but all ranges and duplications must be checked.

4. The hands must be sorted by card face value before printing them out.

5. The hand type must be displayed when the hand is printed. A description of 5-card poker
hand types and which type wins over another type are listed at the end of this handout. I also
give you the algorithm for doing this below.

Fall 202 12

COSC 120 Project #1: Pictures or Poker

6. The winner of the hand must be displayed. I give you the algorithm for doing this below.

4.3 Determining the Type of Hand

Determining the type of hand is easier then it may seem at first sight. One method is to create an
array with 13 cells and then for each face value of the cards in a hand increment the respective cell.
So if index 0 represents a 2, index 1 a 3 and so on, we have the following examples.

e4s 4c 5c kD aAc [O0]JO0[2[1]0Jo]JoJo[OoJOJO[1]1]

e90 9c 9H Jp Jc [O0]OoJoJoJo[oJo[3[0]2]0[0]O]

e2C 10s Js oH KC [l1]0JoJoJoJoJoJo[1]1]1][1]0]

e9C 10s Js oQH KC [O0]JOJOJOoJoJoJOo[1[1]1]1[1]0]

es5p 5c 58 70 oc [0]0]0[3]0[1]0]0]0]0[1]0]0]

e50 5C 5H 55 oc [0]O0[O[4]0[0Jo[0o[OJO[1[O]O]

From these examples it should be clear how you can use this counting array to determine the
type of hand you have. Note that in the first example there is a 2 in the array and ones elsewhere
indicating a single pair. Example 2 has a 3 and 2 in the array hence a full house. Example 3 has
all I’s and 0’s and the 1’s are not in a row, so this is high card and the high card is a King, the last
position of a 1. The fourth example has 5 1’s in a row, hence a straight. Note that with a straight
the Ace can be both high and low. That is A 234 5 and 10 J Q K A are both straights. The fifth
example is three of a kind and the final example is four of a kind. Note that the flush and straight
flush would not be incorporated here but if the player has a flush then all of the card suits would
be identical.

4.4 Determining the Winning Hand

You will need to be able to compare two hands to see which is better. Note that there are cases
in Poker where there is a tie. For example, two straights with the same high card would be a tie.
There are, of course, many other cases where ties occur.

This is probably the most involved portion of the program. Since you know the type of hand, you
can determine that a full house wins over two pair fairly easily, but what if two players both have a
straight? Then you need to look at the high card in each case. Furthermore, in this situation the
Ace could be a high card or a low card. Even more interestingly, what if two players have the same
two pair, then you need to look at the “kicker”. There are numerous ways to solve this problem but
the one you will implement is as follows. This is a scheme that will associate each possible hand
with a unique number in such a way that if one hand beats out another then the winning hand will
have the larger value.

Note that the maximum value of a long (or long long on Windows) is 9, 223, 372,036, 854, 775, 807.
The most significant digit is a 9 and interestingly enough there are 9 types of poker hands. There
are also six blocks of three digits that follow the 9 and your hand has only 5 cards in it. So it seems
plausible that you can store all the information about the specifics of the hand in these positions.

Let’s look at a few examples. Say we have this hand, which is of course one pair but we need to
look at the other cards as well.

Player 1: 55 6S 6D 8D 9H - One Pair

Fall 2024 13

COSC 120 Project #1: Pictures or Poker

Say for a pair we use the type number 1 (since we would probably use 0 for high card) then we
would start with a value of

1,000, 000, 000, 000, 000, 000

The most important part of the pair is the actual pair, here that is a 6 so we will put 6 in the
next block of three numbers, now the value is

1,006, 000, 000, 000, 000, 000

From here we just have single cards left so we will use the next blocks to store their values from
highest to lowest, now the value of the hand is

1,006, 009, 008, 005, 000, 000

Now if we had two players with a pair as below.

Player 1: 55 6S 6D 8D O9H - One Pair
Player 2: AD AC 4H 10S KS -——= One Pair

The value of player 1 is as we calculated 1,006, 009, 008, 005,000,000 and using the same scheme
the value of player 2 is 1,014,013, 010, 004, 000, 000, using 14 for the Aces since we would use their
high value for pairs, as well as three of a kind, etc.. So player 2 has a larger value and hence would
win the hand, as they should since the pair of Aces would win over a pair of sixes.

If the pairs were the same in the case below,

Player 1: 55 6S 6D 8D 9H - One Pair
Player 2: AD 6C 6H 10S KS - One Pair

With these two hand the value of player 1 is 1,006,009, 008, 005,000,000 and the value of player
2 is 1,006,014,013,010,000,000. So player 2 still has a larger value and hence would win the hand,
as they should since the next highest card, the Ace, would win over the nine.

If you had two different types then the most significant digits will be different. For example, say
that 2 pair has a type of 2 then the values of the following hands would be 2,011, 005, 014, 000, 000, 000
and 1,010,014, 009, 003, 000, 000 respectively, hence player 1 would win.

Player 1: AC 5S 5D JH JD - Two Pair
Player 2: AH 3H 9S 10D 10cC - One Pair

At this point you should see how you would proceed to create a scheme for the other hand types.
Specifically,

e High Card: Start with 0,000,000, 000, 000,000,000 (that is 0, but we put in the 0 blocks for
illustration). Put the face values of each of the cards in the hand in the 0 blocks in descending
order. For example, the following hands have the following values.

25 5D 6H 7s JC 11,007,006,005,002,000
AD 35S 7H 10H KD 14,013,010,007,003,000
25 35 9H QD KH 13,012,009,003,002,000

e One Pair: Start with 1,000,000, 000, 000, 000, 000, put the pair face value in the first 0 block
and the other three face values in each subsequent block, in descending order. For example,
the following hands have the following values.

Fall 202 14

COSC 120 Project #1: Pictures or Poker

55 65 6D 8D O9H 1,006,009,008,005,000,000
AD 6C ©6H 10s KsS 1,006,014,013,010,000,000
AH 3H 9s 10D 10C 1,010,014,009,003,000,000

e Two Pair: Start with 2,000, 000,000, 000,000,000, put the highest pair face value in the first
0 block and the lower pair face value in the second block. Finally put the last card face value
in the third block. For example, the following hands have the following values.

AC 5SS 5D JH JD 2,011,005,014,000,000,000
AD AC 10H 10S Ks 2,014,010,013,000,000,000
3D 3H 9S 10D 10C 2,010,003,009,000,000,000

e Three of a Kind: Start with 3,000, 000,000,000, 000,000, put the face value of the three of a
kind in the first 0 block and the other two cards in the second and third 0 blocks in descending
order. For example, the following hands have the following values.

5C 5s 5D 7H JD 3,005,011,007,000,000,000
AD 10C 10H 10S KS 3,010,014,013,000,000,000
3D 3H 3s 10D JC 3,003,011,010,000,000,000

Since you cannot have two hands with the same three of a kind you can simply use just the
first block that stores the three of a kind face value. That is,

5C 55 5D 7H JD 3,005,000,000,000,000,000
AD 10C 10H 10S KsS 3,010,000,000,000,000,000
3D 3H 35S 10D JC 3,003,000,000,000,000,000

e Straight: Start with 4,000, 000, 000, 000, 000, 000, put the face values of each of the cards in the
hand in the 0 blocks in descending order. For example, the following hands have the following

values.

2S 3H 4H 5SS 6D 4,006,005,004,003,002,000
AD 10H JC QD KS 4,014,013,012,011,010,000
7C 8C 9H 10D JsS 4,011,010,009,008,007,000

In this case you really only need the highest card value in the straight since the others would
be determined by it. So alternatively you could put the highest card face value in the first 0
block and not worry about the others. With this scheme you would have,

25 3H 4H 5s 6D 4,006,000,000,000,000,000
AD 10H JC QD KS 4,014,000,000,000,000,000
7C 8C 9H 10D JS 4,011,000,000,000,000,000

e Flush: Start with 5,000, 000,000, 000,000,000, put the face values of each of the cards in the
hand in the 0 blocks in descending order. For example, the following hands have the following

values.

25 58 6S 7S JS 5,011,007,006,005,002,000
AD 3D 7D 10D KD 5,014,013,010,007,003,000
2H 3H O9H QH KH 5,013,012,009,003,002,000

e Full House: Start with 6,000,000, 000,000,000, 000, put the face value of the three of a kind
in the first 0 block and the pair face value in the second block. For example, the following
hands have the following values.

Fall 2024 15

COSC 120 Project #1: Pictures or Poker

25 2D 7s 7C D 6,007,002,000,000,000,000
AD AS AH 10D 10C 6,014,010,000,000,000,000
2H 2C 2D QH OD 6,002,012,000,000,000,000

As in the case of three of a kind, you cannot have two hands with the same triple value. So
you could simply store the triple face value in the first block.

25 2D 7s 7C D 6,007,000,000,000,000,000
AD AS AH 10D 10C 6,014,000,000,000,000,000
2H 2C 2D QH QD 6,002,000,000,000,000,000

e Four of a Kind: Start with 7,000,000, 000,000, 000,000, put the face value of the four of a
kind in the first 0 block and the fifth card face value in the second block. For example, the
following hands have the following values.

25 7H 7s 7C D 7,007,002,000,000,000,000
AD AS AH AC 10C 7,014,010,000,000,000,000
9H QC QD QH QS 7,012,009,000,000,000,000

Since you cannot have two hands with the same four of a kind you can simply use just the
first block that stores the four of a kind face value. That is,

2s 7H 7S 7C 7D 7,007,000,000,000,000,000
AD AS AH AC 10C 7,014,000,000,000,000,000
9H QC QD QH QS 7,012,000,000,000,000,000

e Straight Flush: Start with 8,000,000,000,000,000,000, then as with the straight, you could
put the face values in descending order on the 0 blocks or just the high card in the first 0
block. For example, the following hands have the following values.

25 35 4s 5s 6S 8,006,005,004,003,002,000
AD 10D JD QD KD 8,014,013,012,011,010,000
7C 8C 9C 10C JcC 8,011,010,009,008,007,000

Or using the alternative method,

25 35 4S 58 6S 8,006,000,000,000,000,000
AD 10D JD QD KD 8,014,000,000,000,000,000
7C 8C 9C 10C JcC 8,011,000,000,000,000,000

Note that in either case this also takes care of the highest hand possible, the Royal Flush.

Note that we never use that last set of three zeros, so we could remove them and use values that
have a most significant digit of 0-8 and then 5 blocks of zeros to store the information for the hand.
For example,

25 35 4s 5s 6S 8,006,005,004,003,002
AD 10D JD QD KD 8,014,013,012,011,010
7C 8C 9C 10C JcC 8,011,010,009,008,007

Just make sure that you are consistent with all hand types.

Fall 2024 16

Straight
Flush

Four of a
Kind

Full

House

Flush

Straight

Three of
a Kind

Two Pair

One Pair

High
Card

Winning Poker Hands

"

A

5 2l6rsl7r 82|82
* + .i'-}-b *-1-*-1- 'i.-i-*-i- i

E] ¥
##)| =% =) w%| =
- Q ﬁi f -5.'“"
a7 || B | |9 T *
Srel el el

o |2 b
sl wgE ol | A @gj
_4’4“ #a|| v #| w2 leae
A A |84 allBwwl2 +
'ﬁ?" .i.ﬁ;" &*é ’v *
||| ¥
J Jl =%l aa + |
6 3
v e
L
1 *

Five cards in sequence, of the same suit. In the event of
a tie: Highest rank at the top of the sequence wins. The
best possible straight flush is known as a royal flush,
which consists of the ace, king, queen, jack and ten of a
suit. A royal flush is an unbeatable hand.

Four cards of the same rank, and one side card or
‘kicker’. In the event of a tie: Highest four of a kind
wins.

Three cards of the same rank, and two cards of a
different, matching rank. In the event of a tie: Highest
three matching cards wins.

Five cards of the same suit. In the event of a tie: The
player holding the highest ranked card wins. If
necessary, the second-highest, third-highest, fourth-
highest, and fifth-highest cards can be used to break the
tie. If all five cards are the same ranks, it is a tie. The
suit itself is never used to break a tie in poker.

Any five consecutive cards of different suits. In the
event of a tie: Highest ranking card at the top of the
sequence wins. Note: The Ace may be used at the top or
bottom of the sequence, and is the only card which can
act in this manner. A,K,Q,J,T is the highest (Ace high)
straight; 5,4,3,2,A is the lowest (Five high) straight.

Any three cards of the same rank. In the event of a tie:
Highest ranking three of a kind wins.

Any two cards of the same rank together with another
two cards of the same rank. In the event of a tie:
Highest pair wins. If players have the same highest pair,
highest second pair wins. If both players have two
identical pairs, highest side card wins. If side cards are
identical it is a tie.

Two cards of a matching rank, and three unrelated side
cards. In the event of a tie: Highest pair wins. If players
have the same pair, the highest side card wins, and if
necessary, the second-highest and third-highest side card
can be used to break the tie.

Any hand that does not qualify under a category listed
above. In the event of a tie: Highest card wins, and if
necessary, the second-highest, third-highest, fourth-

highest and smallest card can be used to break the tie.

