COSC 220 Project #3: Process Simulations

Contents
1 Overview 1
2 Introduction 2

3 Project: Process Simulation Programs 3
3.1 The Priority Queue 3
3.2 Createa Process Class 3
3.3 Create a Process Simulation 4

3.3.1 Program Runs. 6

3.4 Automate the Simulation for Different CPU Loads 7
3.5 System Analysis 9

4 Grading 10

1 Overview

When you are finished submit all your work through the MyClasses page for this
class. Create a directory called Project3, put each program in its own subdirectory,
compress this into a single zip file, and then submit this zip file to the Project #3
assignment.

Projects are to be done strictly on your own and as with all assignments the
sharing of files and code is strictly prohibited and constitutes an act of Academic
Misconduct. Furthermore the use of any electronic medium, such as code repositories,
forums, blogs, message boards, email, etc. is strictly prohibited and constitutes an
act of Academic Misconduct.

Make sure that you:

e Follow the coding and documentation standards for the course as published in
the MyClasses page for the class.

e Check the contents of the zip file before uploading it. Make sure all the files are
included.

e Make sure that the file was submitted correctly to MyCLasses.

Fall 2024 1

COSC 220 Project #3: Process Simulations

e Create make files for each program and make sure the programs compile and
run on the lab Linux system.

All non-templated class structures are to have their own guarded specification
file (.h) and implementation file (.cpp) that has the same name as the class. All
templated class structures are to be guarded and written entirely in their (.h) file. No
inline coding in the class specification. In addition you must create a make file that
compiles and links the project on a Linux computer with a Debian or Debian branch
flavor.

2 Introduction

The objective of this project is to use a templated priority queue class that uses the
STL vector as the base storage structure, to simulate a multi-core CPU to investigate
the optimal load of the CPU. Most operating systems have a nice graphical user
interface that allows the user to visualize the resource usage of their machine. Below
is a graph of the CPU usage during a one minute of work on the machine in my office.
You will not be creating a visual representation like this but you will be simulating
the load and activity of the processors numerically as well as the total load of the
machine.

'.‘ I. I"I ‘ I 5 ﬁ/\s f\ / \ o
A ‘!"I‘ ""I‘ / ‘\,‘\ { ‘I". i 0%

\& IR i _
X ~

~
. G- — = 20%
~ S “_“ ~ S Y Y
e~ N ST A WAVA. 7 A G G
1 min se0s 30zecs 20secs 10secs
I cru1 0.0% [cruz 0.0% []crus 0.0% [crua 2.0%
| crus 0.0% [crus 0.0% [cru7 0.0% I crus 1.0%
| crus 0.0% [cruio 242% [] cputi 0.0% []cpurz 0.0%
[]crpurs 0.0% [cruis 0.0% [cruis 0.0% [Jcruts 0.0%
[Jecruiz 00% [Jcruis 00% [cru1s 0.0% [Jcru20 o00%
] cruz1 49% [cpuz2 0.0% [] cpuz3 1.0% [cpuz4 0.0%
[]cpuzs 0.0% [cruzs 0.0% [crPuz7 21.8% [|cpuzs 0.0%
] cpuzs 0.0% [|crPuso 0.0% [| cPu3i 0.0% [cpu32 0.0%
[cpuss 0.0% [cpru3za 0.0% [cpuss 0.0% []cruse 0.0%
[cpus? 0.0% [cru3s 0.0% [cPu3s 0.0% I cruso 0.0%

Each line on the graph represents a core of the processor. So it is easy to see when
the CPU was working very hard and when the CPU was not working hard at all.
Obviously, if you want to have your machine running efficiently you want the CPU
to be working on processes but not be so overtaxed that there are processes that are
waiting to be run and never get any CPU time.

Note that around the 35 second mark the CPU is not processing data or running
many programs, it is simply idling at very low efficiently. At the places where the cores
are near 100% (around 45 seconds for example) the CPU is very busy and processing
at almost full capacity. This might not be the best scenario either. It might be that
all of the processing the CPU is doing is on the higher priority processes and the lower
priority processes are simply waiting, this is sometimes called process starvation, when
a process is not getting enough CPU time.

Fall 2024 2

1

2

3

4

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

COSC 220 Project #3: Process Simulations

3 Project: Process Simulation Programs

3.1 The Priority Queue

We are going to make one addition to our templated priority queue from the previous
lab. Add in an overloaded [] operator. Allowing direct access to a queue structure is
not standard but this will make the calculations of the final statistics of the simulation
much easier.

3.2 Create a Process Class

Create the Process class. This is a class that will simulate a computer process, at
least well enough for our purposes. The declaration of the class is below, you are to
finish the implementation. As usual, no inline code.

#ifndef PROCESS_H

#define PROCESS_H

#include <iostream>
#include <math.h>

using namespace std;

class Process {
private:
int exeTime; // Execution time of the process.
int timeStamp; // Time stamp of the process creation.

public:
// Constructors and Destructor
Process (int time = 1, int stamp = 0);
Process (const Process &obj);
“Process();

// Acessors and Mutators
void setExeTime (int);
int getExeTime ();

void setTimeStamp (int) ;
int getTimeStamp () ;

// Overloaded operator functions
friend ostream &operator << (ostream &, const Process &);

bi

#endif

e exeTime — Represents the execution time of the process, that is the number of
CPU clock cycles that must be done for the process to be completed.

e timeStamp — The time when the process was created. We will be using this to
track the amount of time the process waits in the queue before it gets executed.

e setExeTime(int) — Sets the execution time of the process. This value must be
at least one clock cycle (i.e. a value of 1 or higher).

Fall 2024 3

COSC 220 Project #3: Process Simulations

getExeTime() — Returns the execution time of the process.

setTimeStamp(int) — Sets the time stamp of the process.

getTimeStamp() — Gets the time stamp of the process.

operator << — Overloaded ostream operator. The output should look like
[7, 1231 where the first value is the execution time and the second is the
time stamp.

Test this with the priority queue you created to make sure that all functions
work correctly between the two classes. That is, write a program that will create a
priority queue of processes, enqueue process structures with different priorities, and
then dequeue these processes to make sure that ordering is correct. Also, have the
testing program test all the functionality of both classes to make sure that everything
is working correctly before proceeding.

3.3 Create a Process Simulation

Once both of the priority queue and process classes are complete we can create our
simulation. Here is a description of the simulation and below are two runs of the
simulation program.

The user will input the following information into the program. The number
of CPU cores is the number of parallel execution processors of the machine. The
minimum and maximum execution cycles per process is the range of how many cycles
the process will take to execute. So with the settings below, 5 and 20, when a new
process is created it will be given a random number between 5 and 20 for its execution
time. The number of priority levels is simply the number of different priorities. So
with the setting of 3, a new process will be given a random priority of 1, 2, or 3. The
number of cycles for the simulation is the number of clock cycles being used in total.
We will usually keep this around 100,000 to 1,000,000. The number of new processes
per cycle is a little more difficult to explain. Note that it can be a decimal number.
If this were set to 2, then during each clock cycle there would be two more processes
added to the queue. With a value of 0.1, as in the example below, there would be 0.1
processes added per clock cycle. In other words there will be one process added each
10 clock cycles. We will discuss an easy way to do this addition of cycles below.
Input the Number of CPU Cores: 4
Input the Minimum Number of Execution Cycles per Process: 5
Input the Maximum Number of Execution Cycles per Process: 20
Input the Number of Priority Levels: 3

Input the Number of New Processes per Cycle: 0.1
Input the Length of the Simulation in Cycles: 100000

Before you start the simulation, you need to create the CPU. This will simply be
a one-dimensional array of integers which is the size of the number of CPU cores the
user selects. So in the above example it is an array of 4 cells. In a loop that runs the
number of simulation clock cycles we will do the following for each clock cycle.

Fall 2024 4

COSC 220 Project #3: Process Simulations

1.

N O U W N =

If any CPU core is ready to accept another process (i.e. the value in a cell is 0)
then the next process in the priority queue will be dequeued and the execution
time will be loaded into the CPU core that is ready.

Idle time is incremented. If any CPU core is still waiting for a process (i.e. the
value in a cell is 0) then increment the idle time by 1. Note that this is per
core, so if you are on a 4 core processor and three of the four cores are waiting
for a process then the idle time will be incremented by a total of 3.

Let the CPU do one clock cycle for each of the processes currently in the CPU.
That is, decrement the values of each CPU core that currently has a process
being executed.

Add in new processes to the process priority queue. This is a little different
since we could be adding several per clock cycle or we could be adding only
1 after several clock cycles. Here is a method that works for both cases, the
skeleton of the code is below, you will need to finish the implementation at the
comment line. Note that when you add a new process its execution time and
priority are to be randomly generated within the given ranges and it is to be
given the time stamp of the current cycle.

newProcessAmount += numberOfNewProcessesPerCycle;
while (newProcessAmount >= 1)

{

// Add random process to the process queue.

newProcessAmount -= 1;

}

The numberOfNewProcessesPerCycle variable is the one that the user in-
put and the newProcessAmount is a double that is tracking the accumulation
of processes per cycle. To see how this works let’s look at a couple examples.

First, lets say that the number per cycle is 0.25 (one every 4 cycles).

Cycle | newProcessAmount | Processes Added
0.25 0
0.5
0.75

1—20
0.25
0.5
0.75

1—20

O | O U = W[DN —
el Bl R evl Hen) B Nel Naw)

Now, lets say that the number per cycle is 2.5 (5 every 2 cycles).

Fall 2024)

COSC 220 Project #3: Process Simulations

Cycle | newProcessAmount | Processes Added
1 2.5 — 0.5 2
2 3—0 3
3 25— 0.5 2
4 3—0 3

At the end of the simulation you are to report the status of the system. That is,
report,

Total idle time.

The number of processes that were executed, that is, the number that were
removed from the queue and put on the CPU.

The total wait time of the completed processes. When a process is removed
from the queue and placed on the CPU the program should subtract the time
stamp from the current clock cycle value to get the number of clock cycles the
process was waiting in the queue. The total wait time is the sum of all the wait
times of the processes.

The number of processes in the queue when the simulation ends.
The total execution time of the waiting processes.
The total wait time the queue processes were there.

The maximum wait time of any process still in the queue.

—==—== Simulation Results ============

Idle Time = 0
Processes Completed = 33373

Total

Wait Time of Completed Processes = 8369993

Number of Processes Remaining in Queue = 66631

Total
Total

Execution Time Needed for Unprocessed Processes = 800681
Wait Time for Unprocessed Processes = 3321700850

Maximum Wait Time for Unprocessed Processes = 100000

3.3.1 Program Runs

Two program runs are below, along with an analysis of the results.

Input
Input
Input
Input
Input
Input

the Number of CPU Cores: 4

the Minimum Number of Execution Cycles per Process: 5
the Maximum Number of Execution Cycles per Process: 20
the Number of Priority Levels: 3

the Number of New Processes per Cycle: 0.1

the Length of the Simulation in Cycles: 100000

====== Simulation Results ============

Idle Time = 279859
Processes Completed = 10003

Total

Number of Processes Remaining in Queue

Wait Time of Completed Processes

[[]
o

Fall 2024 6

COSC 220 Project #3: Process Simulations

Input the Number of CPU Cores: 4

Input the Minimum Number of Execution Cycles per Process: 5
Input the Maximum Number of Execution Cycles per Process: 20
Input the Number of Priority Levels: 3

Input the Number of New Processes per Cycle: 1

Input the Length of the Simulation in Cycles: 100000
============ Simulation Results ============

Idle Time = 0

Processes Completed = 33373

Total Wait Time of Completed Processes = 8369993

Number of Processes Remaining in Queue = 66631

Total Execution Time Needed for Unprocessed Processes = 800681
Total Wait Time for Unprocessed Processes = 3321700850
Maximum Wait Time for Unprocessed Processes = 100000

Note that in the first run the idle time is very large, only 10003 processes were
completed, and the queue was empty at the end of the simulation. The number of
new processes per cycle is set to 0.1, which means that a new process is added every
0—h = 10 cycles. This indicates a lightly loaded CPU that could be using its idle time
to do processes.

Note that in the second run the idle time is 0, 33373 processes were completed, and
the queue had 66631 processes waiting to be processed at the end of the simulation.
The number of new processes per cycle is set to 1, which means that a new process
was added every clock cycle. This indicates a heavily loaded CPU that cannot keep
up with the processes being added to the system. Also notice that the maximum wait
time for unprocessed processes is 100000, the same length as the simulation. Hence
there was at least one process that entered the system on the first clock cycle that
was never processed, hence it starved.

3.4 Automate the Simulation for Different CPU Loads

After your simulation program is complete, we will use it to create a program that
will investigate the simulations on different loads. The load is the number of new
processes per cycle. We will use our simulation to estimate the most efficient load on
a given CPU. Create a program that will take in the following information from the
user.

Number of CPU Cores: 4

Minimum Number of Execution Cycles per Process: 5
Maximum Number of Execution Cycles per Process: 20
Number of Priority Levels: 3

Minimum Number of New Processes per Cycle: 0.25
Maximum Number of New Processes per Cycle: 0.4

New Processes per Cycle Step Size: 0.01

Length of the Simulation in Cycles: 100000

The meaning of the inputs are the same here as with the last program. The
difference is that the user is now putting in three values for the load (Number of
New Processes per Cycle), the first is the minimum, second the maximum, and third
the step size. So if the user put in 0.1, 0.5, and 0.1, then the program would run
simulations on loads of (0.1, 0.2, 0.3, 0.4, and 0.5). Each simulation would keep the
other inputs the same. Instead of having the output as in the last program, have the

Fall 2024 7

COSC 220 Project #3: Process Simulations

output print out in table format. Have the columns be like the example below. Note
that my output does not look all that great, this is because I put the tab character
between each consecutive output. This way, you will be able to copy and paste easily
into a spreadsheet, as I did below. You could also output the results to a file and
load it into your spreadsheet. Another format would be to separate the entries with
a comma and save the file with a csv extension (comma separated values). These will
load directly into most spreadsheet programs.

============ Simulation Results ============

Load Idle Completed Processed Wait Unprocessed Exe. Needed Unprocessed Wait Unprocessed Max. Wait
0.25 100679 25003 28175 1 511

0.26 88516 26003 31247 1 15 1 1

0.27 75560 27003 35663 1 11 1 1

0.28 63901 28003 41957 1 18 1 1

0.29 51914 29003 51305 1 10 1 1

0.3 39095 30002 67758 2 27 5 4

0.31 27580 31003 96214 1 19 1 1

0.32 16238 32003 157406 1 11 1 1

0.33 3563 32998 742179 6 83 180 58

0.34 0 33436 29383183 568 6736 1417053 4942

0.35 0 33316 71629765 1688 20395 12639180 14798

0.36 1 33409 103805061 2595 31132 28344025 21848

0.37 4 33330 129493905 3674 44008 54652081 29925

0.38 1 33268 151157348 4736 56422 87366161 36824

0.39 0 33338 159473135 5666 68219 122035900 43203

Load Idle Completed | Processed Wait | Unprocessed | Exe. Needed | Unpr. Wait | Unpr. Max. Wait
0.25 100679 25003 28175 1 5 1 1
0.26 88516 26003 31247 1 15 1 1
0.27 75560 27003 35663 1 11 1 1
0.28 63901 28003 41957 1 18 1 1
0.29 51914 29003 51305 1 10 1 1
0.3 39095 30002 67758 2 27 5 4
0.31 27580 31003 96214 1 19 1 1
0.32 16238 32003 157406 1 11 1 1
0.33 3563 32998 742179 6 83 180 58
0.34 0 33436 29383183 568 6736 1417053 4942
0.35 0 33316 71629765 1688 20395 12639180 14798
0.36 1 33409 103805061 2595 31132 28344025 21848
0.37 4 33330 129493905 3674 44008 54652081 29925
0.38 1 33268 151157348 4736 56422 87366161 36824
0.39 0 33338 159473135 5666 68219 122035900 43203

Notice that between a load of 0.33 and 0.34 there is a change in the system state.
We go from having idle time to no idle time, the number of processes maxes out, the
wait time makes a drastic jump, and there are far more processes left in the queue.
This is indicating CPU saturation. Since the load is around 0.33, that would indicate
that a load of one new process every three clock cycles is the most this system can
take. Once you see where the maximum efficient load is around you should narrow
the load range and use a smaller step with another simulation. For example,

Load Idle Completed | Processed Wait | Unprocessed | Exe. Needed | Unpr. Wait | Unpr. Max. Wait
0.32 14875 32002 174011 2 33 5 4
0.321 | 14864 32103 188020 0 0 0 0
0.322 14214 32203 176029 1 6 1 1
0.323 | 11261 32300 219383 3 23 39 19

Fall 2024 8

COSC 220 Project #3: Process Simulations

Load Idle Completed | Processed Wait | Unprocessed | Exe. Needed | Unpr. Wait | Unpr. Max. Wait
0.324 | 10627 32402 254969 2 30 5 4
0.325 | 10539 32502 252154 2 15 11 10
0.326 9427 32601 277015 3 24 39 22
0.327 7661 32700 337962 3 43 93 52
0.328 6570 32802 369402 2 27 5 4
0.329 5012 32903 453473 0 0 0 0
0.33 3379 33002 874470 2 14 8 7
0.331 3732 33101 637951 2 31 17 10
0.332 712 33136 2167480 68 791 19818 642
0.333 204 33278 3476630 26 300 3545 307
0.334 188 33181 12320645 223 2645 230825 2042
0.335 236 33230 16361758 274 3232 356036 2532
0.336 1 33385 10258116 219 2556 235678 2197
0.337 108 33335 19716758 369 4309 617798 3368
0.338 38 33282 25672470 522 6279 1140334 4382
0.339 40 33402 23702000 502 5900 1155590 4425
0.34 1 33377 29101817 627 7482 1531113 4974
0.341 33425 32372599 679 8057 1969843 5754
0.342 0 33296 42958804 908 10817 3452157 7714
0.343 71 33325 46082013 979 11898 4175210 8572
0.344 3 33316 47546985 1088 13361 5311904 9437
0.345 0 33307 50716270 1197 14287 6237064 10311
0.346 6 33316 55386762 1288 15729 6892608 10784
0.347 1 33288 59484469 1416 17059 8751931 12381
0.348 44 33212 66217441 1592 19061 11110906 14239
0.349 0 33383 66438630 1521 18431 10005863 13086

This shows more clearly what is happening between 0.33 and 0.34.

3.5

Once
draw

1.

System Analysis

your simulator above is working use it to analyze the following systems and
conclusions from the data.

System #1: Light processes. Start with the configuration below and find the
most optimal load for the system. Then increase the number of cores to 8, then
16, then 32, then 64. Find the optimal loads for each of these systems as well.
Does the load scale along with the number of cores. That is, if we increase the
number of cores by a factor of 2 does our load also increase by a factor of 27

Number of CPU Cores: 4

Minimum Number of Execution Cycles per Process: 5
Maximum Number of Execution Cycles per Process: 20
Number of Priority Levels: 3

Length of the Simulation in Cycles: 100000

System #2: Medium processes. Start with the configuration below and find the
most optimal load for the system. Then increase the number of cores to 8, then
16, then 32, then 64. Find the optimal loads for each of these systems as well.
Does the load scale along with the number of cores. That is, if we increase the
number of cores by a factor of 2 does our load also increase by a factor of 27

Fall 2024 9

COSC 220 Project #3: Process Simulations

Number of CPU Cores: 4

Minimum Number of Execution Cycles per Process: 20
Maximum Number of Execution Cycles per Process: 50
Number of Priority Levels: 5

Length of the Simulation in Cycles: 100000

3. System #3: Heavy processes. Start with the configuration below and find the
most optimal load for the system. Then increase the number of cores to 8, then
16, then 32, then 64. Find the optimal loads for each of these systems as well.
Does the load scale along with the number of cores. That is, if we increase the
number of cores by a factor of 2 does our load also increase by a factor of 27

Number of CPU Cores: 4

Minimum Number of Execution Cycles per Process: 100
Maximum Number of Execution Cycles per Process: 200
Number of Priority Levels: 5

Length of the Simulation in Cycles: 100000

Write a report of your findings that includes all of the data, charts, and answers
to at least the questions posed above. Also, include any other observations you make
with the data. Include this report in the zip file that contains all of your code for
the three programs in the project. The report document may be written in your
favorite word processor but it must be exported to PDF format when included in
your submission.

4 Grading

The program itself should, of course, be nicely formatted and commented and should
follow all the other rules of good programming style. The project code files must
all follow the coding and documentation standards for the class, as listed on the
MyClasses page for this course.

The report should be well written and formatted. Export the paper to PDF format
and include it in the zip file that contains all of your code for the three programs in
the project.

Fall 2024 10

