COSC 220 Lab #7: Recursion

1 Instructions

When you are finished submit all your work through the MyClasses page for this class.
Create a directory called Lab07, put each programming exercise into its own subdirectory
of this directory, zip the entire Lab07 directory up into the file Lab07.zip, and then submit
this zip file to Lab #7.

Make sure that you:

e Follow the coding and documentation standards for the course as published in the
MyClasses page for the class.

e Check the contents of the zip file before uploading it. Make sure all the files are
included.

e Make sure that the file was submitted correctly to MyCLasses.

All non-templated class structures are to have their own guarded specification file (.h)
and implementation file (.cpp) that has the same name as the class. No inline coding in
the (.h) files. All templated class structures are to have their own guarded specification /im-
plementation file (.h) that has the same name as the class. As with non-templated class
structures, no inline coding in the specification. In addition, you must create a make file
that compiles and links the project on a Linux computer with a Debian or Debian branch
flavor.

2 Programming Exercises

1. Ackermann’s Function is a recursive mathematical algorithm that can be used to test
how well a computer performs recursion. Write a function A(m, n) that solves Acker-
mann’s Function. Use the following logic in your function:

If m = 0 then return n + 1

If n = 0 then return A(m - 1, 1)

Otherwise, return A(m - 1, A(m, n - 1))

Test your function in a driver program that displays the following values:

A0, 0) A0, 1) A(L, 1) A(1, 2) A(L, 3) A2, 2) A(3, 2), A4, 1), A(4, 2)

2. In the study of chaos and dynamics there are two sequences, like the Fibonacci sequence
but more complex, that come up. These are sometimes called () numbers and D

numbers. The D sequence is defined to be D(1) = 1, D(2) = 1, and
D(n) = D(D(n—1)) + D(n — 1 — D(n — 2))
The Q sequence is defined to be Q(1) = 1, Q(2) = 1, and
Q(n) =Q(n—Q(n—1)) +Qn — Q(n —2))

Fall 2024 1



COSC 220 Lab #7: Recursion

Obviously both of these functions are recursive.

Write a recursive functions D and @) that take in a single long parameter n and return
a long that is the value of Q(n) and D(n), respectively. Create a main that will ask the
user for a value of n and print out each of the values of the () function and D function
from 1 to n. that is Q(1),Q(2),Q(3),...,Q(n), and D(1),D(2),D(3),...,D(n). All
of the printing is to be done in the main and no printing is to be done in the function.
A sample run is below,

Input n: 25
Q Numbers:
D Numbers:

0 910 11 11 12 12 12 12 16 14

8 1
7 8 88 8 8 9 10 10 10 11 13

1123345566688 38
112223444456738
3. As you know, a Palindrome is a string that is the same written in either direction. For
example, “A Toyota” or “Eva, can I see bees in a cave?”. We can determine if a string
is a palindrome recursively. Take a string and compare the first letter with the last
letter, if the letters are the same you compare the second and second to last, and so

on until you get to the middle of the string. Create a function,

bool isPal (const stringé& str, int startIndex, int endIndex)

that will return false if the characters in the start and end are not the same, true is it
makes it to the middle of the string and recurses to the next letter positions to check
otherwise. Create a program to check input palindromes using this function. A couple
runs are below.

Enter a string, no spaces and all lower case: evacaniseebeesinacave
evacaniseebeesinacave is a palindrome.

Enter a string, no spaces and all lower case: atoyota
atoyota is a palindrome.

Enter a string, no spaces and all lower case: help
help is not a palindrome.

Fall 2024 2



