COSC 120 Lab #b5: Functions Fall 2022

1 Introduction

Each exercise should be its own separate project. The exercises are from previous assignments
that you will update to use functions.

Remember to follow the coding and documentation standards for the class listed
on the MyClasses pages.

When you are ready to submit your work create a folder called Lab05 in that folder
have separate folders for each project, one folder per project. Put all the code files needed
for that project in its respective folder. Do not include the files that the IDE creates, I just
want the code files. Zip the entire Lab05 folder up into a single zip file and submit it.

2 Exercises

1. Write a program that will continually roll 5 dice (all 6-sided) at a time and return
the number of rolls needed for all the dice to be the same value. The program should
return the number of rolls needed for all the dice to be equal. Three example runs are
below.

The number of rolls to get all 5 dice equal was 722.
The number of rolls to get all 5 dice equal was 204.

The number of rolls to get all 5 dice equal was 3038.

In this exercise create a function called ro115 that takes no parameters and returns a
boolean value. The function should roll 5 die and return if all five are the same value.
That is, true if they are all the same and false otherwise. The main should set the seed
of the random number generator, use a loop calling ro115 until it returns true, and
counting the times that the function was called.

2. Write a program that will take one input integer from the user, n. The program will
then generate the 3n + 1 sequence, print it to the screen along with the length of the
sequence. Recall that the 3n 4+ 1 sequence is defined as a list of numbers that starts
with a positive integer larger than 1. Each number in the sequence is determined by
the previous number. If the previous number is even then the next number is the
previous divided by 2. If the previous number is odd then the next number is the
previous times 3 and add one. We stop when the last number is 1. A couple runs are
below,

Input an integer between 2 and 1000000: 17
Sequence: 17 52 26 13 40 20 10 5 16 8 4 2 1
Number of integers in list = 13

Input an integer between 2 and 1000000: O
Invalid input. 1Input an integer between 2 and 1000000: 1
Invalid input. Input an integer between 2 and 1000000: 1000000000

COSC 120 Lab #b5: Functions Fall 2022

Invalid input. 1Input an integer between 2 and 1000000: 23
Sequence: 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1
Number of integers in list = 16

In this exercise create a function named nifty that takes in a single integer parameter
n and returns the next number in the 3n + 1 sequence. That is, if the input n is a
number in the sequence then the function returns the next number. So nifty (17)
is 52, nifty (52) is 26, and so on. The main should call this function in a loop until
the value 1 is reached in the sequence. Also create a function called getInt that
takes in two integer parameters, these will represent a minimum and maximum for the
input number. Have the function ask the user for an integer input between these two
numbers and when a legitimate input is entered have the function return that value. If
the input is not inside the bounds the function should display an error and ask again.
The input for this program should be between 2 and 1000000, so the main will take
the input value by getInt (2, 1000000).

3. Write a program that will take a double from the user and a tolerance, call n and tol
respectively. In this exercise write a function called squareroot that takes in the
two parameters, n and tol by value. Have it declare a double called r initialized to 1.
Then it is to continually replace r with the value of

1(+n>
_/r' —
2 r

until two consecutive values of r are within the tolerance of each other. Finally have
the function return the result. Also create a function called getDouble that takes in
two double parameters, these will represent a minimum and maximum for the input
number. Have the function ask the user for a number input between these two numbers
and when a legitimate input is entered have the function return that value. If the input
is not inside the bounds the function should display an error and ask again. The main
should look like the following.

int main() {
// Get values from the user.
double n = getDouble (0.000000001, 1000000000);
double tol = getDouble (0.000000000001, 1);

// Display square root.
cout << setprecision(1l5);
cout << squareroot (n, tol) << endl;

return 0;

}

A couple runs are below,

Input a number between 1le-09 and 1le+09: 2
Input a number between le-12 and 1: 0.00000001
1.41421356237309

Input a number between le-09 and 1le+t09: 1.23456789
Input a number between le-12 and 1: 0.000000001
1.11111110605556

