
COSC 120 Lab #7: Integration Stage #2 Fall 2022

1 Introduction

This Integration Stage lab is an alteration of the last one, where you will first load the file
data into a system of arrays and do your calculations by accessing the data in the arrays.

Remember to follow the coding and documentation standards for the class listed
on the MyClasses pages.

When you are ready to submit your work create a folder called Lab07 in that folder
have separate folders for each project, one folder per project. Put all the code files needed
for that project in its respective folder. Do not include the files that the IDE creates, I just
want the code files. Zip the entire Lab07 folder up into a single zip file and submit it.

2 Exercise

This program will read in stock data from a text file and load it into two parallel arrays. One
is an array of strings that will hold the day’s date and the other will be a two-dimensional
array with two columns to hold the opening and closing costs for each day. Recall that
parallel arrays are those that correspond to each other by row. In a case like this, where
each day has data of different types, date that is a string and the opening and closing costs
that are numeric, we can set up parallel arrays one of strings and one of doubles that have
the same number of rows. So the ith row of each represents the ith day’s date and opening
and closing costs. While I want you to use a one-dimensional array for the date and a
two-dimensional array for the costs, you could use three one-dimensional arrays, one for the
date, one for the opening cost, and one for the closing cost. A more sophisticated approach
would be to put each day’s data into a structure that can store multiple items of different
types and then use an array of these objects, we will investigate that approach later in the
course.

As with the last exercise this program will print out the data along with some descriptive
statistics about the data. In addition, you will be doing the calculations inside functions.
The main will load the data from the file into the arrays, call the needed functions, and
display the results.

As before you will be analyzing stock data taken from a free stock data website run
by yahoo. The files you will be using are included with the lab 7 files and are IBM.txt,
INTC.txt, and MSFT.txt. Each of these contains the opening and closing stock prices for
that stock along with the date of that day. The IBM.txt file contains the stock prices for
IBM from January 3, 1962 to February 8, 2021. The INTC.txt file contains the stock prices
for Intel from March 18, 1980 to February 8, 2021. The MSFT.txt file contains the stock
prices for Microsoft from March 14, 1986 to February 8, 2021. Obviously, I downloaded these
on February 8, 2021.

You can assume that the files all have the same format. The files are tab delimited, which
means that there is a tab character between entries on a line and each line is a separate day.
There are no other characters between the entries and there is never more than one day on

1

COSC 120 Lab #7: Integration Stage #2 Fall 2022

a line. The first line is a header, if you were going to load this into a spreadsheet. Each line
after that is the data for a day on the market. It starts with a date, then the opening price,
then the closing price. You are not to alter this file in any way. The beginning of the file
will look like the following.

Date Open Close
1980-03-18 0.325521 0.322917
1980-03-19 0.330729 0.330729
1980-03-20 0.330729 0.329427
1980-03-21 0.322917 0.317708
1980-03-24 0.316406 0.311198

The file ends with the last recorded day, as in the example below.

2021-02-03 57.889999 57.68
2021-02-04 57.610001 58.790001
2021-02-05 59 58.18
2021-02-08 58.380001 59.16

You will write a program that will ask the user to input a filename. The program will
then,

1. Display each day’s date, opening cost, closing cost, a + or - if the day had an increase
or decrease respectively and then the amount of increase or decrease. If the day is flat,
opening and closing price the same the day is marked with — instead of an amount
change.

2. At the end the program will display a set of descriptive statistics for the stock.

• Number of days in the data set.

• Average closing price.

• Number of days the stock went up.

• Number of days the stock went down.

• Number of days the stock was flat. (no increase or decrease)

• The longest climb, displaying the number of days in the climb and the date range
of the climb. A climb is when consecutive days of the closing cost of the stock is
either increasing in value or flat. In other words, the longest stretch of days that
the stock closing cost did not decrease in value.

• The longest fall, displaying the number of days in the fall and the date range of
the fall. A fall is when consecutive days of the closing cost of the stock is either
decreasing in value or flat. In other words, the longest stretch of days that the
stock closing cost did not increase in value.

• The largest increase in value in a day, both the amount and the date it happened.

• The largest decrease in value in a day, both the amount and the date it happened.

2

COSC 120 Lab #7: Integration Stage #2 Fall 2022

A run of the program is below. The three vertical dots represent several thousand lines
that were removed so that the output did not go on for pages, your program will print out
every day.

Input the filename: IBM.txt
Date Opening Closing Change

1962-01-03 7.626667 7.693333 + 0.066666
1962-01-04 7.693333 7.616667 - 0.076666
1962-01-05 7.606667 7.466667 - 0.140000
1962-01-08 7.460000 7.326667 - 0.133333
1962-01-09 7.360000 7.413333 + 0.053333
1962-01-10 7.426667 7.426667 ---
1962-01-11 7.446667 7.506667 + 0.060000
1962-01-12 7.520000 7.520000 ---
1962-01-15 7.546667 7.553333 + 0.006666
1962-01-16 7.546667 7.473333 - 0.073334

.

.

.
2021-01-29 120.220001 119.110001 - 1.110000
2021-02-01 119.900002 120.540001 + 0.639999
2021-02-02 119.360001 119.440002 + 0.080001
2021-02-03 119.040001 119.120003 + 0.080002
2021-02-04 119.910004 121.019997 + 1.109993
2021-02-05 121.000000 121.790001 + 0.790001
2021-02-08 122.620003 123.610001 + 0.989998

Stock Statistics for file IBM.txt
=======================================
Number of days in data set: 14877
Average closing stock price: $61.041122
Number of days stock went up: 7161
Number of days stock went down: 7199
Number of days stock stayed flat: 517
Longest climb: 13 Days from 2004-10-28 to 2004-11-15
Longest fall: 15 Days from 2005-03-31 to 2005-04-20
Largest Day Increase: 10.875000 on 2001-01-03
Largest Day Decrease: 11.125000 on 2000-10-12

In your program the main will ask the user for the filename to be processed. It will check
if the file exists and if not exit the program with a 1 error code. If the file exists it will open
the file and load all of the data into the arrays. It will then call the following functions and
display the statistics as above. The main is to display the statistics, not the functions. The
only function that is to display anything to the console is the printStockDataChart function.
All functions must be below the main in this exercise and have just their prototypes above
the main.

printStockDataChart Takes in the arrays and size and prints out a chart of dates, open-
ing, closing, and change as in the example above. Make sure the columns line up
nicely with the decimal points aligned and 6 decimal places for each of the floating
point values.

CalculateAverageClosingValue Takes in the arrays and size and returns the average
closing value of the stock.

3

COSC 120 Lab #7: Integration Stage #2 Fall 2022

CalculateUpDayCount Takes in the arrays and size and returns the number of days the
stock went up in value.

CalculateDownDayCount Takes in the arrays and size and returns the number of days
the stock went down in value.

CalculateFlatDayCount Takes in the arrays and size and returns the number of days the
stock did not change in value.

getClimbData Takes in the arrays and size, it will also have three output reference param-
eters, one integer for the number of days of the longest climb, and two strings that will
hold the start and end dates respectively of the climb. A climb is when consecutive
days of the closing cost of the stock is either increasing in value or flat. In other words,
the longest stretch of days that the stock closing cost did not decrease in value. This
function will not return any information through a return type.

getFallData Takes in the arrays and size, it will also have three output reference param-
eters, one integer for the number of days of the longest fall, and two strings that will
hold the start and end dates respectively of the fall. A fall is when consecutive days
of the closing cost of the stock is either decreasing in value or flat. In other words,
the longest stretch of days that the stock closing cost did not increase in value. This
function will not return any information through a return type.

getMaxDayIncrease Takes in the arrays and size, it will also have two output reference
parameters, a double for the amount of increase on the maximum increase day and
a string holding the date it happened. This function will not return any information
through a return type.

getMaxDayDecrease Takes in the arrays and size, it will also have two output reference
parameters, a double for the amount of decrease on the maximum decrease day and
a string holding the date it happened. This function will not return any information
through a return type.

4

