COSC 320 Lab #7: Hash Tables

1 Introduction & Instructions

This lab is another representation conversion exercise. You will be taking the hash table code from the class
example and converting the open addressing format it uses to a chaining format.

When you are finished submit all your work through the MyClasses page for this class. Create a directory
called Lab07, put each programming exercise into its own subdirectory of this directory, zip the entire Lab07
directory up into the file Lab07.zip, and then submit this zip file to Lab #7.

Make sure that you include a makefile, check the contents of the zip file before uploading it, and that the
file was submitted correctly to MyCLasses.

2 Exercise

Recall from the class discussion that chaining is where the array was an array of pointers that point to a
linked list of all the data items that hashed to the same value.

Insert: As, A,, As, Bs, Ag, By, By, C,

0

1

(A E el
3| ——| Ay

4

5 A5 | 48 /]

6

7

8

9 4 | 4+ B |/]

So As, By, and Cy all hashed to 2. These linked lists are not ordered (although they could be) so the
values of Ay, By, and Cs are arbitrary except for the fact that they all hashed to 2. Although we could use a
linked list for this structure it would be easier to use a vector of vectors, that is our old friend the ListOfLists
structure. What would come in handy with using this is that it our table (tab) was a ListOfLists then
tab[2] is a vector of values that all hashed to 2. Since it is a vector, we can use all of our nifty functions
that are supported by vectors and as a result the code to do everything we need in a hash table is reduced
to just a few well-chosen lines.

1. Start with the HashTable.h file from the example code, the ListOfLists.h file from the graph
examples and the the test program HashTableExample.cpp from the hash table example code.

2. The ListOfLists.h file will need no alterations.
3. In the HashTable.h file,

(a) Include the ListOfLists.h file.
(b) Change the table structure tab to a ListOfLists.
()

)

(d) Because of the change in storage method and mode of the hash table, you will not need to store
the size, empty, and removed member variables. So delete them.

Keep the function pointer to the hash function.

(e) You will also not need the probe function so you can delete its prototype and implementation.

Fall 2023 1

COSC 320 Lab #7: Hash Tables

(f) Keep all of the public functions as they are with the exception of the constructor. Here we do not
need to have parameters for the flags for the empty position or the removed positions anymore.

(g) Revise all of the functions in the class accordingly. That is, they should do exactly what the
original functions did but with the chaining structure instead of the open addressing. The one
exception to this is in the printing. In the print function, the function should display the linked
list for each hash table entry. For example,

11111

437543 1103
3284 234

W O J oy Ul WD E O
e ee ae e as s ae ae ee e

(h) There is only one change that needs to be done to the HashTableExample.cpp file. The
declaration of the hash table will now be HashTable<int> table (10, hf) since we do not
need flags for empty and removed locations. This is the only alteration you will need for the main.

The output of the test program should now be the following.

0:

1: 11111

2

3: 437543 1103
4: 3284 234
5:

6:

7

8:

9:

1

0

1

0

0

0:

1: 11111

2

3: 437543
4: 3284 234
5:

6:

7

8:

9:

0:

1: 437543 3284
2: 11111

Fall 2023 2

COSC 320 Lab #7: Hash Tables

234

o U b W

=

A couple of quick notes here. Fell free to use the algorithm library if you wish. There were some functions
there that made some of this reimplementation easier. If you use a function in the algorithm library that has
the same name as a member function (such as find) remember to scope it to the std namespace to use the
algorithm library version. In all, your HashTable.h file will probably be about 50 lines of code shorter,
give or take.

Fall 2023 3

