
COSC 117 Homework #9: Arrays of Objects & 2-D Arrays Spring 2020

1 Before Getting Started on the Exercises

For each of the following create a new project with an appropriate name and then write a program
that solves the given problem. Remember to do the Shift+Ctrl+F to format the program and to
put the standard comments at the top. For each program, you will be submitting the java code files
through MyClasses, as you did before. Note that since we are working with classes there
will be multiple java files to upload, make sure you upload all the java files from the
project.

I also want either a Microsoft Word doc file (or LibreOffice Writer odt) or a text file (which you
can create with NotePad++) of the output of at least three runs of the program that tests all of the
program features. This doc (or odt) or text file is to be uploaded to MyClasses as well. You can
copy and paste output from the Eclipse console area to the word or text program. Each program
must include header comments with at least your name, date, and short description of the program.

1.1 Commenting

Up to now we have been doing minimal commenting (except for the projects). In general commenting
your code is very important for both you and anyone who needs to read your code. When you are
programming professionally or even if you are looking back at code you wrote in a previous class
it is much easier if you have some comments on what the code is doing so that reading the details
becomes clearer. So at this point we will put some rules on commenting your code. These are the
minimum you need to do for this course, frankly you should be writing more than these.

• In the main program:

– At the top of at least, your name, the date written, and a description of the program. As
usual.

– Each method should have a description of what it does. A couple lines for smaller methods
but a more detailed description for larger ones. In this you should have a description of
what the parameters are coming in and what the method is returning.

– Major blocks of code should contain brief but descriptive comments to their function.

• For each class structure:

– At the top have at least, your name, the date written, and a description of the class.

– Each member variable should have a description.

– Each member method should have a description of what it does. A couple lines for
smaller methods but a more detailed description for larger ones. In this you should have
a description of what the parameters are coming in and what the method is returning.

– Major blocks of code should contain brief but descriptive comments to their function.

2 Exercises

1. This exercise uses the card and deck classes that we went over in class. The version we did
in class is on the MyClasses page for this course, a different version can be found in the code
examples given at the beginning of the course, in the blackjack example. Read through the
card and deck classes to make sure you understand how each of the methods work. You may
need to add methods to the classes to complete the assignment.

1



COSC 117 Homework #9: Arrays of Objects & 2-D Arrays Spring 2020

A derangement is when you have a list of objects and then mix them up so that no object is
in the same position as it started. For example, if we have the list 1 2 3 4 5, then the list
2 5 4 1 3 is a derangement of the original list but 2 1 3 5 4 is not since 3 is in the same
position as where it started.

The same can be done with larger lists and is a common game using a deck of cards. Take a
new deck of cards out of its wrapper and then bet someone that no matter how many times
they shuffle the deck there will be at least one card in the same position as it was in the
originally manufactured deck. Question is, would you take that bet? Most people do since
they feel that if they shuffle the deck enough times then the cards will all be mixed up.

In these printouts, the top row is the original order of the deck and the second row is the
shuffled deck. Looking at the first run it is clear that this is not a derangement.

AH 2H 3H 4H 5H 6H 7H 8H 9H 10H JH QH KH AD 2D 3D 4D 5D 6D 7D 8D 9D 10D JD QD KD
AS 6S 5C 9S 4H 6H 8H 10C 2H 9D 7C AC 8S 3C 6D 4C 5H QD 2D 5S QC 3S 7H 2C AD KD

AC 2C 3C 4C 5C 6C 7C 8C 9C 10C JC QC KC AS 2S 3S 4S 5S 6S 7S 8S 9S 10S JS QS KS
JD 10S AH JH 5D 4S QH 2S 8D JS 7S KS KC 9H 8C 3D 10D 6C KH 9C QS 4D 10H JC 7D 3H

On the other hand, the following is a derangement,

AH 2H 3H 4H 5H 6H 7H 8H 9H 10H JH QH KH AD 2D 3D 4D 5D 6D 7D 8D 9D 10D JD QD KD
10C 5S 3C 7H KH 2S 10D 5D JC 10S AS 2H QC 10H JS 4S 7S 5H 4D KD AC 3D KS 8D 9S 4C

AC 2C 3C 4C 5C 6C 7C 8C 9C 10C JC QC KC AS 2S 3S 4S 5S 6S 7S 8S 9S 10S JS QS KS
KC 4H 3S 9H 9D 2C 6D AD JH 8C JD 8H QD 6C 2D 6H AH 7D 3H 9C QH 6S 8S QS 5C 7C

Write a program that will simulate the shuffling many times and determine if the shuffle pro-
duces a derangement. We will count the number of derangements and then find the probability
of a shuffled deck being a derangement. This program is not long if you use the methods in
the card and deck classes is a smart way, in fact the program will probably be less than 40
lines in length. The program should take the number of trials to be done from the user. Make
sure that they input a value between 100 and 1,000,000. Then for each trial you will create
two decks of cards, shuffle one of them and do not shuffle the other. Then go through the two
decks card by card, if there is a match of a pair of cards then the shuffle is not a derangement
and if there are no matches then the shuffle is a derangement. Keep a count of the number of
derangements found in the number of trials the user wanted. Then calculate the probability
of a derangement by dividing the number of trials into the number derangements found. Also
calculate one over the probability.

Specifically,

(a) Ask the user for the number of trials, make sure that they input a value between 100 and
1,000,000.

(b) For each trial,

i. Create two decks of cards, shuffle one of them and do not shuffle the other.

ii. Go through the two decks card by card, to see if there are any card matches. If
there is no match of any pair of cards between the two decks then the shuffle is a
derangement. One way to do this is as follows.

A. Create a counter and set it to 0.

B. Use a for loop to go through the entire deck of cards, card by card. If there is a
match between the two cards increment the counter.

C. At the end of the loop, if the counter is 0 the shuffle was a derangement and if
the counter is greater then 0 there was a match and hence the shuffle was not a
derangement.

2



COSC 117 Homework #9: Arrays of Objects & 2-D Arrays Spring 2020

iii. If the shuffle is a derangement, increment a derangement counter.

(c) Find the probability by dividing the number of derangements by the number of trials.

(d) Calculate one over the probability as well.

Answer the following questions, put the answers in your runs file.

(a) What is the approximate probability of a shuffled deck of cards being a derangement?

(b) What is the approximate value of one over the probability of a shuffled deck of cards being
a derangement?

(c) Does the number for one over the probability look close to a very famous number you have
seen before? If so, what is the famous number?

2. In this exercise you will be working with arrays of objects that you have created. You will
construct a sphere class that will have several methods, including one that will take in another
sphere as a parameter and return true if the two spheres collide and false if they do not.

These calculations lie at the heart of nearly all computer and video games. In most games,
especially first-person-shooters, scores are increased when a bullet or laser beam hits (collides)
with a target. Also, if the player runs into a wall they do not go through the wall (well usually)
but instead bounce off of it or slide along it. Determining what objects hit each other is called
collision detection. Collision detection is usually taken care of in a game’s physics engine that is
responsible for most object placement throughout the play of the game. In a physics engine, the
objects in a scene are given physical attributes, such as shape, size, velocity, mass, momentum,
bounce, frictions, rotational velocity, gravity, and even squishiness. The physics engine uses
these attributes and time to determine how the objects interact with each other and where
their new positions will be. As a part of that, the engine will determine which objects have
collided and adjust their velocities and momentums accordingly. General collision detection is
a very complex problem, but for simple objects like spheres (say in a billiards game) it is quite
doable.

(a) Create a Sphere class (object) that holds the center of the sphere and its radius. The
center of the sphere will be three coordinates (x, y, z) and the radius is just a decimal
number. Make sure that the object has a constructor that sets all of the data in the
Sphere class and accessor functions that can both get all the data from the object and
set all of the data in the object. Have your accessor functions, as well as the constructor,
make sure that the radius of the sphere is greater than or equal to 0. Add in methods
for finding the volume and surface area of the sphere. Add in a method called collide
that takes in a Sphere as a parameter and returns true if the calling sphere collides with
the input sphere and false if they do not. The header to the method should look like the
following.

public boolean collide(Sphere s)

Testing if two spheres collide is fairly easy, you calculate the distance between the centers
of the two spheres and if this is less than or equal to the sum of the radii of the two
spheres then the two are colliding. The distance between two points in three dimensions
is

d =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

Finally, add a method that will print the sphere data to the screen, that is, the sphere’s
center, radius, volume and surface area. Recall that,

• Volume of a Sphere: V = 4
3πr

3

3



COSC 117 Homework #9: Arrays of Objects & 2-D Arrays Spring 2020

• Surface Area of a Sphere: A = 4πr2

(b) Write a main program that will ask the user three questions at the start,

Input the number of spheres (5-100): 20
Print Sphere Information (Y/N): y
Print Collision List (Y/N): y

The first is the number of spheres to create, the second is to print out the sphere informa-
tion, and third to print out a collision list. Do data input checking on all of these inputs.
If the number of spheres is not between 5 and 100 the program should ask for the input
again until the user types in a number between 5 and 100. Same goes for the character
inputs. Here you should take in a string and extract the first character. If the characters
are not Y, y, N, or n then the program should ask for the input again. The answers to
the last two questions are to be stored as single characters.

The program then creates an array of random spheres, as many a the user specifies. The
centers should be randomly generated so that each coordinate is a double between −10
and 10. The radius of the sphere should be a random double between 1 and 3.

If the user selects to see the sphere information then the program should print out the
center, radius, volume, and surface area of each sphere.

Center: (5.07972603700521, 8.382451098049518, 5.986081502426652)
Radius: 1.7061914719633906
Volume: 20.805200717552825
Surface Area: 36.581827525391425

If the user selects to see the sphere collision list, then the program should print out the list-
ing of all collisions, as below. The list should list each collision only one time, so if spheres
3 and 14 collide it should list Spheres 3 and 14 and both Spheres 3 and 14 and
Spheres 14 and 3.

Collision List
Spheres 1 and 19
Spheres 3 and 14
Spheres 3 and 16
Spheres 4 and 20
Spheres 7 and 8
Spheres 10 and 20
Spheres 11 and 19
Spheres 14 and 16

Number of Collisions: 8

A sample run of the program is below.

Input the number of spheres (5-100): 20
Print Sphere Information (Y/N): y
Print Collision List (Y/N): y

Center: (5.1756706654858355, 7.633939460837151, -9.199665632660894)
Radius: 1.6174420728196897
Volume: 17.72453362206822
Surface Area: 32.8751191524943

Center: (4.3419710151715485, 4.774029643662004, -8.062020845323566)
Radius: 2.619659902388656
Volume: 75.30491926804632
Surface Area: 86.23820122533672

Center: (-2.6782782051888576, 4.680873586759375, 7.763056149691117)
Radius: 1.2255716003190926

4



COSC 117 Homework #9: Arrays of Objects & 2-D Arrays Spring 2020

Volume: 7.710892975665975
Surface Area: 18.87501221550422

Center: (-1.4122873246339296, 4.569617890179895, 5.190520533901752)
Radius: 2.468399836935973
Volume: 62.99921478058671
Surface Area: 76.56686794160669

Center: (-9.585554991627818, 3.6460556794015417, -8.677103526759673)
Radius: 2.0989299909362176
Volume: 38.73311885979435
Surface Area: 55.36123504888931

Center: (5.109987317811191, -5.247166587881951, 4.348219570636768)
Radius: 1.2621021910379961
Volume: 8.42116489467354
Surface Area: 20.016996138199442

Center: (9.953691987660818, 7.132930829435896, -8.043845068336335)
Radius: 2.7677831746819592
Volume: 88.81468996271711
Surface Area: 96.26623657713648

Center: (-2.991649805015724, -0.42629066851339203, -6.018110819893552)
Radius: 2.0627114975471468
Volume: 36.76241872280145
Surface Area: 53.4671263041639

Center: (-0.786353229424062, -6.785627673491856, 8.038168761433447)
Radius: 2.5438144382509007
Volume: 68.95168651674798
Surface Area: 81.3168824108394

Center: (4.031057101071333, -1.055794721818998, -0.42835648870361354)
Radius: 1.9487972991736358
Volume: 31.00192180342746
Surface Area: 47.72469945936418

Center: (-3.601393793804535, -4.411509323441784, 1.0804552659556865)
Radius: 2.218109163955339
Volume: 45.712750955689664
Surface Area: 61.826647261365466

Center: (-6.132802644630382, -8.026464691813935, 9.155785357826488)
Radius: 1.4430920745372318
Volume: 12.588405787287158
Surface Area: 26.16965197731542

Center: (-1.4715044482167698, -1.5182377222773766, -7.4391295156131605)
Radius: 1.2983240787505292
Volume: 9.16722612576475
Surface Area: 21.18244498997592

Center: (2.7076270618217713, 1.8523729075640922, 9.736764786670445)
Radius: 2.701869749512645
Volume: 82.61936183069881
Surface Area: 91.73576392304045

Center: (8.3822498709795, 0.7525922553204651, -0.07509155028925463)
Radius: 2.355353664807474
Volume: 54.733975192015016
Surface Area: 69.71433973142496

Center: (-6.097177238941307, -0.9609418001937833, -1.4776468148999715)
Radius: 1.2864780599977519
Volume: 8.918581007057133
Surface Area: 20.797667564745066

Center: (5.827176767445337, 8.648445104417355, -5.663729776465156)
Radius: 1.5498059137030316
Volume: 15.592672255325759
Surface Area: 30.18314509731618

Center: (8.545789970949006, 4.700930760493129, -5.919859954140668)
Radius: 2.8373362813474605
Volume: 95.67997291462163
Surface Area: 101.16527978401936

Center: (9.862432752037307, 1.6696652400616294, 7.754825711082937)
Radius: 2.908600478015007
Volume: 103.07202839355142

5



COSC 117 Homework #9: Arrays of Objects & 2-D Arrays Spring 2020

Surface Area: 106.31095178519698

Center: (-3.191862059652788, 1.3639159880652052, -2.51651359085332)
Radius: 2.470711367085027
Volume: 63.17636719490505
Surface Area: 76.71033699428992

Collision List
Spheres 1 and 2
Spheres 2 and 18
Spheres 3 and 4
Spheres 7 and 18
Spheres 8 and 13
Spheres 8 and 20

Number of Collisions: 6

3. The transpose of a matrix/array is when you interchange the rows and columns.

-6 -10 -3 10 9
9 -2 7 -5 2

-4 2 -4 -8 -3

-6 9 -4
-10 -2 2
-3 7 -4
10 -5 -8
9 2 -3

Table 1: An Array and its Transpose

Write a program that will allow the user to input the number of rows and columns of a two-
dimensional array of integers. Make sure that you do user input checking so that the number
of rows and columns are both between 2 and 5. Create an array of the given size and have the
user input the data for the array. The prompt for each data item should tell the user the row
and column number of the entry they are inputting. Since most users will be more comfortable
starting to count at 1 instead of 0 have the displayed positions start at 1. That is, if the user
is inputting position (0, 3) of the array the prompt should be asking for row 1 and column 4.
Now create a second array that is the transpose of the first and have the program print out
both arrays.

4. For this exercise you are going to implement some of the features of a spreadsheet. Below is
a description of the four methods you will be implementing and a start on the main program
you will use. In general, you will ask the user to input the number of rows and columns of the
array they want. You will create the array of the correct size and populate it with random
numbers between −50 and 50. Then you will call the methods to do some calculations and
print out the results. Finally, you will create another array and load the original array along
with the row and column statistics you calculated in the methods.

(a) public static void PrintArray(double A[][], int w, int d)

This methods prints out a two-dimensional array using the printf command having a total
formatted width of w and the number of decimal points to the right of the decimal d.

(b) public static void populate(double A[][])

This method is to populate the array with random decimal numbers between −50 and
50.

(c) public static double[][] rowstats(double A[][])

This method is to return a two-dimensional array with the same number of rows as A
and two columns. The first column is to contain the average of the entries in that row

6



COSC 117 Homework #9: Arrays of Objects & 2-D Arrays Spring 2020

of A. So the average of the first row of A is to be in the first row and first column of
the returned array. Second row average in the second row and first column, and so on.
The second column is to contain the row standard deviation. Recall that the standard
deviation of a list of numbers is defined to be√√√√√√

n∑
i=1

(xi − µ)2

n− 1

(d) public static double[][] ColMaxMin(double A[][])

This method is to return a two-dimensional array with the same number of columns as
A and two rows. The first row is to contain the column minimum and the second row is
to contain the column maximum.

Below is the main program, you are to fill in the portions between the <<< and >>> but the
remainder of the main is to be unaltered.

public static void main(String[] args) {
Scanner keyboard = new Scanner(System.in);

int rows = 0;
int cols = 0;

<<< Insert the code to get the number of rows and columns from
the user making sure that each is at least two. >>>

double A[][] = new double[rows][cols];

populate(A);
System.out.println();
PrintArray(A, 8, 2);

double[][] rowStatistics = rowstats(A);
System.out.println();
PrintArray(rowStatistics, 8, 2);

double[][] columnStatistics = ColMaxMin(A);
System.out.println();
PrintArray(columnStatistics, 8, 2);

<<< Insert the code to create an array B with two more rows and
columns than A. Load the array A into B in the upper right,
load the row statistics in the two right-most columns, and
load the column statistics in the bottom two rows. >>>

System.out.println();
PrintArray(B, 8, 2);

}

7



COSC 117 Homework #9: Arrays of Objects & 2-D Arrays Spring 2020

Program Run

Input the number of rows: 4
Input the number of columns: 7

-2.12 25.09 46.32 34.76 -9.94 -36.31 3.51
13.63 -17.25 42.63 12.94 -3.41 47.97 5.14
-35.50 -38.77 25.74 -21.18 1.74 45.57 -11.50
-37.55 42.95 -46.11 -31.63 -15.57 3.12 -13.82

8.76 28.52
14.52 23.56
-4.84 31.42
-14.09 30.10

-37.55 -38.77 -46.11 -31.63 -15.57 -36.31 -13.82
13.63 42.95 46.32 34.76 1.74 47.97 5.14

-2.12 25.09 46.32 34.76 -9.94 -36.31 3.51 8.76 28.52
13.63 -17.25 42.63 12.94 -3.41 47.97 5.14 14.52 23.56
-35.50 -38.77 25.74 -21.18 1.74 45.57 -11.50 -4.84 31.42
-37.55 42.95 -46.11 -31.63 -15.57 3.12 -13.82 -14.09 30.10
-37.55 -38.77 -46.11 -31.63 -15.57 -36.31 -13.82 0.00 0.00
13.63 42.95 46.32 34.76 1.74 47.97 5.14 0.00 0.00

3 Challenge Exercise

As usual, the Challenge Exercise is optional and is for extra credit.

A Magic Square is an n× n square array of numbers consisting of the distinct positive integers
1, 2, ..., n2 arranged such that the sum of the n numbers in any horizontal, vertical, or main diagonal
line is always the same number. The number n is called the order of the magic square.

4 9 2
3 5 7
8 1 6

4 9 2 15
3 5 7 15
8 1 6 15

15 15 15 15 15

Table 2: Magic Square of Order 3

The sum of each row, column or diagonal is known as the magic constant, and is,

M =
n
(
n2 + 1

)
2

Kraitchik (1942) gives general techniques of constructing even and odd squares of order n. For
n odd, a very straightforward technique known as the Siamese method can be used. It begins by
placing a 1 in the center square of the top row, then incrementally placing subsequent numbers
in the square one unit above and to the right. The counting is wrapped around, so that falling
off the top returns on the bottom and falling off the right returns on the left. When a square is
encountered that is already filled, the next number is instead placed below the previous one and the

8



COSC 117 Homework #9: Arrays of Objects & 2-D Arrays Spring 2020

method continues as before. While there are other ways to create these, your program must use this
algorithm. For example,

0 1 0
0 0 0
0 0 0

0 1 0
0 0 0
0 0 2

0 1 0
3 0 0
0 0 2

0 1 0
3 0 0
4 0 2

0 1 0
3 5 0
4 0 2

0 1 6
3 5 0
4 0 2

0 1 6
3 5 7
4 0 2

8 1 6
3 5 7
4 0 2

8 1 6
3 5 7
4 9 2

Table 3: Magic Square of Order 3 Construction

Write a program that will take an odd integer between 3 and 25 from the user and then construct
a magic square of that order. A start to the main program is below. You will need to fill in the Insert
code portions and create two methods, CreateMagic and IsMagic. The method CreateMagic
takes a two-dimensional array as its only parameter and fills it, as outlined above, to create a magic
square. You may assume that the array is square and that the number of rows and columns is odd.
The method IsMagic returns a boolean value and checks that the array forms a magic square.

public static void main(String[] args) {
int n = 0;

<<< Insert code to get an odd integer between 3 and 25 and store in the variable n >>>

<<< Insert code to create an n X n integer array called MS >>>

CreateMagic(MS);
System.out.println();
Print2DintArray(MS);
System.out.println();

if (IsMagic(MS))
System.out.println("This is a magic square.");

else
System.out.println("This is not a magic square. OOPS!!!!");

}

Program Run

Input the size of the Magic Square (odd number between 3-25): 11

68 81 94 107 120 1 14 27 40 53 66
80 93 106 119 11 13 26 39 52 65 67
92 105 118 10 12 25 38 51 64 77 79
104 117 9 22 24 37 50 63 76 78 91
116 8 21 23 36 49 62 75 88 90 103
7 20 33 35 48 61 74 87 89 102 115
19 32 34 47 60 73 86 99 101 114 6
31 44 46 59 72 85 98 100 113 5 18
43 45 58 71 84 97 110 112 4 17 30
55 57 70 83 96 109 111 3 16 29 42
56 69 82 95 108 121 2 15 28 41 54

This is a magic square.

9


