
COSC 420 Homework #3: MPI Exercises

1 Instructions

When you are finished submit all your work through the MyClasses page for this class. Create
a directory called Homework03, put each programming exercise into its own subdirectory
of this directory, zip the entire Homework03 directory up into the file Homework03.zip, and
then submit this zip file to Homework #3. Make sure all the code and document files are
included in the zip file.

2 Programming Exercises

1. Take program number 3 from the ICE #2 exercise set and redo the analysis on your
cluster. As a reminder, the exercise was the following.

Write an MPI program that will parallelize the calculation of a vector dot
product (also called a scalar product). Recall that the dot product of two
vectors is the sum of the products of the respective entries. For example,
if you have two vectors from R4, v = (x, y, z, w) and w = (a, b, c, d), then
v · w = xa+ yb+ zc+ wd. Have the user input the size of the vectors, have
process 0 create two arrays of random numbers (doubles) between −1 and
1. Have the program,

(a) Find the dot product of the two vectors serially, and time the process.

(b) Find the dot product of the two vectors using a parallel implementation
that uses only point-to-point communication, that is, just sends and
receives. Also time the process.

(c) Find the dot product of the two vectors using a parallel implementation
that uses collective communication, that is, broadcasts and reductions.
Also time the process.

(d) The program should also check the results of the parallel implementa-
tions against the serial one. Of course, there will be some minor deviation
due to round-off error and the order of the floating point arithmetic. So
we will say that the two values are equal if the absolute value of the
difference is less than 0.000001.

(e) Have the program calculate the speedup and efficiency of the run.

Now we will do an analysis of the program on the cluster you built. The instructions
here are a little different than those in ICE #2 since you will be working with a “more”
distributed system and multiple computers.

First, make several MPI host files (not system host files). One host file should use
just a single worker node for computations and using the number of true cores of the
machine. A second host file should use just a single worker node for computations
and using the number of hardware threads of the machine. Then two more host files
that use two machines in your cluster, one with just core usage and one with hardware

Fall 2023 1

COSC 420 Homework #3: MPI Exercises

thread usage. A third set of two using three machines and a fourth set of two using
all for worker nodes. You should also have a host file using the entire cluster for
computation, one using cores and one using hardware threads. Most likely you have
already created the last two.

(a) Collect the data: Run this on various size arrays (big ones too) using different
numbers of worker nodes. For example, run array size 1,000,000 for 1, 2, 3, and
all 4 machines, then size 2,000,000 for 1, 2, 3, and all 4 machines and so on until
you have data that is representable of the application speed. Do these timings for
the two cases of just using machine cores and using hardware threads.

(b) Using the data from part 2a, make graphs of the speedup verses array size for each
of the numbers of processors you were using. Then make graphs of the speedup
verses the number of processors for each array size. For example, take all the
processor numbers you ran with and array size of 1,000,000 and make a line (xy-
scatter) graph with them. Do the same with array sizes of 2,000,000, 5,000,000
etc.

(c) Using your data, determine if your parallel application is strongly scalable, weakly
scalable, follows Amdahl’s Law, and follows Gustafson’s Law. Justify all of your
conclusions. If you need to run more test runs to make this determination do so
and include those results in your report.

(d) Write up a short report on all of your findings from your analysis including all your
data, graphs, conclusions, and justifications. Save your report in PDF format and
include it in the zip file of all your code for this exercise.

2. You can never sort enough arrays . . . Attached to this exercise set is a section from a
Data Structures text on the Shell Sort. You probably saw the Shell Sort in COSC 220
or COSC 320, or possibly both. You may wish to review this to refresh your memory
on how it works. The Shell Sort is easily parallelizable and is “almost” ideal for shared
memory systems. Although we will be creating a distributed memory application for
this, you may wish to think about how you could implement it using OpenMP.

You will be writing two implementations of the Shell Sort and testing them on your
clusters. As you can gather from the description of the algorithm in the handout the
three main questions in implementing this algorithm are

(a) The sequence of increments

(b) A simple sorting algorithm applied in all passes except the last

(c) A simple sorting algorithm applied only in the last pass, for 1-sort

For the last two questions we will follow Shell’s original algorithm and use the insertion
sort. For the first question we will take two approaches.

(a) For the first program you will use the hi+1 = 3hi + 1 method. This produces the
sequence of increments of 1, 4, 13, 40, 121, 364, 1093, 3280, Now the handout

Fall 2023 2

COSC 420 Homework #3: MPI Exercises

also mentions that we stop the sequence at ht when ht+2 ≥ n, where n is the size
of the array. We will take a slightly different approach. Since the increment is
also the number of subarrays that are individually sorted, and it makes the most
sense to give each subarray to a processor, we will use the upper bound on the
increment to be the number of processors we are using in the calculation. For
example, if we are using all 56 cores of your cluster then we would use increments
of 1, 4, 13, and 40. So the first pass would use 40 of our 56 cores and each core
would get one of the 40 subarrays, then the second pass we would use 13 of our
cores, third pass just 4 of them, and (of course) the last pass would use a single
core. On the other hand, if we ran this on just two worker nodes (24 total cores)
then we would use increments 1, 4, and 13. Your program should determine the
maximum increment size for any communicator size as well as the entire list of
increments.

(b) The second program will be similar but the increments will start with the number
of processes in the communicator, the next pass will use 1/3 of them (integer
division), the next pass will use 1/3 of those, and so on until the last step where
we use just one process. For example, say we are running all 56 cores. The first
increment would be 56, the second would be 18, third would be 6, then 2, and
finally 1. If we were running just the 48 on the worker nodes then the sequence
would be 48, 16, 5, and then 1.

In addition,

(a) Each program should also do the same sort with the same increments serially.

(b) Time both the serial and parallel versions of each sort and computing speedup.

(c) Each program should also display the speedup and efficiency of the parallel verses
the serial run.

(d) The programs should also test that each of the arrays is sorted and report if they
are or are no in sorted order.

(e) The programs should also compare the two arrays and determine if they are equal
or not, and of course display the result to the console.

(f) The arrays will just be arrays of integers. Let the range just be from 0 to the
maximum int size (i.e. the default of the rand() function).

(g) Let the user input the size of the array to be sorted and then just fill the array
with the random numbers.

(h) Also let the user select if they would like to print out the initial array and sorted
array. This will also help you with testing your program.

Since these programs are very similar you can write them in a single program if you
would like. Personally, I would do two separate ones so that the code is a bit more
readable. If you decide to do this in a single program, put barriers between the sorting
methods to guarantee that all processes are starting and stopping where they should
before proceeding on to the next timing test. For the analysis, use each program to,

Fall 2023 3

COSC 420 Homework #3: MPI Exercises

(a) Collect the data: Run this on various size arrays (big ones too) using different
numbers of worker nodes. That is, run each array size for 1, 2, 3, and all 4
machines. Get enough data to give a representable indication of the application
speed. Do these timings for the two cases of just using machine cores and using
hardware threads.

(b) Using the data from part 2a, make graphs of the speedup verses array size for each
of the numbers of processors you were using. Then make graphs of the speedup
verses the number of processors for each array size.

(c) Using your data, determine if your parallel application is strongly scalable, weakly
scalable, follows Amdahl’s Law, and follows Gustafson’s Law. Justify all of your
conclusions. If you need to run more test runs to make this determination do so
and include those results in your report.

(d) Write up a short report on all of your findings from your analysis including all your
data, graphs, conclusions, and justifications. Save your report in PDF format and
include it in the zip file of all your code for this exercise.

Fall 2023 4

