
COSC 420 Final Project Options and Descriptions

Contents

1 Introduction & Instructions 1

2 Project Possibilities 1

2.1 Ethical Hacking: Dictionary Attack on a Linux Shadow File 1

2.2 LU Decomposition . 4

2.3 QR Algorithm . 4

2.4 Quadratic Sieve Factoring . 5

2.5 Elliptic Curve Factoring . 8

3 Presentation & Report 10

3.1 Report . 10

3.2 Presentation . 10

1 Introduction & Instructions

When you are finished submit all your work through the MyClasses page for this class.
Create a directory called FinalProject, put all of your materials into this directory, zip the
entire FinalProject directory up into the file FinalProject.zip, and then submit this zip file
to the Final Project assignment.

2 Project Possibilities

2.1 Ethical Hacking: Dictionary Attack on a Linux Shadow File

When you log onto a Linux system (or other activity requiring you to input your password)
the OS searches the shadow file (located at /etc/shadow) for the username of the login,
extracts information from the line it is on, specifically the encryption algorithm and salt. It
takes the password that was input, the encryption algorithm, and salt and uses the crypt
function from the crypt library which is built into g++ to encrypt the password. This
result is then compared to the one in the shadow file to authenticate the user and allow
access to the system. If you have sudo privileges you can view the shadow file on your
system with

sudo cat /etc/shadow

Fall 2023 1

COSC 420 Final Project Options and Descriptions

You don’t want to edit this file or you will run the risk of not being able to log into your
own computer. Each line of this file is of the form

<username>:$<algorithm id>$<salt string>$<encrypted password>

For example,

despickler:1ab$FPyWVGc2x83IsQ7.q775k1

The username here is despickler, the number between the first set of $ symbols is the
encryption/hashing algorithm that is being used, depending on the system this can be any
number of strings. You can find a list of the ones supported by your system in the man
pages. The next string in the set of $ symbols is the salt string. The salt string is used to
hinder a dictionary attack, which is what you will be doing in this exercise.

The salt string is simply set of random characters chosen by the OS that is appended to
the user’s password before encryption. For example, say the user is peter, his password is
“fluffybunny”, and the system chose “abc” as the salt, the system will encrypt the password
as “abcfluffybunny” to get a shadow file entry of

peter:5abc$A9rdTaiz4GZYERYE22q6P6XqGZ5o9buuxrzaXIrLA/0

Here it used 5 as the encryption/hashing algorithm which is SHA-256.

A dictionary attack is literally that, a brute force attack trying words from the dictionary
as passwords. Most users will not simply use English words as their passwords, although
many do. They usually append numbers as prefixes or suffixes, such as “bunny123” or
“55attack”. They may combine words, such as “fluffybunny”. They may do a combina-
tion of both, “fluffy123bunny” or “55fluffy123bunny987”, They will sometimes change the
cases of letters (which is sometimes insisted upon by the system) such as “FluffyBunny” or
“fluffyBunny”. And of course the inclusion of special symbols like ‘.’, ‘%’, ‘*’, etc.

As a side note, this is where the salt comes in to hinder this type of attack. If there
were no salt added to the password you could run through the dictionary using various
encryption schemes and store all the encrypted passwords in a file, then simply search the
file for a user’s encrypted password from the shadow file. Now if a simple three character
salt is added using just upper and lower case letters then the number of salts that could be
added to each password is 523 = 140608. So the work you would need to do to preprocess a
set of encrypted passwords has increased 140,608 times. Even if you just had access to the
password portion and the algorithm, for example knowing that the system used SHA-256
and the encrypted password was

A9rdTaiz4GZYERYE22q6P6XqGZ5o9buuxrzaXIrLA/0

you would still need to do your attack with each possible salt.

In this exercise you will play the role of the “ethical hacker”. You have obtained access to
a shadow file, I will provide a fake one. You also have a dictionary of words, I will provide one
of these as well, it will simply be a dictionary file used by Linux systems for spell checkers for
programs like LibreWriter. You will use the dictionary along with the possible manipulations
of passwords discussed above to break as many passwords as you can. Since you have access
to the shadow file you will know the algorithm that was used and the salt that was applied

Fall 2023 2

COSC 420 Final Project Options and Descriptions

to the password, significantly simplifying the attack.

To use the crypt function you need to add in a #define _XOPEN_SOURCE flag before
your includes, you also need to include crypt.h. When you compile the code (really the
linking stage) you will need to include the crypt library in the linking. For example, if the
code file is makeshadow.cpp then the following command will compile the program.

g++ makeshadow.cpp -lcrypt

The program itself that created the peter and fluffybunny entry is below. Note that there
is a thread-safe version of this command as well.

1 #define _XOPEN_SOURCE
2 #include <crypt.h>
3 #include <stdio.h>
4

5 int main(int argc, char **argv) {
6

7 char *pw;
8 FILE *fp;
9

10 fp = fopen("shadow", "w+");
11

12 pw = crypt("fluffybunny", "5abc$");
13 fprintf(fp, "%s:%s\n", "peter", pw);
14

15 fclose(fp);
16

17 return 0;
18 }

A few specific requirements.

1. Code this dictionary attack in

(a) Serial.

(b) Parallel using shared memory and OpenMP.

(c) Parallel using distributed memory and MPI.

2. Do the standard timing analysis to test speedup and efficiency of the code on both a
single machine in the HPCL. and on your cluster.

3. I will give you a fake shadow file to attack and a dictionary list of words. You will
probably want to make your own shadow file for testing as well.

4. Get as many passwords from this file as you can. Also report on ones that were not
cracked.

5. There are many ways to break this work up between processors. Consider several
approaches and combinations of these.

6. You will probably want to save your cracked passwords to a file, there are many ways
to do this on a parallel system. You may want to investigate different ways of accom-
plishing this to see what best fits your needs.

Fall 2023 3

COSC 420 Final Project Options and Descriptions

7. Include a short paper summarizing the timing analysis, the approaches that worked,
the approaches that did not work as well, a list of cracked passwords and those that
were not cracked.

2.2 LU Decomposition

Simply stated, LU Decomposition is the process of taking a square matrix A and writing
it as A = LU , the product of two matrices L and U , where L is lower triangular and
U is upper triangular. Hence this is sometimes called LU Factorization. This is used
extensively in the solutions to large linear systems and has numerous applications in science
and engineering. In fact, it is heavily incorporated into the Linpack benchmarking software
used for benchmarking supercomputers. There are numerous resources on this process.
Most introductory linear algebra textbooks discuss this method and many other resources
can be found online. Research the different methods for calculating this and parallelizing
this method. Try several approaches and see which works best.

A few specific requirements.

1. Code this in

(a) Serial.

(b) Parallel using shared memory and OpenMP.

(c) Parallel using distributed memory and MPI.

2. Do the standard timing analysis to test speedup and efficiency of the code on both a
single machine in the HPCL. and on your cluster.

3. There are many ways to break this work up between processors. Consider several
approaches and combinations of these.

4. Include a short paper summarizing the timing analysis, the approaches that worked,
the approaches that did not work as well, and applications for this process.

2.3 QR Algorithm

The QR Algorithm is a way to find all the eigenvalues of a square matrix. The method was
developed in the 1960’s and is considered one of the top-ten developments in computation
in the 20th century.

Unlike the power method that finds only the dominant real eigenvalue, the QR Algorithm
will find all the eigenvalues, both real and complex, of a square matrix with real number
entries. The algorithm works just as well with matrices that have complex number entries
and much of the literature on this will probably be using matrices over C as opposed to R,
but you can concentrate on real matrices.

Fall 2023 4

COSC 420 Final Project Options and Descriptions

The algorithm relies on the QR-factorization of a matrix. The QR-factorization is where
we take a square matrix A and write it as, A = QR where Q∗Q = I and R is upper triangular.
A sequence of matrices is constructed that converge to an upper block triangular matrix.
The values below the main diagonal converge to 0. This sequence of matrices are all similar
to the original matrix A, that is if a matrix M is in this sequence then M = BAB−1 for
some invertible matrix B. Hence A and M have the same eigenvalues. Since this sequence
of M matrices converges to an upper block triangular matrix the eigenvalues are simply the
entries on the diagonal. A little bit of a lie there, more specifically, if the block is 1× 1 then
this entry is an eigenvalue. If the block is 2× 2 then the eigenvalues are complex (conjugate
pairs) and can be found by solving the quadratic characteristic matrix on that 2× 2, which
is a very simple task. This algorithm is fairly expensive in computation time, on the order
of O(n3), and hence could benefit from parallelization.

There are many ways to do these computations and many options to consider. This is
primarily a technique in numerical linear algebra and you will probably not find this method
in a standard introductory linear algebra textbook. On the other hand, if you look in a
numerical linear algebra text it will most likely be there and of course there are many online
resources for this method.

A few specific requirements.

1. Code this in

(a) Serial.

(b) Parallel using shared memory and OpenMP.

(c) Parallel using distributed memory and MPI.

2. Do the standard timing analysis to test speedup and efficiency of the code on both a
single machine in the HPCL. and on your cluster.

3. There are many ways to break this work up between processors. Consider several
approaches and combinations of these.

4. Include a short paper summarizing the timing analysis, the approaches that worked,
the approaches that did not work as well, and applications for this process.

2.4 Quadratic Sieve Factoring

The RSA algorithm was developed by three professors at MIT in 1977, Ron Rivest, Adi
Shamir, and Leonard Adlemen, their initials give the algorithm its name. This was one of
the first algorithms to implement the concept of public-key cryptography. In 1976, when
Whitfield Diffie and Martin Hellman came up with the idea of public-key cryptography, they
did not have a method for implementing the concept. Rivest, Shamir and Adlemen took
the concept of Diffie and Hellman and devised a method that uses the one-way function of
integer multiplication to devise a digital implementation.

Fall 2023 5

COSC 420 Final Project Options and Descriptions

As a historical note, Rivest, Shamir and Adlemen were not the first mathematicians to
discover this technique. In 1973, Clifford Cocks, a British mathematician and cryptographer
at the Government Communications Headquarters (GCHQ), had developed an equivalent
system. The Government Communications Headquarters is a British intelligence agency
responsible for providing signals intelligence and information assurance to the UK govern-
ment and armed forces. GCHQ was originally established after the First World War as the
Government Code and Cypher School (GC&CS or GCCS). During the Second World War
it was located at Bletchley Park, which is where the German Enigma machine was cracked.
The GCHQ is the British equivalent of the NSA (National Security Agency) in the United
States. Hence anything that was discovered at GCHQ had to remain classified and Clifford
Cocks did not get the recognition, or the money, from the discovery of the method. In fact,
it was not until 1997 that GCHQ declassified his work.

Currently the RSA algorithm is heavily used in monetary transactions from simple online
ordering to intra-bank transactions. In fact, every time you make an online purchase your
credit card information is encrypted with this algorithms before it leaves your computer and is
transmitted to the company you are ordering from. This is currently a very secure public-key
system but if a method was devised to quickly crack this algorithm (e.g. the development
of more powerful quantum computers) then the entire e-commerce system as we know it
would collapse and we would need to completely alter the way these transmissions are made
to compensate, for instance, using post-quantum cryptographic methods, a currently active
research area.

The RSA algorithm relies on the one-way function of integer multiplication of large
integers. So one way to break this code is simply to take the large integer “key” (that is a
product of two large prime numbers, i.e. a semiprime number) and factor it. In fact, if you
can factor this number then you have broken the code. Seems simple, and mathematically it
is, but all of the current factoring algorithms, that we know about, run in exponential time.
As an example, you can find this key and all the other parameters used for the encryption
algorithm by looking at the certificate of an ordering page say from Amazon. Most web
browsers will show this to you by looking at the properties of the page/certificate, probably
just right click on the little lock icon and view the properties. In this you will see the big
number denoted as n or modulus. It is usually written in hexadecimal format but is easily
convertible to decimal. These numbers are usually around 600 digits in length (for 2048 bit
encryption) but can be much larger. So all the information you need to break this code is
publicly available. The catch is that even if you were to use the fastest factoring algorithms
available and combine all of the computers on the planet it would still take billions of years
to factor the number. This is why the method is so secure.

One of the fastest factoring methods to date is the Quadratic Sieve Factoring method.
It has many offshoots and ways to increase its speed. It is also very parallelizable. In fact,
one of the first projects that utilized the internet for distributed computation was to break
one of the RSA challenges. In this, people donated the idle time of their computers to help
factor the challenge number. Their computers would process parts of the Quadratic Sieve
algorithm that could be done in parallel (embarrassingly) and these results were transmitted
back via the web to the control machine that would finish the computation. While this

Fall 2023 6

COSC 420 Final Project Options and Descriptions

is a very common practice today (see the SETI and GIMPS projects for example), it was
groundbreaking at the time.

Basically, you search for numbers n such that when you take n2 modulo the number you
are trying to factor, that is the residue, it factors into a product of small primes. These are
called B-smooth numbers. If you get enough of these B-smooth numbers and their small
prime factorizations you can do some (modulo 2) matrix row reductions to solve a matrix
that will then give you a set of dependencies. These dependencies when combined will give
you two numbers x and y such that x2 ≡ y2 (mod n). From this you trivially get, x2−y2 ≡ 0
(mod n), that is (x+y)(x−y) ≡ 0 (mod n). So if x+y ̸≡ 0 (mod n) and x−y ̸≡ 0 (mod n)
you have a non-trivial factorization of n.

You can find discussions of this method in most books on cryptography and of course
there are numerous resources online.

A few specific requirements.

1. Code this in

(a) Serial.

(b) Parallel using shared memory and OpenMP.

(c) Parallel using distributed memory and MPI.

2. You will be using very large exact integers for this project, much larger than is sup-
ported by C++. I will give you the InfInt: Arbitrary-Precision Integer Arithmetic
Library by Sercan Tutar that has all the functionality you will need. It has many
overloaded operators and conversion functions, in fact, even a conversion from a string
representation of a number into its framework. You can also find this online. It is one
of the fastest and easiest to use arbitrary precision integer libraries I have found and
is simply a single .h file, so incorporating it into your code is trivial.

3. I will give you a file of numbers to factor but you will want to do some testing of this
on your own numbers. You should write this program to completely factor a number,
no matter how many factors it has but you should first concentrate on semiprime
numbers, that is a number that is the product of two primes. Most computer algebra
systems have a way to get the next prime number given a number. For example in
the cross-platform open-source package Maxima (wxMaxima) the process to create a
semi-prime number (as well as use Maxima to factor it) is below.

(% i1) p:next prime(430527575045);

430527575077 (% o1)

(% i2) q:next prime(12947619890321);

12947619890323 (% o2)

Fall 2023 7

COSC 420 Final Project Options and Descriptions

(% i3) n:p*q;

5574307394399493888279871 (% o3)

(% i4) factor(n);

430527575077 12947619890323 (% o4)

4. Do the standard timing analysis to test speedup and efficiency of the code on both a
single machine in the HPCL. and on your cluster.

5. There are many ways to break this work up between processors. Consider several
approaches and combinations of these.

6. Include a short paper summarizing the timing analysis, the approaches that worked,
the approaches that did not work as well, and applications for this process. Also report
on the numbers you were able to factor and those that were not,as well as execution
times for them.

2.5 Elliptic Curve Factoring

Read the first four paragraphs of the Quadratic Sieve Factoring section above.

Another very fast factoring algorithm was developed by H. W. Lenstra and uses the
concept of an Elliptic Curve in its calculations. You really do not need to know anything
about elliptic curves to code this and frankly the amount of Elliptic Curve theory that is
involved is fairly trivial. Elliptic Curves have become widely used in cryptography since
Lenstra’s discovery in fact there is an entire field of Elliptic Curve Cryptography. Lenstra’s
algorithm is asymptotically the third fastest integer factorization algorithm known, the faster
ones are the Quadratic Sieve and the General Number Field Sieve.

The algorithm, in a nutshell, is to take a random elliptic curve modulo the number you
intend to factor and a random point on the curve and calculate large multiples of that point
until there is an error in the computation, which corresponds to a non-trivial factorization of
the modulus. If one curve does not give a result then usually another random elliptic curve
and point are chosen for a repeat of the process. This general description gives an immediate
first approach to parallelization.

You can find discussions of this method in most books on cryptography and of course
there are numerous resources online.

A few specific requirements.

1. Code this in

(a) Serial.

(b) Parallel using shared memory and OpenMP.

Fall 2023 8

COSC 420 Final Project Options and Descriptions

(c) Parallel using distributed memory and MPI.

2. You will be using very large exact integers for this project, much larger than is sup-
ported by C++. I will give you the InfInt: Arbitrary-Precision Integer Arithmetic
Library by Sercan Tutar that has all the functionality you will need. It has many
overloaded operators and conversion functions, in fact, even a conversion from a string
representation of a number into its framework. You can also find this online. It is one
of the fastest and easiest to use arbitrary precision integer libraries I have found and
is simply a single .h file, so incorporating it into your code is trivial.

3. I will give you a file of numbers to factor but you will want to do some testing of this
on your own numbers. You should write this program to completely factor a number,
no matter how many factors it has but you should first concentrate on semiprime
numbers, that is a number that is the product of two primes. Most computer algebra
systems have a way to get the next prime number given a number. For example in
the cross-platform open-source package Maxima (wxMaxima) the process to create a
semi-prime number (as well as use Maxima to factor it) is below.

(% i1) p:next prime(430527575045);

430527575077 (% o1)

(% i2) q:next prime(12947619890321);

12947619890323 (% o2)

(% i3) n:p*q;

5574307394399493888279871 (% o3)

(% i4) factor(n);

430527575077 12947619890323 (% o4)

4. Do the standard timing analysis to test speedup and efficiency of the code on both a
single machine in the HPCL. and on your cluster.

5. There are many ways to break this work up between processors. Consider several
approaches and combinations of these.

6. Include a short paper summarizing the timing analysis, the approaches that worked,
the approaches that did not work as well, and applications for this process. Also report
on the numbers you were able to factor and those that were not,as well as execution
times for them.

Fall 2023 9

COSC 420 Final Project Options and Descriptions

3 Presentation & Report

Each group will submit a report and do a presentation during the final exam time for the
class.

3.1 Report

The report should be a summary of the work done on the project and the analysis of the
results. To be included,

1. Each member’s contribution to the final project.

2. Approaches discussed and tried to the parallelism of the task.

3. What worked, what didn’t work, what worked better, and why.

4. Results of the project.

5. Timing analysis of the code on different platforms, single HPCL machine, single cluster
machine, entire cluster using just cores and using hardware threads.

6. Discussions and even predictions of how well the final code will scale on different
platforms and how well the load was balanced during the computation.

7. Include a bibliography of all the resources used.

3.2 Presentation

Each group will give a 30 minute presentation on their project during the final exam period
for this class. The presentation should be 30 minutes in length with 5 to 10 minutes for
questions and shifting to the next group.

The members of the group should have an equal portion of the presentation. The pre-
sentation should,

1. Summarize the project.

2. Give some history of the methods.

3. Give some applications of the methods.

4. Give the significance to the computational landscape.

5. Methods of parallelization you tried.

6. Methods that might have been tried but were abandoned, and why they were aban-
doned.

Fall 2023 10

COSC 420 Final Project Options and Descriptions

7. Results of the running and timing of the runs on the different platforms.

8. Discussions and even predictions of how well the final code will scale on different
platforms and how well the load was balanced during the computation.

Fall 2023 11

