COSC 420 Homework #4: MPI Ezercises

1 Introduction & Instructions

When you are finished submit all your work through the MyClasses page for this class. Create
a directory called Homework04, put each programming exercise into its own subdirectory
of this directory, zip the entire Homework04 directory up into the file Homework04.zip, and
then submit this zip file to Homework #4. Make sure all the code and document files are
included in the zip file.

This exercise set is a continuation of the matrix vector multiplication examples we did
in class. We will be expanding this to distributed matrix matrix multiplication, analyze the
implementation, and then use it to experiment with graph connectivity. Recall from your
linear algebra class that A is a real n x m matrix if

i1 Aai2 4aisz ... Qim
A az 1 CL2‘72 ag‘,g Ce CLQ‘,m
ap1 Ap2 A4An3 ... Qpm
where each a;; € R for i =1,2,3,...,n and j = 1,2,3,...,m. In this notation, the matrix

has n rows and m columns.
If A and B are both of dimension n x m, then the sum is the n x m matrix C with entries
given by
Cij = aij+bij
fori=1,2,...,nand j =1,2,...,m.

If Ais an n x m matrix and B is an m X k matrix, then the product AB is matrix C,

where
m
Cij = E ai b
=1

fori=1,2,...,n,and j =1,2,...,k; so C is a new n X k matrix. So the (i,7) entry of C
is the dot product (inner product) of the i*" row of A with the j** column of B.

The transpose of n X m matrix A is a m x n matrix denoted as A’ and defined such that
(AT);; = Aj;. In other words, the (i, j) entry of AT is the (j,7) entry of A.

2 Programming Exercises

1. Write a set of functions to perform the basic matrix operations of addition, subtraction,
multiplication, and transpose. As we have done in class, keep the matrices as one-
dimensional arrays instead of two-dimensional arrays, makes manipulation a bit easier.
Also implement both serial and parallel (using MPI) versions of these functions. Test
them on small matrices so you know the output is correct before working with big
matrices.

Fall 2023 1

COSC 420

Homework #4: MPI Exercises

(a)

For addition and subtraction split up both matrices between your available pro-
cessors. Scattering and gathering is probably the best approach here. You can
use our padding trick or look in to the vector forms of the scatter and gather. In
either case, you are to allow the user to input the size of the matrices. As usual,
for testing, populate the matrices with random doubles.

For multiplication of C' = AB, there are a number of ways to approach this. If you
follow the matrix vector multiplication example from class you could give all the
processors matrix B and portions (rows) of A. The local matrix multiplication
will then be the same rows of C that A had. That is, if the local matrix L had
rows 3 to 7 of A then LB will have rows 3 to 7 of C.

This is not the only way to break the work up. For example, say you gave processor
1 rows 3 to 7 of A (call this submatrix L) and columns 9 to 12 of B (call this
submatrix M) then the product LM is defined (columns of L match rows of M),
its size is 5 x 4 and the entries in this matrix is the portion (block) of C' between
rows 3 and 7 and columns 9 and 12.

Now you might think that this is a bit cumbersome since C++ is row major
scattering the columns will require some manipulation and hence may degrade
the performance of the application. You can create your own data type that will
stride in a nice way to extract a column from a row major array. Another option
is to take the transpose of B, the second matrix. So A is now n x m and B”
is k x m, so now they have the same number of columns (but possibly different
numbers of rows). Keep in mind that the columns of B are the rows of BT. Now
if you take rows 3 to 7 of A and rows 9 to 12 of B”, dot product all the extracted
rows of A with all the extracted rows of BT you still get the entries of C' between
rows 3 and 7 and columns 9 and 12. Be careful with the bookkeeping here but
using BT will make scattering a bit easier.

There are many other layouts that can be done with this try several and in your
comments discuss why you chose the method you did.

For the transpose we saw how to extract a column in a slick way using a user-
defined data type. A well-formed gather on these columns back to process 0 will
transpose the matrix. The only snafu to this is that with this setup the number
of columns is restricted to be the number of processors. Again with a well formed
set of sends and gathers, and probably a loop, you can do any size matrix.

Fall 2023

COSC 420 Homework #4: MPI Ezercises

2. Once the matrix multiplication is working well we will now use it to do an empirical
connectivity experiment in graph theory. Consider the following digraph.

(o)

The adjacency matrix for this graph is

010110
001010
000001

A=lo1011
000001

0000 0 0

where a 1 means that there is an edge going from the row number node to the column
number node. So the 1 in the (1,2) position means that there is an edge from node 1
to node 2. Note that column 1 is all zeros meaning that there is no edge coming into
node 1 and the zero row at the bottom means that there are no edges coming out of
node 6. Now if we square A we get,

A2 =

O OO OO OO
O OO o oo
O OO O OoONN
SO OO OO
SO OO O NN
SO N O NN

This means that you can get from node 1 to node 3 in two steps (the power of A) and
that there are two ways to do that, paths 1-2-3 and 1-4-3. Also note that there is no
way to get from nore 4 to node 5 in 2 steps.

Fall 2023 3

COSC 420 Homework #4: MPI Ezercises

A =

O OO O OO
O OO o oo
O OO o oo
SO OO OO
SO OO OO
O OO OO

This says there are 4 ways to get from node 1 to node 6 in three steps. But no other
node pair are connected with three steps.

=

I
O OO OO OO
O OO OO oo
O OO o OO
OO OO oo
SO OO OO
OO OO OO

This says there is no way to get from any node to any other node in 4 steps. Since A",
for n > 4, is also the zero matrix, there is no way to get from any node to any other
node in more than 4 steps.

If we add all these together we get,

01 2136
001012
000O0O0T1
001013
000O0O0T1
00 0O0O0O

So any nonzero entry means that you can get from the row node to the column node
and a zero means that there is no way to get from the row node to the column node.
Furthermore, it tells you how many ways you can do it. For example, there are three
ways to get from node 4 to node 6 (paths 4-6, 4-3-6, and 4-5-6). Also, there are no
paths that connect node 5 to 4.

Fall 2023 4

COSC 420 Homework #4: MPI Ezercises

In the case of an undirected graph, like below, our adjacency matrix will be symmetric.

7

The adjacency matrix for this graph is

SO =R O = O
_ O = O = O
_ = O = O =
_ O = O = =
O = = = O O

Then

N = WD W
= W= W o N
DN DN > = W
N N RN JURIS N
W = DN = NN

and

O © = ©
—_
o = O

Tt J O = J &
—_
)

B O 00 N~
ST R RN
NGNS IR NS

|
O O

which shows us that within three moves we can get from any node to any other node.
In fact, had we taken the sum of A and A? we would have,

Fall 2023 5

COSC 420 Homework #4: MPI Ezercises

A+ A? =

N WN NN W
DN W Wi
DN W N W N
W W k=N W
DN = W W N W
W DN W DN N

which says that we can get from any node to any other node in one or two steps. With
larger matrices these values can get very large very quickly. If you are not worried
about how many pathways you can take from node to node, just if there is at least
one, then you can replace all the non-zero numbers in the matrix by 1 and still get the
same connectivity information. Specifically, if you start with an adjacency matrix A
and compute A2, then the non-zero entries represent nodes connected by two steps. If
you take A2 and replace all the non-zero entries with 1, call that matrix B. Then AB
will have the same non-zero entries as A% does. Hence AB and A? both have non-zero
entries for all nodes that are connected by three moves.

In general to empirically determine if two nodes ¢ and j are connected we would take
the adjacency matrix and raise it to higher powers and look to see if the (7, j) entry is
non-zero. Equivalently, take any power result and replace all the non-zero entries by
1 and then multiply by A and continue. In addition, we can keep a running total by
adding the next result to an accumulation matrix like we did above. Specifically, we
could let C' be this matrix and each time we take another power of A add it on to the
current C'. In all we would have,

C=A+A2+ A3+ A* ...

Again the non-zero values of C' can be replaced by 1 to simply represent the existence
of a connection.

One question at this point is how many powers of the adjacency matrix do we need?
We will take a naive approach to this question. We know that A™ represents node
connections using n steps. If two nodes are connected then the path between them
will, at the very most, visit all the nodes of the graph. So if there are n nodes in the
graph by the time we calculate A™ we will have all the data we need. Another way to
look at this is that if we get a connection of two nodes from A™ where m > n then we
must have visited a node in that path at least twice, hence we went through a cycle
and we would have found an equivalent path without doing that cycle, and we would
have found it on some power of A that is less than or equal to n.

The program we will write is going to simulate large directed and undirected graphs.
Use this empirical method discussed above to determine connectivity and calculate the
amount of connectivity of disconnectivity under different edge densities. Specifically
the program should,

(a) Ask the user for the number of nodes in the graph.
(b) Ask the user if they want to use a directed or undirected graph.

Fall 2023 6

COSC 420

Homework #4: MPI Exercises

()

Ask the user the node density to use. There are lots of ways to do this but here
is one. Have the user input the density as a decimal number from 0 to 1. If there
are n nodes then the adjacency matrix will be n x n and hence have a possibility
of n? matrix entries, i.e. n? possible edges. So if we think about the density
number as the fraction of full edges we could just take the input density times n?
and put that many edges, at random, into the matrix. This will be executed a bit
differently depending on wether or not the graph is a digraph. If it is a digraph
then we would proceed as above. If it is an undirected graph then we would put
half this many in the upper triangular portion and then its mirror image in the
lower triangular portion. This can be done, of course, at one time, if we select
the (i, j) position at random then we also put a 1 in the (j,7) position.

For example, say that we have 5000 nodes and the user selects a density of 0.2591.
Then we would calculate 5000? - 0.2591 = 6,477,500, so we will insert 6,477,500
edges into a directed graph graph at random. If we are using an undirected graph
we would put in 3,238,750 random edges in two locations that are mirror images
of each other. This may seem like a lot but it is 25.91% of the total possible edges.

We do not want to overwrite a new edge into a position of an edge that has already
in the graph, so if an entry we want to set to 1 is already 1 we will simply choose
another random edge to insert. There is one special case when working with the
undirected graph, if you put an edge on the diagonal (representing a loop at a
vertex), there is no mirror image. Since these will be relatively few in number we
will not worry about its mirror image.

Ask the user the number of trial simulations they want to do with these attributes.

Run this number of trials on the given number of nodes, graph type, and edge
density. For each trial find the percentage of node pairs that are disconnected.
Take the average of these disconnected percentages and output it to the console.

The program should, of course, use as much parallelism as possible. From your
matrix multiplication code you will be able to calculate A™ in parallel. You also
have other operations such as addition, possibly transpose, truncation to 1’s, and
counting that can easily be divided up to several processors.

As usual, test this on small graphs to verify the calculations are correct as well as
on a serial version of the program. When you deal with very large matrices you
will probably want to not do the serial version, so maybe allow the user to turn
this on or off.

Run this program on various size graphs and various density settings. What do
you notice about the correspondences?

Put timing around the serial and parallel versions of the program and run moder-
ate size tests to determine if your algorithms are strongly scalable, weakly scalable,
or neither.

Fall 2023

