
MATH/COSC 482 Homework #6: Lighting & Materials

1 Introduction

As usual, zip the project directories into one zip file. Upload the zip file to the Homework
#6 page of the MyClasses site for this class. These exercises are extensions of the multiple
point lights example. Each exercise should have three light sources with one that is movable
with the UI, as in the multiple point lights example.

This exercise set was inspired by the old Frankenstein films with all the electronic fire-
works on the set of the laboratory.
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2 Exercise #1

This exercise is to create 4 towers on a plane. The plane is on the xz-plane and is a dull
green material. The towers are a sequence of 7 tori that are stacked on top of each other and
getting smaller as they go up. The material for the tori is a dull blue. The top is a sphere
with material a dull dark grey. Note that none of these colors are predefined.

The UI should have all the options as in the multiple point lights example. Specifically,

• User Options — Keys

– Escape: Ends the program.

– C: Toggles between the two cameras.

– O: Toggles between outline and fill mode for the box and cube objects.

– L: Toggles the drawing of the axes.

– K: Toggles the drawing of the light position.

– F1: Draws in fill mode.

– F2: Draws in line mode.

– F3: Draws in point mode.

– F4: Toggles between 60 FPS and unlimited FPS.

– F12: Saves a screen shot of the graphics window to a png file.

• If the spherical camera is currently selected,

– If no modifier keys are pressed:

∗ Left: Increases the camera’s theta value.

∗ Right: Decreases the camera’s theta value.

∗ Up: Increases the camera’s psi value.

∗ Down: Decreases the camera’s psi value.
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– If the control or Z key is down:

∗ Up: Decreases the camera’s radius.

∗ Down: Increases the camera’s radius.

• If the yaw-pitch-roll camera is currently selected,

– If no modifier keys are pressed:

∗ Left: Increases the yaw.

∗ Right: Decreases the yaw.

∗ Up: Increases the pitch.

∗ Down: Decreases the pitch.

– If the control or Z key is down:

∗ Left: Increases the roll.

∗ Right: Decreases the roll.

∗ Up: Moves the camera forward.

∗ Down: Moves the camera backward.

– If the shift or S key is down:

∗ Left: Moves the camera left.

∗ Right: Moves the camera right.

∗ Up: Moves the camera up.

∗ Down: Moves the camera down.

• If the alt or X key is pressed the spherical camera that is attached to the light is
altered:

– Left: Increases the light’s theta value.

– Right: Decreases the light’s theta value.

– Up: Increases the light’s psi value.

– Down: Decreases the light’s psi value.

– (control or Z) + Up: Decreases the light’s radius.

– (control or Z) + Down: Increases the light’s radius.

• User Options — Mouse

– If the spherical camera is currently selected,

∗ If no modifier keys are pressed and the left mouse button is down a move-
ment will alter the theta and psi angles of the spherical camera to give the
impression of the mouse grabbing and moving the coordinate system.

∗ If the control key is down and the left mouse button is down then the camera
will be moved in and out from the origin by the vertical movement of the
mouse.
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∗ If the wheel is moved then the camera will be moved in and out from the
origin by the amount of the wheel movement.

– If the yaw-pitch-roll camera is currently selected,

∗ If no modifier keys are pressed and the left mouse button is down a movement
will alter the yaw and pitch angles of the camera.

∗ If the control key is down and the left mouse button is down then the camera
will be moved forward and backward by the vertical movement of the mouse.

∗ If the shift key is down and the left mouse button is down then the camera
will be moved right and left as well as up and down.

∗ If the shift and control keys are down and the left mouse button is down then
the camera will roll.

∗ If the wheel is moved then the camera will be moved forward and backward
by the amount of the wheel movement.

3 Exercise #2

This exercise will add onto the last one. We will add in some materials animation. This
program will make each of the tori and then the spheres glow red. The red will fade in and
fade out on the bottom level of tori then the red glow moves up to the second level tori,
then the third, and so on up to the spheres. Then the process will repeat. Each fade in and
fade out will take exactly one second on each level. The speed should be the same no matter
what the FPS is. The user interface should be the same as with the previous exercise.
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4 Exercise #3

This exercise will add onto the last one. In this exercise when the top spheres are doing
their glow fade in and out there are random lasers between the spheres. On each frame two
spheres are chosen at random and for that frame a laser beam will be between those two
spheres.

To make this happen create a cylinder class that creates a cylinder with one end at the
origin and it moves along one of the coordinate axes. Have the class take as parameters the
radius of the cylinder and the length. Also have as parameters the number of divisions in
each direction as well a beginning and ending angles to the curved portion of the cylinder,
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this will allow the construction of a partial cylinder, like a trough.

Load only one cylinder into the graphics engine and use transformations to move and
position the laser beam. The user interface should be the same as with the previous exercises.

5 Exercise #4

This exercise will add onto the last one. With this exercise the laser beams are produces at
each level as long as the level is in its fade in and fade out glow stage. The beams should
be at a height in the middle of the stage that is glowing. The user interface should be the
same as with the previous exercises.
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6 Challenge Exercise: Optional for Extra Credit

Read the handout Visual Simulation and Rendering of Lightning by Samuel Atkinson and
Ian Chamberlain which is at the end of this document. Concentrate on the first three section
on the creation of the model. The sections on rendering will not apply to us since they are
implementing the model in a ray tracer and not a real-time system like what we are working
with.

Our goal is to create a spark-like animation between two spheres. We will do this in three
stages. First we will develop a simple single branch lightning, the “Downward Leader”. Then
we will add in branching and finally put it into an on/off animation. The user interface should
be the same as with the previous exercises.

6.1 Exercise #5a

Create a spark class that takes as parameters the starting point, ending point, color, maxi-
mum segment angle, and the mean segment length. Use their algorithm to generate a series
of lie segments from the beginning point to the end point. These are all the parameters
we will need at this point, when we include the branching we will add in the other options.
Since this is simply a sequence of line segments it is better to draw it using the same shader
as you use for the axes.

In the algorithm I made a couple changes. The algorithm is essentially to model lightning,
the spark is lightning with a target. While their algorithm does get close to a target it is
not set up to hit the target directly. In fact, the larger the segment angle and the longer the
trek the more variability is introduced and the further away from the target the bolt ends.
Here are the alterations that should be made.

• The rotation normal vector is set randomly at each segment, instead of being fixed.

• To make the target hit, instead of fixing the direction as the original direction from
the starting point to the ending point, we reset the direction at each segment to be the
direction from the current position to the ending point. If we were modeling lighting
it would be better not to do this as it has a tendency to smooth out the general curve.

• I changed the stopping condition from their condition to the distance between the
current segment and the end being less than the mean segment length.

As for the rest of the scene, simply have two spheres on top of two cylinders. The spheres
are lighter then in the last exercises and you can make them pewter. The cylinders are blue
plastic but fade in and out with bright blue every three seconds. The base plane is the same
dull green as in the previous exercises. In addition, the spark will reset to a new random
spark every quarter of a second.

For those who have read about random walks, this algorithm (using a simple single branch
lightning, the “Downward Leader”) is really just a 3-D targeted or controlled random walk.
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The one in the images was created with a maximum segment angle of 60 degrees and a mean
segment length of 0.01.

6.2 Exercise #5b

The second stage is to add in branching. This can be done easily by making the random walk
recursive. So in the construction of the path you create a random number between 0 and 1
and test to see if that number is less than the probability of creating another branch. If it
is then you create new beginning and ending points and recurse into the creation program
again. I also included a parameter that tracked the level of recursion and kicked out at 6,
that is, I allowed 5 recursive calls at most. Specifically,

• The class constructor will need to add in parameters for the branching probability, the
maximum branching angle and the mean branching length.

• In the recursive construction function.

– It brings in as parameters the starting and ending positions, the segment length,
the branching probability, and the recursion level (which I start at 0). The initial
values are those given from the class constructor.

– If the recursion level is above 5 we simply return and add no more branches.

– If our random test number is less than the branching probability we do the fol-
lowing.

∗ Create a random rotation vector.

∗ Create a random rotation angle between negative the maximum branching
angle and positive the maximum branching angle.
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∗ Rotate the current direction vector around this vector by the angle.

∗ Create a random branch length that is between 0 and twice the mean branch-
ing length.

∗ Scale the rotated vector to this length and add the current segment position.
This will calculate the end of the branch and the current segment position is
the start of the branch.

∗ Now recurse into the function again using the calculated start and end points
for the branch. the recursion level should be increased by 1. The segment
length parameter is halved on each recursive call as is the branching proba-
bility.

• One other change I made was in the initial call to the recursive function, which is
not made in the recursive steps. Since this branching depends on the direction of the
spark, and the spark could move in either direction, we randomly switch the direction
half the time.

The one in the images was created with a maximum segment angle of 60 degrees, a mean
segment length of 0.1, a branching probability of 0.1, a maximum branch angle of 20 degrees,
and a mean branch length of 0.5.

6.3 Exercise #5c

This addition is an easy timing animation. The program will randomly select an amount
of time the spark is on, between 0.25 and 0.5 seconds. Then a time it is off in the same
range, then back on, and so on. This will simulate a spark between the two spheres but
continuously. The spark should still recreate every fifth of a second. If you do not get the
branching program to work you can still do this with the first non-branching program.
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Visual Simulation and Rendering of Lightning 
 

Samuel Atkinson                              Ian Chamberlain 
 

 
Figure 1, a sequence of frames from a lightning video export. 

 

ABSTRACT 
In this paper, we describe a method for visually simulating and           
rendering a strike of lightning. Using the random properties of          
lightning in conjunction with the tendency to strike nearby solid          
objects, a series of segments representing a lightning strike is          
constructed. Once the lightning shape has been described, it is          
rendered with a ray tracing algorithm based on the distance          
between the ray and each segment. Combining these methods,         
realistic images and videos of a lightning strike can be rendered.  

1. INTRODUCTION 
Methods of simulating and rendering lightning require more        
complexity than most other physical objects because of the nature          
of lightning formation and its material composition. Physically        
accurate simulation would require known properties of the air and          
electric fields in surrounding areas as well as the material          
properties of the endpoints of the discharge [1]. Visually         
acceptable simulations can instead use known models of electric         
discharge to estimate the movement and formation of lightning.  

Using observed properties of lightning greatly simplifies the        
calculations needed to render visually appealing lightning [2].        
Instead of simulating the physical properties of electrical        
discharge, pseudorandom generators can be used to generate        
segmented meshes that appear accurate.  

Another important component in the rendering of visually        
appealing lightning is the actual light generated by the plasma          
during a strike. In addition to standard light that is generated by            
the main channel of the lightning strike, there is also a fairly            
strong glowing effect that occurs in the area around each segment.  

2. RELATED WORK 
Previous work on simulating and rendering lightning has fallen         
under one of two categories: physically-accurate or       
non-physically-accurate. Because computer graphics often strives      
to recreate or accurately simulate real-world phenomena,       
physically-accurate simulations utilize a known physical model       
called the Dielectric Breakdown Model (DBM). Kim and Lin [3]          
present such a method. Using the DBM for the electric pattern and            
the Helmholtz Equation for extended animation, a       
physically-accurate recreation of lightning can be created. On the         
contrary, Reed and Wyvil [1] present a method for simulating          
lightning using a random lightning stroke progression without the         
DBM. 

3. LIGHTNING GEOMETRY 
Our proposed method of simulating and rendering lightning uses a          
non-physically-accurate model to create geometry. Using      
programmer-set properties and probabilities of a lightning strike,        
we decide how the computer will construct a random strike of           
lightning.  

Nearly all lightning has a jagged appearance and several branches,          
so we decided to represent a strike of lightning using a series of             
straight line segments making up a jagged lightning strike. In          
code, these segments are represented in the       
LightningSegment​ object.  

A strike of lightning usually consists of one main branch, or           
Downward Leader [4], which extends from the start point to the           
target. In many papers the Downward Leader is called the Stepped           
Leader [3]. Smaller branches extending from the leader are also          
commonly present. All branches, main and extended, are        
represented using a series of our lightning segment objects. 

This proposed method requires that the user provides a start point           
in the OBJ file of the scene, formatted as follows: 

l startX startY startZ 

The Downward Leader begins at the point ​(startX, 
startY, startZ)​ in world space. 

3.1 Lightning Segments 
A single lightning segment object contains several properties of         
its own in order to properly represent a portion of a strike of             
lightning. First, it stores its start and end points in world space            
using the ​glm::vec3 type. Second, it stores its radius as a           
floating point number. Third, the lightning segment stores a         
two-dimensional vector of points representing triangle vertices. 

The purpose of the start and end points is fairly obvious. Each            
segment represents a straight line within the larger jagged         
lightning strike, so the start and end points represent the line. The            
radius of the segment is stored for rendering purposes. Lightning          
branches usually become visibly thinner as they travel longer         
distances, so the radius is stored in order to represent the thinning            
characteristic. Triangle vertices are stored solely for the purpose         
of real-time rendering and debugging. Without using the        
ray-tracer functionality of our program, the programmer can        
visualize the general shape of a lightning strike in the scene.  

3.2 Properties of a Branch 
Determining the geometry of a random lightning strike requires         

 

 



setting several properties which will be followed during iterative         
construction of a branch of lightning.  

 
Figure 2, a single branch following set branch properties. 

Each branch has independent properties, and the methods for         
determining the values of such properties are explained in section          
3.2.  

A single branch of lightning in our implementation has the          
following properties:  

● Starting position 
● Direction  
● Distance 
● Starting radius 
● Branch probability 
● Mean branch length 
● Maximum segment angle 
● Mean segment length 
● Maximum branch angle 
● Rotation normal 

The above properties are used to construct a single branch of 
lightning from a series of straight lightning segments. Values 
chosen experimentally can be seen in Table 1. Pseudocode for the 
branch construction algorithm is provided below. 

input: the above branch properties 
output: a set of LightningSegment objects 

 
1.  next <- startingPos; 
2.  last <- startingPos; 
3.  radius <- startingRadius; 
4.  while​ distance(startingPos, next) < distance ​do 
5.    angle <- random less than maxSegmentAngle; 
6.    length <- random with meanSegmentLength; 
7.    next <- direction vector rotated by angle; 
8.    next <- next * length; 
9.    next <- next + last; 
10.    Add LightningSegment with radius, next, last; 
11.    HandleBranching(); 
12.    last <- next; 
13.    radius <- radius - radiusDelta; 
14.  ​end 

A few assumptions are made in the algorithm. In line 7, the 3-D             
rotation occurs along the rotation normal in the listed properties.          
In line 5, the angle can be positive or negative; it must be less than               
the absolute value of the maximum segment angle. In line 6, the            
length is always positive. It is in the range [0,          

meanSegmentLength*2] so that the mean of the length is the          
appropriate mean segment length. The ​HandleBranching      
function takes in the branch probability, maximum branch angle,         
mean branch length, and the ​next​ variable.  

The above algorithm ensures that a branch is randomly         
constructed following the properties set by the programmer. Each         
iteration of the while-loop creates a single segment in the branch.           
A single jagged branch of lightning represented by a set of           
segments is added to the scene if the branch probability is set to             
zero, and a complex lightning strike is added to the scene if            
branch probability is non-zero.  

3.3 Branching 
Branches of lightning are added to the scene in line 11 of the             
pseudocode in section 3.3. Inside of the ​HandleBranching        
function of the pseudocode is a call back to the branch           
construction function in which it is contained. Recursive        
construction of the lightning makes it easier to ensure that the           
properties of each branch are derived from the parent branch and           
makes it easier to create several levels of branching.  

 
Figure 3, a strike of lightning with several branches. 

In order to ensure the construction will not run infinitely, two           
checks are made before a branch is constructed. The first check is            
meant to simply obey the branch probability property of the          
branch. A random number in [0,1] is computed and the branching           
function only proceeds if the number is less than the branch           
probability. Second, the branch algorithm checks if the branch         
probability is greater than a minimum probability constant. This         
ensures that branches will not continue to be created in low-level           
branches.  

Table 1, branch properties and multipliers. 

Property Starting 
Value 

Branch Multiplier 

Radius 0.05 0.5 

Branch Probability 0.2 0.8 

Mean Branch Length 0.8 0.5 

Max. Segment Angle 30° 1.3 

Mean Segment Length 0.08 1.0 

 

 



Max. Branch Angle 50° 1.0 

Rotation Normal vec3(0,0,1) 1.0 

 

After the checks have passed, our algorithm uses a method similar           
to the provided pseudocode to determine a new angle and distance           
for the branch. These are computed using the provided mean          
branch length and maximum branch angle properties. When the         
new angle and distance is known, a call is made to the main             
branch construction algorithm to start creating a new branch off of           
the parent segment. In the new child branch, the branch          
probability and mean branch length are decreased relative to the          
parent and the maximum segment angle is increased relative to the           
parent. Multipliers for constants during the branching process can         
be seen above in Table 1. These multipliers ensure that the           
branches are shorter than the parent and that the algorithm will           
terminate. 

3.4 Striking a Target 
As mentioned in section 3.1, the Downward Leader of the          
lightning is the main branch of a lightning strike and determines           
the overall direction preference of all of the branches. In code, the            
Downward Leader branch has a decreased maximum segment        
angle in order to ensure that it will indeed travel the desired            
distance at the desired direction.  

Lightning strikes usually occur between areas of different electric         
charge, however in our simulation the complexity of setting up          
such a scenario caused us to rethink how to choose a target for the              
lightning strike. Instead of always striking the ground or always          
travelling straight down from the start point, we included an          
algorithm in our implementation to determine the closest point on          
a primitive object.  

In test scenes, we only used spheres as primitive objects. Our           
method will check the dimensions of every sphere in the scene,           
checking the center point in space as well as the radius to            
determine which contains the closest point. Once a point is          
known, the direction vector for the Downward Leader is set to a            
unit vector in the direction of the point. The distance of the leader             
is set to the distance between the lightning starting point and the            
closest primitive point. 

4. RENDERING 
In order to render the lightning, rays are cast out from the camera             
to render the scene using standard ray tracing methods. There are           
three main components of the lightning that are added to the final            
color value for each ray: the light source, main channel color, and            
the glow effect. 

4.1 Lightning as a Light Source 
The first significant component for rendering the lightning is to          
treat it as a light source. Initially, each segment was treated as a             
point light source, as in [1]. For each ray, then, a shadow ray is              
cast toward the midpoint of each lightning segment. This method          
results in fairly convincing shadows, due to the typically high          
number of segments. In order to improve appearance and allow          
for soft shadows, our model was extended to use Monte Carlo           
sampling along the length of each segment. In this case, several           
shadow rays are cast towards uniformly distributed points along         
the length of each segment, and the resulting light contribution is           
averaged for the pixel being rendered. 

4.2 Rendering the Main Channel 
Each ray’s color has a contribution determined by its distance          
from each segment in the lightning model. This distance         
calculation is the primary bottleneck in rendering the lightning,         
since for ​n segments and ​r rays cast there must O(​nr​) distances            
computed. Section 4.4 describes one optimization, as described in         
[1], for reducing the number of calculations required in each step. 

The lightning contributions for a specific ray can be described as           
the following [1]: 

eI total = ∑
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With variables: 

● I​ – the main channel contribution for the ray 
● m​i​ ∈ [0, 1] – the maximum contribution for segment ​i 
● d​i​ – the minimum distance from the ray to segment ​i 
● w​i​ – half the width of lightning channel for segment ​i 
● n​i > 1 – a “sharpness” value that describes the contrast          

between the background and the segment 

In practice, we used ​m​i = 1.0 and ​n​i = 6.0, with ​w​i determined              
according to the radius described in section 3.3. 

4.3 Rendering the Glow Effect 
Most images of lightning show a softer glowing effect         
surrounding the main channels of a segment. This glowing effect          
can be described similarly to the main channel, by the following           
equation [1]: 
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Where all variables are as in section 4.2, except 

● G​ – the glow contribution for the ray 
● g ​– the maximum glow contribution 
● l​i​ ∈ [0, 1] – a factor based on the brightness of the 

segment 
● W​ – half the width of the glow effect 

In practice, we used ​g​ = 0.08, ​l​i​ = 1.0, with ​W​ = ​w​i​ * 3.0. ​W​ was 
also clamped to a minimum value of 0.08. 

4.4 Rendering Optimization 
As suggested in [1], this rendering equation can be optimized          
somewhat by limiting the position of branches to lie in a single            
plane. With this method, the calculation is simplified somewhat         
– simply finding the intersection of the plane and the cast ray           
allows us to compute the point-segment distance with fewer         
calculations. Although this optimization does not reduce the        
number of iterations required during the computation, it does         
reduce the number of operations per iteration. It may be possible           
to optimize the rendering process further with parallelization or         
hardware ray tracing.  

5. IMAGE AND VIDEO OUTPUT 
During the debugging process, we found that rendering using the          
provided OpenGL ray-tracing result geometry was slower than we         
would have liked. In order to speed up the process, we           
implemented direct ray-traced image and video output from the         
current OpenGL window scene and bypassed rendering the        

 

 



ray-traced pixel geometry in the window.  

Image output was done using the simple PPM image format.          
When the “y” key is pressed on the keyboard, an algorithm will            
traverse every pixel in the OpenGL window to retrieve a color           
value from the scene. Instead of then adding pixel geometry to the            
window, our method stores the color directly in a PPM file.           
Conversion from linear colors in [0,1] to PPM RGB [0,255] must           
take place between ray-tracing and storing. In some cases, we          
encountered a bug where the linear color was greater than 1,           
causing a value greater than 255 to be stored in the PPM file. This              
creates an overflow because the PPM expects a non-negative         
value less than 255. Before fixing the error, image output          
consistently appeared similar to Figure 4, below. 

 
Figure 4, PPM output error. 

After recognizing and resolving the error, PPM output works as 
expected.  

Video rendering was accomplished by rendering a series of 
images and exporting them to PPM. To achieve the effect of an 
actual lightning strike traveling from start point to target point, the 
segments generated in the original construction of the mesh are 
divided into small groups. Starting with zero segments in the 
scene, an image of the scene is exported using the previously 
explained PPM method. For each group of segments, the group is 
added to the scene and a new PPM image is rendered. This 
continues until all available segments have been added to the 
scene. In order to convert the series of PPM images into a video 
file, the following command is executed: 

ffmpeg -f image2 -r 30 -i ./out/out%d.ppm 
-vcodec mpeg4 -q:v 1 -c:v libx264 -y out.mp4 

An example of the video output results can be seen in Figure 1.             
Several frames of the video are skipped in the figure, but it shows             
the basic progressive construction of the lightning strike shown in          
a video. 

6. CHALLENGES 
We encountered several challenges during the development       
process. While many were small and relatively straightforward to         
resolve, some prevented development of pieces of functionality.  

6.1 Combining Geometry and Lighting 
In order to start the project, we decided to take on different            
aspects of the project. One of us started implementing the          

geometry of the lightning and other focused on the lighting and           
glowing effects of the lightning. Both aspects of the lightning          
simulation were separated into entirely different code bases and         
programs.  

 
Figure 5, initial geometry program output. 

The lightning geometry portion was created as an extension of 
Homework 2 because it provided a straightforward interface for 
adding new geometry to the mesh in the scene. It only includes 
one piece of floor geometry and a point light source at the start of 
the lightning strike. The start point and direction of the lightning 
were hard-coded into the program. Output of the initial geometry 
program is scene above in Figure 5.  

The lighting and glow portion of the project was created as an 
extension of Homework 3. Output of the initial lighting program 
is shown below in Figure 6. In this example, only the main 
channel of simple lightning geometry is shown – there is no glow 
effect applied to the ray tracer yet. 

 
Figure 6, initial lighting program output. 

The two portions of the assignment were combined in week 2.           
Because they were based on different code bases, combination         
was not trivial. The line segments in the original lighting code           
appeared in the ray-traced scene but not the OpenGL scene          
because they were not created as geometry. In the original          
geometry code, the lightning existed solely as geometry.  

Lightning segments in the scene cannot be intersected by the          
ray-tracer in the same way as other geometry because of the           
lighting aspect. The width and glow radius of the lightning          
segments are variable and can be so thin that they do not appear in              

 

 



the OpenGL scene. For this reason, lightning geometry could not          
simply be added to the mesh in the scene as originally done.  

Instead, lightning geometry is added to the scene only via direct           
OpenGL calls and is stored in a separate lightning segment          
structure. When ray-tracing starts, the ray-tracer asks directly for         
the lightning segments stored in the custom structure instead of          
polling lightning geometry in scene mesh. The result of         
combining the two implementations can be seen in Figure 2.  

6.2 Creating a Realistic Scene 
In order to create a realistic test scene, we needed to use two PPM              
images as textures in our scene. Using the original code from           
Homework 3, two images are not allowed to be used as textures.            
In our first attempt to add two materials to a scene OBJ file, our              
program crashed at execution with an assertion violation. In the          
radiosity code, the number of textured materials is limited to one           
in order to prevent bugs in radiosity lighting. Since we chose not            
to light the scene using radiosity, simply removing the assertion          
sufficed.  

6.3 Variable Width Segments 
In order to give lightning a more realistic appearance, some          
branch segments must appear to have a smaller width than parent           
branches. For example, in Figure 3, every branch in the lightning           
contains segments of the same width. It appears unrealistic         
because real lightning tends to have visibly thinner branches from          
the Downward Leader.  

We learned, however, that variable width segments do not appear          
realistic when they are contained within a single branch. In Figure           
5, a single branch of lightning appears to start thick and strike the             
target with thinner segments. This is unrealistic because a         
Downward Leader always appears to have a uniform width when          
it strikes a target and electric charge flows through the air.  

We achieved variable width segments through modifications in        
the random geometry generation and the lighting effects. When         
the lightning geometry is created, each recursive branch is created          
with a slightly smaller width than its parent. This width is stored            
in the ​LightningSegment object. When the ray-tracer iterates        
through each segment of lightning during rendering, it adjust the          
visible width of the segment as well as the glow radius in relation             
to the segment object’s assigned width.  

7. RESULTS 
We believe our method of simulating and rendering simple         
lightning works well and is comparable to to previous methods.  

7.1 Realism 
In order to test the visual accuracy of our method, we created            
scenes similar to real photographs and placed one of our          
randomly-generated lightning strikes in the scene.  

 

Figure 7, comparison of real vs. rendered lightning. 

Figure 7 shows a comparison between a real photograph of a           
lightning strike on water and a rendered image using our method           
which replicates the scene. Notable differences between the        
images include the purple tint of the lightning in the photograph           
and the dimmed light emitted by branches far from the Downward           
Leader.  

 
Figure 8, two lightning strikes in an image. 

Our method also has the ability to produce scenes with more than            
one lightning strike. The user must only add another starting          
position to the OBJ file and a second strike will target the nearest             
sphere. In Figure 8, two lightning strikes in the scene each target            
the closest sphere. 

7.2 Performance 
While sufficiently realistic, our method requires more time to         
render than comparable scenes from Homework 3. For example,         
in Figure 8, the scene contains 417 lightning segments. At          
700x700 resolution, the scene took 302.87 seconds (just over 5          
minutes) to render on a computer with an Intel i7-4600U. Our           
method is not parallelized, so rendering uses only one core of the            
CPU’s available four.  

Rendering an animation is similarly computationally-expensive,      
but the first few frames of the animation render relatively quickly           
due to the absence of most branch segments. In tests, an animation            
consisting of 45 individual images took 48 minutes and 51          
seconds to render entirely.  

In both image and video rendering, we used the PPM export           
method described in section 5 to output to storage. Compared to           
OpenGL pixel geometry originally used in Homework 3, our         
render times improved. Our results for pixel geometry vs PPM          
rendering time are shown in Table 2, below.  

Table 2, compared image rendering times. 

Image Resolution Pixel Geometry PPM 

100 x 100 3.75s 3.10s 

300 x 300 27.73s 20.90s 

600 x 600 167.51s 95.06s 

 

 



 
7.3 Known Bugs 
While our program has never crashed in its final form, there are            
some bugs that impede the ability to insert our lightning into any            
scene. 

At the start of the geometrical construction of the lightning strike,           
the closest primitive in the scene is chosen as the strike target.            
Currently, our implementation only works with spheres or manual         
directions. If there are no spheres and the programmer does not           
provide a direction for the lightning to travel, it will always travel            
towards the origin of worldspace.  

 
Figure 9, a lightning strike with not enough branches. 

Random numbers also cause bugs in our implementation. During         
some random iterations of mesh construction, nearly no branches         
will be formed due to the tendency of our random number           
generator. This can be seen in Figure 9. During other iterations,           
the lightning strike will consist of too many branches at a high and             
unrealistic density. 

The nature of the rendering algorithm adds lighting contributions         
from each segment in the image. For this reason, overly bright           
images can be obtained with fairly small modifications to the          
scene parameters. Additionally, the segmented nature of lightning        
typically results in very hard shadows, even when several shadow          
rays are cast uniformly along each segment. 

8. CONCLUSION 
We believe our method of simulating and rendering lightning is          
visually realistic. Lightning and glowing effects of real lightning         
show in our implementation and the geometry is randomly         
created, as in real lightning. Our method also has the functionality           
to render animations of lightning strikes and supports multiple         
strikes in a single image. Although it is somewhat slow to render,            
we believe there is room for improvements in optimization in the           
future. 

8.1 Division of Work 
Most of the work on this project was split into two parts:            
geometry and lighting effects.  

Sam worked on the lightning geometry, image and video output,          

and scene creation. He spent about 15 hours on the project, not            
including this paper. 

Ian implemented the rendering and raytracing aspects of the         
project. This involved extending the existing ray tracer to account          
for lighting along lightning segments. adding channel light and         
glow, and optimizing the ray tracer calculations. His contribution         
totalled about 12 hours. 

8.2 Future Work 
While our method does produce visually realistic results, it does          
so slowly. The more lightning segments are in the scene, the           
longer the rendering process takes. Future work on this project          
would focus on optimizing the ray-tracing process to improve         
render times.  

To improve on realism, a few modifications could be made. First,           
the random number generator could be improved for consistency         
in branching and angles. Second, the branching algorithm could         
be extended to allow for more smaller branches on the end of            
large branches. This was difficult to implement in our experience          
because the program would either run forever or take several          
minutes to create the lightning geometry, consisting of sometimes         
hundreds of thousands of lightning segments. Third, the lightning         
geometry algorithm could be improved to allow for higher         
probabilities of branching at different parts of the Downward         
Leader. Last, the target selection algorithm could be improved to          
work with more primitive shapes than just spheres.  

The rendering optimization described in [1] helps improve        
rendering time somewhat, but does not significantly reduce the         
number of iterations required in each ray tracing step.         
Unfortunately, since the lightning components are not mesh        
objects, many standard optimizations for ray tracing cannot be         
used to improve performance of this algorithm. However, it may          
be possible to greatly improve performance by parallelizing the         
contribution of each segment. 
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