
MATH/COSC 482 Homework #6: Lighting & Materials

1 Introduction

As usual, zip the project directories into one zip file. Upload the zip file to the Homework
#6 page of the MyClasses site for this class. These exercises are extensions of the multiple
point lights example. Each exercise should have three light sources with one that is movable
with the UI, as in the multiple point lights example.

This exercise set was inspired by the old Frankenstein films with all the electronic fire-
works on the set of the laboratory.

Spring 2022 1

MATH/COSC 482 Homework #6: Lighting & Materials

2 Exercise #1

This exercise is to create 4 towers on a plane. The plane is on the xz-plane and is a dull
green material. The towers are a sequence of 7 tori that are stacked on top of each other and
getting smaller as they go up. The material for the tori is a dull blue. The top is a sphere
with material a dull dark grey. Note that none of these colors are predefined.

The UI should have all the options as in the multiple point lights example. Specifically,

• User Options — Keys

– Escape: Ends the program.

– C: Toggles between the two cameras.

– O: Toggles between outline and fill mode for the box and cube objects.

– L: Toggles the drawing of the axes.

– K: Toggles the drawing of the light position.

– F1: Draws in fill mode.

– F2: Draws in line mode.

– F3: Draws in point mode.

– F4: Toggles between 60 FPS and unlimited FPS.

– F12: Saves a screen shot of the graphics window to a png file.

• If the spherical camera is currently selected,

– If no modifier keys are pressed:

∗ Left: Increases the camera’s theta value.

∗ Right: Decreases the camera’s theta value.

∗ Up: Increases the camera’s psi value.

∗ Down: Decreases the camera’s psi value.

Spring 2022 2

MATH/COSC 482 Homework #6: Lighting & Materials

– If the control or Z key is down:

∗ Up: Decreases the camera’s radius.

∗ Down: Increases the camera’s radius.

• If the yaw-pitch-roll camera is currently selected,

– If no modifier keys are pressed:

∗ Left: Increases the yaw.

∗ Right: Decreases the yaw.

∗ Up: Increases the pitch.

∗ Down: Decreases the pitch.

– If the control or Z key is down:

∗ Left: Increases the roll.

∗ Right: Decreases the roll.

∗ Up: Moves the camera forward.

∗ Down: Moves the camera backward.

– If the shift or S key is down:

∗ Left: Moves the camera left.

∗ Right: Moves the camera right.

∗ Up: Moves the camera up.

∗ Down: Moves the camera down.

• If the alt or X key is pressed the spherical camera that is attached to the light is
altered:

– Left: Increases the light’s theta value.

– Right: Decreases the light’s theta value.

– Up: Increases the light’s psi value.

– Down: Decreases the light’s psi value.

– (control or Z) + Up: Decreases the light’s radius.

– (control or Z) + Down: Increases the light’s radius.

• User Options — Mouse

– If the spherical camera is currently selected,

∗ If no modifier keys are pressed and the left mouse button is down a move-
ment will alter the theta and psi angles of the spherical camera to give the
impression of the mouse grabbing and moving the coordinate system.

∗ If the control key is down and the left mouse button is down then the camera
will be moved in and out from the origin by the vertical movement of the
mouse.

Spring 2022 3

MATH/COSC 482 Homework #6: Lighting & Materials

∗ If the wheel is moved then the camera will be moved in and out from the
origin by the amount of the wheel movement.

– If the yaw-pitch-roll camera is currently selected,

∗ If no modifier keys are pressed and the left mouse button is down a movement
will alter the yaw and pitch angles of the camera.

∗ If the control key is down and the left mouse button is down then the camera
will be moved forward and backward by the vertical movement of the mouse.

∗ If the shift key is down and the left mouse button is down then the camera
will be moved right and left as well as up and down.

∗ If the shift and control keys are down and the left mouse button is down then
the camera will roll.

∗ If the wheel is moved then the camera will be moved forward and backward
by the amount of the wheel movement.

3 Exercise #2

This exercise will add onto the last one. We will add in some materials animation. This
program will make each of the tori and then the spheres glow red. The red will fade in and
fade out on the bottom level of tori then the red glow moves up to the second level tori,
then the third, and so on up to the spheres. Then the process will repeat. Each fade in and
fade out will take exactly one second on each level. The speed should be the same no matter
what the FPS is. The user interface should be the same as with the previous exercise.

Spring 2022 4

MATH/COSC 482 Homework #6: Lighting & Materials

4 Exercise #3

This exercise will add onto the last one. In this exercise when the top spheres are doing
their glow fade in and out there are random lasers between the spheres. On each frame two
spheres are chosen at random and for that frame a laser beam will be between those two
spheres.

To make this happen create a cylinder class that creates a cylinder with one end at the
origin and it moves along one of the coordinate axes. Have the class take as parameters the
radius of the cylinder and the length. Also have as parameters the number of divisions in
each direction as well a beginning and ending angles to the curved portion of the cylinder,

Spring 2022 5

MATH/COSC 482 Homework #6: Lighting & Materials

this will allow the construction of a partial cylinder, like a trough.

Load only one cylinder into the graphics engine and use transformations to move and
position the laser beam. The user interface should be the same as with the previous exercises.

5 Exercise #4

This exercise will add onto the last one. With this exercise the laser beams are produces at
each level as long as the level is in its fade in and fade out glow stage. The beams should
be at a height in the middle of the stage that is glowing. The user interface should be the
same as with the previous exercises.

Spring 2022 6

MATH/COSC 482 Homework #6: Lighting & Materials

6 Challenge Exercise: Optional for Extra Credit

Read the handout Visual Simulation and Rendering of Lightning by Samuel Atkinson and
Ian Chamberlain which is at the end of this document. Concentrate on the first three section
on the creation of the model. The sections on rendering will not apply to us since they are
implementing the model in a ray tracer and not a real-time system like what we are working
with.

Our goal is to create a spark-like animation between two spheres. We will do this in three
stages. First we will develop a simple single branch lightning, the “Downward Leader”. Then
we will add in branching and finally put it into an on/off animation. The user interface should
be the same as with the previous exercises.

6.1 Exercise #5a

Create a spark class that takes as parameters the starting point, ending point, color, maxi-
mum segment angle, and the mean segment length. Use their algorithm to generate a series
of lie segments from the beginning point to the end point. These are all the parameters
we will need at this point, when we include the branching we will add in the other options.
Since this is simply a sequence of line segments it is better to draw it using the same shader
as you use for the axes.

In the algorithm I made a couple changes. The algorithm is essentially to model lightning,
the spark is lightning with a target. While their algorithm does get close to a target it is
not set up to hit the target directly. In fact, the larger the segment angle and the longer the
trek the more variability is introduced and the further away from the target the bolt ends.
Here are the alterations that should be made.

• The rotation normal vector is set randomly at each segment, instead of being fixed.

• To make the target hit, instead of fixing the direction as the original direction from
the starting point to the ending point, we reset the direction at each segment to be the
direction from the current position to the ending point. If we were modeling lighting
it would be better not to do this as it has a tendency to smooth out the general curve.

• I changed the stopping condition from their condition to the distance between the
current segment and the end being less than the mean segment length.

As for the rest of the scene, simply have two spheres on top of two cylinders. The spheres
are lighter then in the last exercises and you can make them pewter. The cylinders are blue
plastic but fade in and out with bright blue every three seconds. The base plane is the same
dull green as in the previous exercises. In addition, the spark will reset to a new random
spark every quarter of a second.

For those who have read about random walks, this algorithm (using a simple single branch
lightning, the “Downward Leader”) is really just a 3-D targeted or controlled random walk.

Spring 2022 7

MATH/COSC 482 Homework #6: Lighting & Materials

The one in the images was created with a maximum segment angle of 60 degrees and a mean
segment length of 0.01.

6.2 Exercise #5b

The second stage is to add in branching. This can be done easily by making the random walk
recursive. So in the construction of the path you create a random number between 0 and 1
and test to see if that number is less than the probability of creating another branch. If it
is then you create new beginning and ending points and recurse into the creation program
again. I also included a parameter that tracked the level of recursion and kicked out at 6,
that is, I allowed 5 recursive calls at most. Specifically,

• The class constructor will need to add in parameters for the branching probability, the
maximum branching angle and the mean branching length.

• In the recursive construction function.

– It brings in as parameters the starting and ending positions, the segment length,
the branching probability, and the recursion level (which I start at 0). The initial
values are those given from the class constructor.

– If the recursion level is above 5 we simply return and add no more branches.

– If our random test number is less than the branching probability we do the fol-
lowing.

∗ Create a random rotation vector.

∗ Create a random rotation angle between negative the maximum branching
angle and positive the maximum branching angle.

Spring 2022 8

MATH/COSC 482 Homework #6: Lighting & Materials

∗ Rotate the current direction vector around this vector by the angle.

∗ Create a random branch length that is between 0 and twice the mean branch-
ing length.

∗ Scale the rotated vector to this length and add the current segment position.
This will calculate the end of the branch and the current segment position is
the start of the branch.

∗ Now recurse into the function again using the calculated start and end points
for the branch. the recursion level should be increased by 1. The segment
length parameter is halved on each recursive call as is the branching proba-
bility.

• One other change I made was in the initial call to the recursive function, which is
not made in the recursive steps. Since this branching depends on the direction of the
spark, and the spark could move in either direction, we randomly switch the direction
half the time.

The one in the images was created with a maximum segment angle of 60 degrees, a mean
segment length of 0.1, a branching probability of 0.1, a maximum branch angle of 20 degrees,
and a mean branch length of 0.5.

6.3 Exercise #5c

This addition is an easy timing animation. The program will randomly select an amount
of time the spark is on, between 0.25 and 0.5 seconds. Then a time it is off in the same
range, then back on, and so on. This will simulate a spark between the two spheres but
continuously. The spark should still recreate every fifth of a second. If you do not get the
branching program to work you can still do this with the first non-branching program.

Spring 2022 9

Visual Simulation and Rendering of Lightning

Samuel Atkinson Ian Chamberlain

Figure 1, a sequence of frames from a lightning video export.

ABSTRACT
In this paper, we describe a method for visually simulating and
rendering a strike of lightning. Using the random properties of
lightning in conjunction with the tendency to strike nearby solid
objects, a series of segments representing a lightning strike is
constructed. Once the lightning shape has been described, it is
rendered with a ray tracing algorithm based on the distance
between the ray and each segment. Combining these methods,
realistic images and videos of a lightning strike can be rendered.

1. INTRODUCTION
Methods of simulating and rendering lightning require more
complexity than most other physical objects because of the nature
of lightning formation and its material composition. Physically
accurate simulation would require known properties of the air and
electric fields in surrounding areas as well as the material
properties of the endpoints of the discharge [1]. Visually
acceptable simulations can instead use known models of electric
discharge to estimate the movement and formation of lightning.

Using observed properties of lightning greatly simplifies the
calculations needed to render visually appealing lightning [2].
Instead of simulating the physical properties of electrical
discharge, pseudorandom generators can be used to generate
segmented meshes that appear accurate.

Another important component in the rendering of visually
appealing lightning is the actual light generated by the plasma
during a strike. In addition to standard light that is generated by
the main channel of the lightning strike, there is also a fairly
strong glowing effect that occurs in the area around each segment.

2. RELATED WORK
Previous work on simulating and rendering lightning has fallen
under one of two categories: physically-accurate or
non-physically-accurate. Because computer graphics often strives
to recreate or accurately simulate real-world phenomena,
physically-accurate simulations utilize a known physical model
called the Dielectric Breakdown Model (DBM). Kim and Lin [3]
present such a method. Using the DBM for the electric pattern and
the Helmholtz Equation for extended animation, a
physically-accurate recreation of lightning can be created. On the
contrary, Reed and Wyvil [1] present a method for simulating
lightning using a random lightning stroke progression without the
DBM.

3. LIGHTNING GEOMETRY
Our proposed method of simulating and rendering lightning uses a
non-physically-accurate model to create geometry. Using
programmer-set properties and probabilities of a lightning strike,
we decide how the computer will construct a random strike of
lightning.

Nearly all lightning has a jagged appearance and several branches,
so we decided to represent a strike of lightning using a series of
straight line segments making up a jagged lightning strike. In
code, these segments are represented in the
LightningSegment​ object.

A strike of lightning usually consists of one main branch, or
Downward Leader [4], which extends from the start point to the
target. In many papers the Downward Leader is called the Stepped
Leader [3]. Smaller branches extending from the leader are also
commonly present. All branches, main and extended, are
represented using a series of our lightning segment objects.

This proposed method requires that the user provides a start point
in the OBJ file of the scene, formatted as follows:

l startX startY startZ

The Downward Leader begins at the point ​(startX,
startY, startZ)​ in world space.

3.1 Lightning Segments
A single lightning segment object contains several properties of
its own in order to properly represent a portion of a strike of
lightning. First, it stores its start and end points in world space
using the ​glm::vec3 type. Second, it stores its radius as a
floating point number. Third, the lightning segment stores a
two-dimensional vector of points representing triangle vertices.

The purpose of the start and end points is fairly obvious. Each
segment represents a straight line within the larger jagged
lightning strike, so the start and end points represent the line. The
radius of the segment is stored for rendering purposes. Lightning
branches usually become visibly thinner as they travel longer
distances, so the radius is stored in order to represent the thinning
characteristic. Triangle vertices are stored solely for the purpose
of real-time rendering and debugging. Without using the
ray-tracer functionality of our program, the programmer can
visualize the general shape of a lightning strike in the scene.

3.2 Properties of a Branch
Determining the geometry of a random lightning strike requires

setting several properties which will be followed during iterative
construction of a branch of lightning.

Figure 2, a single branch following set branch properties.

Each branch has independent properties, and the methods for
determining the values of such properties are explained in section
3.2.

A single branch of lightning in our implementation has the
following properties:

● Starting position
● Direction
● Distance
● Starting radius
● Branch probability
● Mean branch length
● Maximum segment angle
● Mean segment length
● Maximum branch angle
● Rotation normal

The above properties are used to construct a single branch of
lightning from a series of straight lightning segments. Values
chosen experimentally can be seen in Table 1. Pseudocode for the
branch construction algorithm is provided below.

input: the above branch properties
output: a set of LightningSegment objects

1. next <- startingPos;
2. last <- startingPos;
3. radius <- startingRadius;
4. while​ distance(startingPos, next) < distance ​do
5. angle <- random less than maxSegmentAngle;
6. length <- random with meanSegmentLength;
7. next <- direction vector rotated by angle;
8. next <- next * length;
9. next <- next + last;
10. Add LightningSegment with radius, next, last;
11. HandleBranching();
12. last <- next;
13. radius <- radius - radiusDelta;
14. ​end

A few assumptions are made in the algorithm. In line 7, the 3-D
rotation occurs along the rotation normal in the listed properties.
In line 5, the angle can be positive or negative; it must be less than
the absolute value of the maximum segment angle. In line 6, the
length is always positive. It is in the range [0,

meanSegmentLength*2] so that the mean of the length is the
appropriate mean segment length. The ​HandleBranching
function takes in the branch probability, maximum branch angle,
mean branch length, and the ​next​ variable.

The above algorithm ensures that a branch is randomly
constructed following the properties set by the programmer. Each
iteration of the while-loop creates a single segment in the branch.
A single jagged branch of lightning represented by a set of
segments is added to the scene if the branch probability is set to
zero, and a complex lightning strike is added to the scene if
branch probability is non-zero.

3.3 Branching
Branches of lightning are added to the scene in line 11 of the
pseudocode in section 3.3. Inside of the ​HandleBranching
function of the pseudocode is a call back to the branch
construction function in which it is contained. Recursive
construction of the lightning makes it easier to ensure that the
properties of each branch are derived from the parent branch and
makes it easier to create several levels of branching.

Figure 3, a strike of lightning with several branches.

In order to ensure the construction will not run infinitely, two
checks are made before a branch is constructed. The first check is
meant to simply obey the branch probability property of the
branch. A random number in [0,1] is computed and the branching
function only proceeds if the number is less than the branch
probability. Second, the branch algorithm checks if the branch
probability is greater than a minimum probability constant. This
ensures that branches will not continue to be created in low-level
branches.

Table 1, branch properties and multipliers.

Property Starting
Value

Branch Multiplier

Radius 0.05 0.5

Branch Probability 0.2 0.8

Mean Branch Length 0.8 0.5

Max. Segment Angle 30° 1.3

Mean Segment Length 0.08 1.0

Max. Branch Angle 50° 1.0

Rotation Normal vec3(0,0,1) 1.0

After the checks have passed, our algorithm uses a method similar
to the provided pseudocode to determine a new angle and distance
for the branch. These are computed using the provided mean
branch length and maximum branch angle properties. When the
new angle and distance is known, a call is made to the main
branch construction algorithm to start creating a new branch off of
the parent segment. In the new child branch, the branch
probability and mean branch length are decreased relative to the
parent and the maximum segment angle is increased relative to the
parent. Multipliers for constants during the branching process can
be seen above in Table 1. These multipliers ensure that the
branches are shorter than the parent and that the algorithm will
terminate.

3.4 Striking a Target
As mentioned in section 3.1, the Downward Leader of the
lightning is the main branch of a lightning strike and determines
the overall direction preference of all of the branches. In code, the
Downward Leader branch has a decreased maximum segment
angle in order to ensure that it will indeed travel the desired
distance at the desired direction.

Lightning strikes usually occur between areas of different electric
charge, however in our simulation the complexity of setting up
such a scenario caused us to rethink how to choose a target for the
lightning strike. Instead of always striking the ground or always
travelling straight down from the start point, we included an
algorithm in our implementation to determine the closest point on
a primitive object.

In test scenes, we only used spheres as primitive objects. Our
method will check the dimensions of every sphere in the scene,
checking the center point in space as well as the radius to
determine which contains the closest point. Once a point is
known, the direction vector for the Downward Leader is set to a
unit vector in the direction of the point. The distance of the leader
is set to the distance between the lightning starting point and the
closest primitive point.

4. RENDERING
In order to render the lightning, rays are cast out from the camera
to render the scene using standard ray tracing methods. There are
three main components of the lightning that are added to the final
color value for each ray: the light source, main channel color, and
the glow effect.

4.1 Lightning as a Light Source
The first significant component for rendering the lightning is to
treat it as a light source. Initially, each segment was treated as a
point light source, as in [1]. For each ray, then, a shadow ray is
cast toward the midpoint of each lightning segment. This method
results in fairly convincing shadows, due to the typically high
number of segments. In order to improve appearance and allow
for soft shadows, our model was extended to use Monte Carlo
sampling along the length of each segment. In this case, several
shadow rays are cast towards uniformly distributed points along
the length of each segment, and the resulting light contribution is
averaged for the pixel being rendered.

4.2 Rendering the Main Channel
Each ray’s color has a contribution determined by its distance
from each segment in the lightning model. This distance
calculation is the primary bottleneck in rendering the lightning,
since for ​n segments and ​r rays cast there must O(​nr​) distances
computed. Section 4.4 describes one optimization, as described in
[1], for reducing the number of calculations required in each step.

The lightning contributions for a specific ray can be described as
the following [1]:

eI total = ∑

i
mi

−(di
wi)

ni

With variables:

● I​ – the main channel contribution for the ray
● m​i​ ∈ [0, 1] – the maximum contribution for segment ​i
● d​i​ – the minimum distance from the ray to segment ​i
● w​i​ – half the width of lightning channel for segment ​i
● n​i > 1 – a “sharpness” value that describes the contrast

between the background and the segment

In practice, we used ​m​i = 1.0 and ​n​i = 6.0, with ​w​i determined
according to the radius described in section 3.3.

4.3 Rendering the Glow Effect
Most images of lightning show a softer glowing effect
surrounding the main channels of a segment. This glowing effect
can be described similarly to the main channel, by the following
equation [1]:

l eGtotal = ∑

i
g i

−(di
W)

2

Where all variables are as in section 4.2, except

● G​ – the glow contribution for the ray
● g ​– the maximum glow contribution
● l​i​ ∈ [0, 1] – a factor based on the brightness of the

segment
● W​ – half the width of the glow effect

In practice, we used ​g​ = 0.08, ​l​i​ = 1.0, with ​W​ = ​w​i​ * 3.0. ​W​ was
also clamped to a minimum value of 0.08.

4.4 Rendering Optimization
As suggested in [1], this rendering equation can be optimized
somewhat by limiting the position of branches to lie in a single
plane. With this method, the calculation is simplified somewhat
– simply finding the intersection of the plane and the cast ray
allows us to compute the point-segment distance with fewer
calculations. Although this optimization does not reduce the
number of iterations required during the computation, it does
reduce the number of operations per iteration. It may be possible
to optimize the rendering process further with parallelization or
hardware ray tracing.

5. IMAGE AND VIDEO OUTPUT
During the debugging process, we found that rendering using the
provided OpenGL ray-tracing result geometry was slower than we
would have liked. In order to speed up the process, we
implemented direct ray-traced image and video output from the
current OpenGL window scene and bypassed rendering the

ray-traced pixel geometry in the window.

Image output was done using the simple PPM image format.
When the “y” key is pressed on the keyboard, an algorithm will
traverse every pixel in the OpenGL window to retrieve a color
value from the scene. Instead of then adding pixel geometry to the
window, our method stores the color directly in a PPM file.
Conversion from linear colors in [0,1] to PPM RGB [0,255] must
take place between ray-tracing and storing. In some cases, we
encountered a bug where the linear color was greater than 1,
causing a value greater than 255 to be stored in the PPM file. This
creates an overflow because the PPM expects a non-negative
value less than 255. Before fixing the error, image output
consistently appeared similar to Figure 4, below.

Figure 4, PPM output error.

After recognizing and resolving the error, PPM output works as
expected.

Video rendering was accomplished by rendering a series of
images and exporting them to PPM. To achieve the effect of an
actual lightning strike traveling from start point to target point, the
segments generated in the original construction of the mesh are
divided into small groups. Starting with zero segments in the
scene, an image of the scene is exported using the previously
explained PPM method. For each group of segments, the group is
added to the scene and a new PPM image is rendered. This
continues until all available segments have been added to the
scene. In order to convert the series of PPM images into a video
file, the following command is executed:

ffmpeg -f image2 -r 30 -i ./out/out%d.ppm
-vcodec mpeg4 -q:v 1 -c:v libx264 -y out.mp4

An example of the video output results can be seen in Figure 1.
Several frames of the video are skipped in the figure, but it shows
the basic progressive construction of the lightning strike shown in
a video.

6. CHALLENGES
We encountered several challenges during the development
process. While many were small and relatively straightforward to
resolve, some prevented development of pieces of functionality.

6.1 Combining Geometry and Lighting
In order to start the project, we decided to take on different
aspects of the project. One of us started implementing the

geometry of the lightning and other focused on the lighting and
glowing effects of the lightning. Both aspects of the lightning
simulation were separated into entirely different code bases and
programs.

Figure 5, initial geometry program output.

The lightning geometry portion was created as an extension of
Homework 2 because it provided a straightforward interface for
adding new geometry to the mesh in the scene. It only includes
one piece of floor geometry and a point light source at the start of
the lightning strike. The start point and direction of the lightning
were hard-coded into the program. Output of the initial geometry
program is scene above in Figure 5.

The lighting and glow portion of the project was created as an
extension of Homework 3. Output of the initial lighting program
is shown below in Figure 6. In this example, only the main
channel of simple lightning geometry is shown – there is no glow
effect applied to the ray tracer yet.

Figure 6, initial lighting program output.

The two portions of the assignment were combined in week 2.
Because they were based on different code bases, combination
was not trivial. The line segments in the original lighting code
appeared in the ray-traced scene but not the OpenGL scene
because they were not created as geometry. In the original
geometry code, the lightning existed solely as geometry.

Lightning segments in the scene cannot be intersected by the
ray-tracer in the same way as other geometry because of the
lighting aspect. The width and glow radius of the lightning
segments are variable and can be so thin that they do not appear in

the OpenGL scene. For this reason, lightning geometry could not
simply be added to the mesh in the scene as originally done.

Instead, lightning geometry is added to the scene only via direct
OpenGL calls and is stored in a separate lightning segment
structure. When ray-tracing starts, the ray-tracer asks directly for
the lightning segments stored in the custom structure instead of
polling lightning geometry in scene mesh. The result of
combining the two implementations can be seen in Figure 2.

6.2 Creating a Realistic Scene
In order to create a realistic test scene, we needed to use two PPM
images as textures in our scene. Using the original code from
Homework 3, two images are not allowed to be used as textures.
In our first attempt to add two materials to a scene OBJ file, our
program crashed at execution with an assertion violation. In the
radiosity code, the number of textured materials is limited to one
in order to prevent bugs in radiosity lighting. Since we chose not
to light the scene using radiosity, simply removing the assertion
sufficed.

6.3 Variable Width Segments
In order to give lightning a more realistic appearance, some
branch segments must appear to have a smaller width than parent
branches. For example, in Figure 3, every branch in the lightning
contains segments of the same width. It appears unrealistic
because real lightning tends to have visibly thinner branches from
the Downward Leader.

We learned, however, that variable width segments do not appear
realistic when they are contained within a single branch. In Figure
5, a single branch of lightning appears to start thick and strike the
target with thinner segments. This is unrealistic because a
Downward Leader always appears to have a uniform width when
it strikes a target and electric charge flows through the air.

We achieved variable width segments through modifications in
the random geometry generation and the lighting effects. When
the lightning geometry is created, each recursive branch is created
with a slightly smaller width than its parent. This width is stored
in the ​LightningSegment object. When the ray-tracer iterates
through each segment of lightning during rendering, it adjust the
visible width of the segment as well as the glow radius in relation
to the segment object’s assigned width.

7. RESULTS
We believe our method of simulating and rendering simple
lightning works well and is comparable to to previous methods.

7.1 Realism
In order to test the visual accuracy of our method, we created
scenes similar to real photographs and placed one of our
randomly-generated lightning strikes in the scene.

Figure 7, comparison of real vs. rendered lightning.

Figure 7 shows a comparison between a real photograph of a
lightning strike on water and a rendered image using our method
which replicates the scene. Notable differences between the
images include the purple tint of the lightning in the photograph
and the dimmed light emitted by branches far from the Downward
Leader.

Figure 8, two lightning strikes in an image.

Our method also has the ability to produce scenes with more than
one lightning strike. The user must only add another starting
position to the OBJ file and a second strike will target the nearest
sphere. In Figure 8, two lightning strikes in the scene each target
the closest sphere.

7.2 Performance
While sufficiently realistic, our method requires more time to
render than comparable scenes from Homework 3. For example,
in Figure 8, the scene contains 417 lightning segments. At
700x700 resolution, the scene took 302.87 seconds (just over 5
minutes) to render on a computer with an Intel i7-4600U. Our
method is not parallelized, so rendering uses only one core of the
CPU’s available four.

Rendering an animation is similarly computationally-expensive,
but the first few frames of the animation render relatively quickly
due to the absence of most branch segments. In tests, an animation
consisting of 45 individual images took 48 minutes and 51
seconds to render entirely.

In both image and video rendering, we used the PPM export
method described in section 5 to output to storage. Compared to
OpenGL pixel geometry originally used in Homework 3, our
render times improved. Our results for pixel geometry vs PPM
rendering time are shown in Table 2, below.

Table 2, compared image rendering times.

Image Resolution Pixel Geometry PPM

100 x 100 3.75s 3.10s

300 x 300 27.73s 20.90s

600 x 600 167.51s 95.06s

7.3 Known Bugs
While our program has never crashed in its final form, there are
some bugs that impede the ability to insert our lightning into any
scene.

At the start of the geometrical construction of the lightning strike,
the closest primitive in the scene is chosen as the strike target.
Currently, our implementation only works with spheres or manual
directions. If there are no spheres and the programmer does not
provide a direction for the lightning to travel, it will always travel
towards the origin of worldspace.

Figure 9, a lightning strike with not enough branches.

Random numbers also cause bugs in our implementation. During
some random iterations of mesh construction, nearly no branches
will be formed due to the tendency of our random number
generator. This can be seen in Figure 9. During other iterations,
the lightning strike will consist of too many branches at a high and
unrealistic density.

The nature of the rendering algorithm adds lighting contributions
from each segment in the image. For this reason, overly bright
images can be obtained with fairly small modifications to the
scene parameters. Additionally, the segmented nature of lightning
typically results in very hard shadows, even when several shadow
rays are cast uniformly along each segment.

8. CONCLUSION
We believe our method of simulating and rendering lightning is
visually realistic. Lightning and glowing effects of real lightning
show in our implementation and the geometry is randomly
created, as in real lightning. Our method also has the functionality
to render animations of lightning strikes and supports multiple
strikes in a single image. Although it is somewhat slow to render,
we believe there is room for improvements in optimization in the
future.

8.1 Division of Work
Most of the work on this project was split into two parts:
geometry and lighting effects.

Sam worked on the lightning geometry, image and video output,

and scene creation. He spent about 15 hours on the project, not
including this paper.

Ian implemented the rendering and raytracing aspects of the
project. This involved extending the existing ray tracer to account
for lighting along lightning segments. adding channel light and
glow, and optimizing the ray tracer calculations. His contribution
totalled about 12 hours.

8.2 Future Work
While our method does produce visually realistic results, it does
so slowly. The more lightning segments are in the scene, the
longer the rendering process takes. Future work on this project
would focus on optimizing the ray-tracing process to improve
render times.

To improve on realism, a few modifications could be made. First,
the random number generator could be improved for consistency
in branching and angles. Second, the branching algorithm could
be extended to allow for more smaller branches on the end of
large branches. This was difficult to implement in our experience
because the program would either run forever or take several
minutes to create the lightning geometry, consisting of sometimes
hundreds of thousands of lightning segments. Third, the lightning
geometry algorithm could be improved to allow for higher
probabilities of branching at different parts of the Downward
Leader. Last, the target selection algorithm could be improved to
work with more primitive shapes than just spheres.

The rendering optimization described in [1] helps improve
rendering time somewhat, but does not significantly reduce the
number of iterations required in each ray tracing step.
Unfortunately, since the lightning components are not mesh
objects, many standard optimizations for ray tracing cannot be
used to improve performance of this algorithm. However, it may
be possible to greatly improve performance by parallelizing the
contribution of each segment.

9. REFERENCES
[1] Todd Reed and Brian Wyvill. 1994. Visual simulation of

lightning. In Proceedings of the 21st annual conference on
Computer graphics and interactive techniques (SIGGRAPH
'94). ACM, New York, NY, USA, 359-364.
DOI=​http://dx.doi.org/10.1145/192161.192256

[2] Theodore Kim and Ming C. Lin. 2007. Fast Animation of
Lightning Using an Adaptive Mesh. IEEE Transactions on
Visualization and Computer Graphics 13, 2 (March 2007),
390-402. DOI=​http://dx.doi.org/10.1109/TVCG.2007.38

[3] Theodore Kim and Ming C. Lin. 2004. Physically Based
Animation and Rendering of Lightning. Proc. of Pacific
Graphics 2004.
DOI=​http://dx.doi.org/http://gamma.cs.unc.edu/LIGHTNIN
G/

[4] Kong, X., X. Qie, and Y. Zhao. 2008. Characteristics of
downward leader in a positive cloud-to-ground lightning
flash observed by high-speed video camera and electric field
changes. Geophys. Res. Lett., 35. L05816.
doi=​http://dx.doi.org/10.1029/2007GL032764​.

