COSC 320 Project #2: Greedy Algorithms

Contents

1 Instructions 1

2 Overview 1
2.1 Greedy Algorithms 1
2.2 Hill-Climbing Algorithms 3
2.3 Mono-Alphabetic Substitution Ciphers & Hill-Climbing Analysis 3

3 Program Specifications 5

1 Instructions

When you are finished submit all your work through the MyClasses page for this class. Create
a directory called Project2, put the program in this directory, compress the directory into a
single zip file, and then submit this zip file to the Project #2 assignment. Also remember
to create make files for each program and make sure the programs compile and run on the
lab Linux system.

Projects are to be done strictly on your own and as with all assignments the sharing of files
and code is strictly prohibited and constitutes an act of Academic Misconduct. Furthermore
the use of any electronic medium, such as code repositories, forums, blogs, message boards,
email, etc. is strictly prohibited and constitutes an act of Academic Misconduct.

You may use the course textbooks, class notes, and materials I have provided on the
MyClasses page.

2 Overview

2.1 Greedy Algorithms

This exercise it to explore, at least a little, on what a greedy algorithm is, and to use a
particular type of greedy algorithm to solve a classical cryptographic cipher, the substitution
cipher. We will see other examples of this approach when investigating graph algorithms.
From the algorithms text book we can define a greedy algorithm as,

Algorithms for optimization problems typically go through a sequence of steps,
with a set of choices at each step. For many optimization problems, using dy-
namic programming to determine the best choices is overkill; simpler, more ef-

Fall 2023 1

COSC 320 Project #2: Greedy Algorithms

ficient algorithms will do. A greedy algorithm always makes the choice that
looks best at the moment. That is, it makes a locally optimal choice in the hope
that this choice will lead to a globally optimal solution.

As an example, let’s say we wanted to find the absolute maximum of f(z) = sin(3x) +
cos(5x) + 2 on the interval [0,4]. Let’s also say that we forgot our derivative tests or that
finding the critical numbers is too hard, who needs derivatives anyway. Here is how we might
approach this problem using a greedy algorithm.

Our algorithm will be to select an z value and then look at the y values of the graph
that are in the interval [x — 0.1,z + 0.1], that is, within 0.1 of the x we chose. We will take
the x value of the point that has the largest y value in that small interval. This is what is
meant by “a locally optimal choice”. We then repeat the algorithm with that new z value,
and so on until the = values settle down (or get close to) one particular number. As you can
see from the graph of the function below, our absolute maximum is around x = 2.55.

Say we choose our initial guess at x = 2.4. So we look in the interval from 2.3 to 2.5 and
it appears that the biggest y value is at 2.5. Now we repeat the process with x = 2.5 and we
look at the interval from 2.4 to 2.6. It appears that the maximum vy is at around x = 2.55,
so that is our next guess. Now we look at the interval from 2.45 to 2.65. It looks like the
maximum y is still at x = 2.55, so the x values have settled down to one number x = 2.55.

One thing about greedy algorithms is that although they iteratively zero in on an optimal
solution, it may not be the globally optimal solution. Lets say that we did the same algorithm
but started at x = 1. This would lead to a final z value of about x = 1.1, a local maximum
but not a global one. And if we started at = 0.7 we might end up at z = 1.1 or possibly
x = 0.1. This is what the textbook meant by “...it makes a locally optimal choice in the
hope that this choice will lead to a globally optimal solution.” In all, we need to pick our
starting point well. Even then we could end up with a non-global solution.

Fall 2023 2

COSC 320 Project #2: Greedy Algorithms

2.2 Hill-Climbing Algorithms

A special case of a greedy algorithm that can be applied to cryptography is a Hill-climbing
algorithm. It works very much like the hill we climbed in the algorithm above to fins the
maximum (top of the hill).

‘Hill-climbing’ algorithm helps to find the correct key. It is an iterative algorithm
that starts with an arbitrary solution to a problem, then attempts to find a better
solution by making an incremental change to the solution. If the change produces
a better solution, another incremental change is made to the new solution, and
so on until no further improvements can be found. *

Hill-climbing has many applications in many different areas of mathematics and computer
science. It is one of many techniques used in deep learning and Al to make the machine
make better (optimal) decisions. In this exercise we will be using this method to break a
mono-alphabetic substitution cipher.

Hill-climbing does have its weaknesses.

e [t does not work well on ciphers with less than 100 characters in length, or so. This
is because the statistics of short messages can deviate significantly from the long-term
statistics of English, which is what our n-gram data is based on.

e This algorithm fails when the true plaintext does not have statistics similar to English.
For example, from Simon Singh’s “The Code Book”: “From Zanzibar to Zambia to
Zaire, ozone zones make zebras run zany zigzags” .

e You could get stuck in a local maxima before reaching a desired global maximum. The
use of the frequency analysis key as a starting point is done to try to avert this from
happening.

e Many references to hill-climbing will tell you to start with a randomly selected initial
key. This has a higher probability of getting stuck in a local maximum and hence is
why we start with the frequency analysis key.

2.3 Mono-Alphabetic Substitution Ciphers & Hill-Climbing Anal-
ysis

At the end of this document there is a portion of a chapter of a set of notes I created a few
years back on classical cryptography, specifically on the mono-alphabetic substitution cipher
and the hill-climbing method for breaking the cipher. There is also a bit of history on the
subject if you are interested. It is a fairly long read, and admittedly a bit boring in parts. It
will help you understand how the cipher is encrypted and decrypted, how to use frequency

'Hill-climbing cipher by Daleel Hagy, King’s College London, https://www.researchgate.net/
publication/340633483

Fall 2023 3

COSC 320 Project #2: Greedy Algorithms

analysis to break one of these by hand, and the algorithm of the hill-climbing method is
discussed.

The notes describe several special cases of the mono-alphabetic substitution cipher (shift,
affine, ...) but we will be attacking the most general form, the “random substitution” key.
From the reading you know that there are a total of 26! = 403291461126605635584000000
possible keys to this type of cipher which is far too many for even a modern (super) computer
to check, so a brute force approach (trying all possible keys) is out of the question. In the
reading there is a 4 step process for the hill-climbing analysis that you will be following.
Make sure that you understand all facets of this algorithm. In particular, one character
frequency analysis and the English letter relative frequencies, the fitness measure and its
calculation, the transpositions done for a single pass, the pass number stopping condition.

In the handout, the fitness measure is calculated using tri-grams (three letter sequences),
you will also be using quad-grams and quint-grams (4 and 5 letter sequences respectively).
These will be given as files along with the exercise and handout.

There is a program that goes along with this set of notes, Cryptography Explorer, which
you can get from my web site at,

https://faculty.salisbury.edu/~despickler/distros/CryptographyExplorer.html

There are releases for Windows, Mac, and Linux. If the Windows version gives you
any trouble the jar file from the Mac and Linux download should also run on Windows
machines. This package has a bunch of tools I use in teaching but there is a tool for creating
mono-alphabetic substitution ciphertexts that will help you in your testing of your program.
In the main menu select Ciphers > Mono-Alphabetic Substitution. The Mono-Alphabetic
Substitution window will open in the program desktop and the quick help screen on the right
will explain its use.

Cryptography Explorer -0 @
File Ciphers Tools Window Help
— Quick Help
Mono-Alphabetic Substitution e @ M Mono-Alphabetic Substitution sl
Input Output
[File | By Edit | 3® Tools [File | By Edit | 3® Tools The Mono-Alphabetic Substitution cipher
is a rule where each |etter of the plaintext is
changed to the same letter for the
ciphertext. For example, A is always
changed to J, B is always changed to W, and
50 0n. So in the example window below, Tis
replaced by S, H by K, I by Q, and so on
Use =]
To Encrypt
1. Input the plaintext message into
the Input box. Make sure that the
characters are from the same
character set as the one selected.
Note that you can change the
Character Set Operations character set using the selection
[Uppercase Alphabet =] [Encrypt | [pecrypt box below the Input box. There are
also some quick conversion tools in
Key Input/Output Correspondence the Tools menu.
@ File | Bz Edit | 3® Tools { File Bz Edit 2. Input a Substitution Key. There are
- - special tools in the Tools menu for
ELalnt o Eiphortor: . InotE Kol . creating shift, affine and random
A = cipher keys.
B L m 3. Click the Encrypt button. At this
C I point the Output box will display the
D ciphertext message and the
E Input/Output Correspondence table
E will show the encryption character
by character
G
H To Decrypt
I -~ -~
1. Input the ciphertext message into
the Input box. Make sure that the
characters are from the same =

Fall 2023 4

COSC 320 Project #2: Greedy Algorithms

3 Program Specifications

You will be creating a program that will take an input file of English letter patterns along
with a frequency count, and a file containing the ciphertext of an encrypted message. The
program will apply the hill-climb algorithm to the ciphertext and output the final best key
along with the decrypted message using that best key. The following are some specifics about
the program run and structure.

1. From the reading you know that this method requires an enormous number of searches,
of strings, on the same data set. Hence you need a fast searching routine. The reading
discusses using the binary search for this but we will be using a map structure that
is based on the Red-Black tree, which you created in the last homework assignment.
Since the Red-Black tree is a balanced binary search tree the data should be searched
fairly quickly. Also each data item will consist of two values, a key that is a string and
a value that is a numeric frequency. This makes it perfect for the map structure. The
n-gram data files you will be loading in are provided but you are to write the program
so that the user can input any file of the correct format and use it for hill-climbing.
The beginning of the data files look like the following, respectively.

AAA 31081 AAAA 6705 AAAAA 2679
AAB 34294 AAAB 1038 AAAAB 155
AAC 68958 AAAC 1592 AAAAC 240
AAD 53262 AAAD 692 AAAAD 114
AAE 3877 AAAE 176 AAAAE 22
AAF 42562 AAAF 1025 AAAAF 274

The first entry on any line is the trigram, quadgram, or quintgram. The second entry
is an integer which is the frequency of that letter sequence in the data set of literature
that was used in the calculation. The way these numbers were calculated was that
a large number of English literature works were taken (over 4 billion characters in
all), the punctuation and spaces were removed and all characters were converted to
uppercase. Hence this was a long sequence of English words put together so that the
ends of words were next to the beginnings of the next word. The string was then
used to get counts of trigrams. For example, the text “the current report table” would
be converted to “THECURRENTREPORTTABLE” and then the following trigrams
would be counted THE, HEC, ECU, CUR, URR, ..., ABL, BLE. The same is true for
the quadgram and quintgram data files.

2. The ciphertext file will be a file containing the ciphertext of a single passage that has
been encrypted with a mono-alphabetic substitution using a particular random key.
You may assume that the text is all uppercase, no punctuation, spaces, whitespace, or
numbers. Personally, I did these conversions when the file was read in just to be safe,
but you do not need to do that. For example, the test file included with the project is
the following. Note that there are really no line breaks in this file.

Fall 2023 5

COSC 320 Project #2: Greedy Algorithms

HFWRHVLSBLURPQSHRKBRHFXSQONRQSIENXSQCQUHRPQONFSBWEUD
XLVWRILURPQSHRKBEZZQSRUMQY IQWWQUKF ZZESDFVWQQDLIFKR
EURULUDQSMSFDLFKQWRVQSFWFSKHHIRQUIQHVLHRUQHHULSHRU
MCQFWKCHIRQUIQHHEIRFWJESOFUDQDLIFKREUFUDFXXWRQDNFH
KQSHFUDDEIKESFWXSEMSFNHELSCRMCQHKXLSXEHQRHKEQNXEJQ
SELSHKLDQUKHJRKCKCQOUEJWQDMQHORWWHFUDIESQPFWLQHKCF
KIEUKSRVLKQKEF IKRPQIRKRAQUHCRXMFRUZLWQNXWEBNQUKEFUD
WRZQWEUMWQF SURUMRUFDQNE I SFKRIHEIRQKBFUDRUKQSDQXQUD
QUKJESWDHFWRHVLSBLURPQSHRKBILWKRPFKQHFUDHLHKFRUHFH
LXQSRESWQF SURUMIENNLURKBJCQSQHKLDQUKHZF I LWKBFUDHKF
7ZFSQPRQJQDFHWQF SUQSHKQF ICQSHHICEWF SHFUDZF IRWRKFKE
SHFUDJCQSQF IENNRKNQUKKEQY IQWWQUIQFUDEXQUUQHHKEFVSE
FDFSSFBEZRDQFHFUDXQSHXQIKRPQHFSQIQUKSFWKEFWWFHXQIK
HEZLURPQSHRKBWRZQELSWQF SURUMIENNLURKBRHHKLDQUKIQUK
QSQDHKLDQUKHWQF SUZSENXSEZQHHREUFWQDLIFKESHRUHNEWWI
WFHHSEENHQKKRUMHZF I LWKBFUDXSEZQHHREUFWHKF ZZHQSPQFH
FIFDQONRIFDPRHESHFUDPRSKLFWWBQPQSBHKLDQUKCFHFUEXXES
KLURKBKELUDQSKFOQSQHQFSICESQYXQSRQUKRFWWQF SURUMJRK
CFZFILWKBNQUKESKCSELMCELSXSRPFKQWBQUDEJQDHICEEWHFU
DCEUESHIEWWQMQFUDKCQIEWWQMQEZCQFWKCFUDCLNFUHQSPRIQ
HJQZEHKQSFUQUPRSEUNQUKJCQSQRUDRPRDLFWHXSQXFSQZESIF
SQQSFUDWRZQRUIWLDRUMKCQRSHEIRFWXCBHRIFWEIILXFKREUF
WONEKREUFWFUDRUKQWWQIKLFWJQWWVQRUMKCQLURPQSHRKBSQI
SLRKHQYIQXKREUFWFUDDRPQSHQZFILWKBHKF ZZFUDLUDQSMSED
LFKQFUDMSFDLFKQHKLDQUKHZSENF I SEHHNF SBWFUDFUDKCQLUR
KQDHKFKQHFUDZSENFSELUDKCQJESWDHLXXESKRUMFWWNQNVQSH
EZKCQLURPQSHRKBIENNLURKBFHKCQBJESOKEMQKCQSKEFICRQP
QRUHKRKLKREUFWMEFWHFUDPRHREUVQWRQPRUMKCFKWQF SURUME
UDHQSPRIQFSQPRKFWIENXEUQUKHEZIRPRIWRZQHFWRHVLSBLUR
PQSHRKBF IKRPQWBIEUKSRVLKQHKEKCQWEIFWQFHKQSUHCESQIE
NNLURKBFUDKCQQODLIFKREUFWQIEUENRIILWKLSFWFUDHEIRFWU
QQODHEZELSHKFKQFUDUFKREUPFWLQHKCQIESQPFWLQHE ZHFWRHV
LSBLURPQSHRKBFSQQYIQWWQUIQHKLDQUKIQUKQSQDUQHHWQFSU
RUMIENNLURKBIRPRIQUMFMONQUKFUDDRPQSHRKBFUDRUIWLHRE
UJQVQWRQPQKCQHQPFWLQHNLHKVQWRPQDFUDQYXQSRQUIQDFHRU
KQMSFWKEQPQSBDFBIFNXLHWRZQHEKCFKHKLDQUKHNFOQKCQIEU
UQIKREUVQKJQQUJICFKKCQBWQF SUFUDCEJKCQBWRPQKCQMEFWHE
UDEVTQIKRPQHEZELSHKSFKQMRIF IFDQNRIZFIRWRKRQHFUDQUS
EWWNQUKXWFUHFHJQWWFHELSZRHIFWIENNRKNQUKHSQZWQIKELS
ZLUDFNQUKFWPFWLQHRUFDDRKREUKEKCQHQXSRUIRXFWPFWLQHK
CQOLURPQSHRKBQNVSFIQHKCSELMCRKHHCFSQDMEPQSUFUIQVEDR
QHKCQWEUMCEUESQDKSFDRKREUEZCEUQHKBFUDNLKLFWSQME SDK
CFKRHFUDHCELWDVQFDQZRURUMICFSFIKQSRHKRIEZCRMCQSQDL
IFKREU

We will see later that this is the Salisbury University mission and values statement
from the website that was converted to uppercase, removed non-alphabetic characters
and then was encrypted with a random key mono-alphabetic substitution cipher.

Fall 2023 6

COSC 320 Project #2: Greedy Algorithms

3. The file inputs will be done through the open dialog box from the tinyfiledialogs library
that you used in the last project.

When the program is run the first thing to happen is an open dialog will appear asking
for the N-Gram file.

Open N-Gram File [}

& Home 4 #hdon | Classes cosc320 | Projoz b

B Deskiop Name v size Type Modified

B Documents CiphertextDoc.bxt 22k Text Tue

english_quadgrams.txt 33MB Text Tue

english_quintgrams.txt 378MB Text Tue
T

4 Downloads

J3 Music B english_trigrams.txt 1619kB Text Tu

Q Pictures

H videos

i Books

i Classes

@@ Programming
i POF

+ Other Locations.

TextFile v

Once that is selected and the user selects OK the console will report which file was
opened and when the file read is complete there will be a message like “N-Gram file is
loaded.” If the user selects Cancel the console should display something like “N-Gram
file is needed to proceed, exiting.” and then exit the program. During the load of the
file you will also be populating your map with the n-gram frequency pairs that you are
reading from the file. So for the quintgrams this may take a few seconds.

You may assume that the n-gram file has the same structure as the ones given to you
for this exercise but you must write the program so that the user can use their own
n-gram file. Hence these three filenames are not to be hard-coded into the program.

Once the data is loaded from the file and put into the map, anther open file dialog will
appear asking for the ciphertext file.

Open Ciphertext File o

#t Home 4 fbdon Classes COsc3z0 | Prejo2 b

B Desktop

Name v Size Type Modified

B Documents B CiphertextDoc.txt 22kB Text Tue
english_quadgrams.txt 33MB Text Tue

4 Downloads
english_quintgrams.txt 37.8MB Text Tue

J3 Music english_trigrams.txt 161.9kB Text Tue

0 Pictures

H videos

i Books

B Classes

il Programming
il POF

=+ Other Locations

TextFile »

Fall 2023 7

COSC 320 Project #2: Greedy Algorithms

Once that is selected and the user selects OK the console will report which file was
opened and when the file read is complete there will be a message like “Ciphertext
file is loaded.” If the user selects Cancel the console should display something like
“Ciphertext file is needed to proceed, exiting.” and then exit the program.

The program will then start the hill-climbing algorithm, it will print to the console the
initial guess of the key doing direct frequency analysis, then it will report the final key
after the hill-climbing is finished and the number of iterations (passes) that needed to
be done. As was in the reading this is usually fairly quick, not many iterations needed.
At the end of the output will be the original ciphertext decrypted with the final key.
The result should be readable English text, although without spaces and punctuation.
An example of the program output for trigrams and the text ciphertext is below.

Opening /home/don/Classes/C0OSC320/Proj02/english_trigrams.txt
N-Gram file is loaded.

Opening /home/don/Classes/C0OSC320/Proj02/CiphertextDoc.txt
Ciphertext file is loaded.

Key from single character frequency analysis:
ABCDEFGHIJKLMNOPQRSTUVWXY Z
QGUDHTZNLVOCYMKWEISXABRPJF

Key after 4 iterations of the hill climb algorithm:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
FVIDQZMCRTOWNUEXGSHKLPJYBA

Decryption using the final key:

SALISBURYUNIVERSITYISAPREMIERCOMPREHENSIVEMARYLANDPUBLICUNIV
ERSITYOFFERINGEXCELLENTAFFORDABLEEDUCATIONINUNDERGRADUATELIB
ERALARTSSCIENCESBUSINESSNURSINGHEALTHSCIENCESSOCIALWORKANDED
UCATIONANDAPPLIEDMASTERSANDDOCTORALPROGRAMSOURHIGHESTPURPOSE
ISTOEMPOWEROURSTUDENTSWITHTHEKNOWLEDGESKILLSANDCOREVALUESTHA
TCONTRIBUTETOACTIVECITIZENSHIPGAINFULEMPLOYMENTANDLIFELONGLE
ARNINGINADEMOCRATICSOCIETYANDINTERDEPENDENTWORLDSALISBURYUNI
VERSITYCULTIVATESANDSUSTAINSASUPERIORLEARNINGCOMMUNITYWHERES
TUDENTSFACULTYANDSTAFFAREVIEWEDASLEARNERSTEACHERSSCHOLARSAND
FACILITATORSANDWHEREACOMMITMENTTOEXCELLENCEANDOPENNESSTOABRO
ADARRAYOFIDEASANDPERSPECTIVESARECENTRALTOALLASPECTSOFUNIVERS
ITYLIFEOURLEARNINGCOMMUNITYISSTUDENTCENTEREDSTUDENTSLEARNFRO
MPROFESSTONALEDUCATORSINSMALLCLASSROOMSETTINGSFACULTYANDPROF
ESSIONALSTAFFSERVEASACADEMICADVISORSANDVIRTUALLYEVERYSTUDENT
HASANOPPORTUNITYTOUNDERTAKERESEARCHOREXPERTIENTIALLEARNINGWIT
HAFACULTYMENTORTHROUGHOURPRIVATELYENDOWEDSCHOOLSANDHONORSCOL
LEGEANDTHECOLLEGEOFHEALTHANDHUMANSERVICESWEFOSTERANENVIRONME
NTWHEREINDIVIDUALSPREPAREFORCAREERANDLIFEINCLUDINGTHEIRSOCIA
LPHYSICALOCCUPATIONALEMOTIONALANDINTELLECTUALWELLBEINGTHEUNTI
VERSITYRECRUITSEXCEPTIONALANDDIVERSEFACULTYSTAFFANDUNDERGRAD
UATEANDGRADUATESTUDENTSFROMACROSSMARYLANDANDTHEUNITEDSTATESA

Fall 2023 8

COSC 320 Project #2: Greedy Algorithms

NDFROMAROUNDTHEWORLDSUPPORTINGALLMEMBERSOFTHEUNIVERSITYCOMMU
NITYASTHEYWORKTOGETHERTOACHIEVEINSTITUTIONALGOALSANDVISIONBE
LIEVINGTHATLEARNINGANDSERVICEAREVITALCOMPONENTSOFCIVICLIFESA
LISBURYUNIVERSITYACTIVELYCONTRIBUTESTOTHELOCALEASTERNSHORECO
MMUNITYANDTHEEDUCATIONALECONOMICCULTURALANDSOCIALNEEDSOFOURS
TATEANDNATIONVALUESTHECOREVALUESOFSALISBURYUNIVERSITYAREEXCE
LLENCESTUDENTCENTEREDNESSLEARNINGCOMMUNITYCIVICENGAGEMENTAND
DIVERSITYANDINCLUSIONWEBELIEVETHESEVALUESMUSTBELIVEDANDEXPER
IENCEDASINTEGRALTOEVERYDAYCAMPUSLIFESOTHATSTUDENTSMAKETHECON
NECTIONBETWEENWHATTHEYLEARNANDHOWTHEYLIVETHEGOALSANDOBJECTIV
ESOFOURSTRATEGICACADEMICFACILITIESANDENROLLMENTPLANSASWELLAS
OURFISCALCOMMITMENTSREFLECTOURFUNDAMENTALVALUESINADDITIONTOT
HESEPRINCIPALVALUESTHEUNIVERSITYEMBRACESTHROUGHITSSHAREDGOVE
RNANCEBODIESTHELONGHONOREDTRADITIONOFHONESTYANDMUTUALREGARDT
HATISANDSHOULDBEADEFININGCHARACTERISTICOFHIGHEREDUCATION

If you would like to save the plaintext to a file you are welcome to do so but it is not
required. If you do, have it done through the save dialog box and not the command
line. Also, these are all text files, the n-grams, the ciphertext, and the plaintext, so
you can change the filter to display “Text Files” and use the *.txt extension.

4. You will probably find that there are several facilities that you would like the map
class to have, feel free to add them to your map class. With that said, additions to
the map class should be functions that are of general use for all maps of any two data
types. Functionality that is specific to this application should be in the main and not
the map. For example, I found it useful to have a traversal function (in order, although
that did not matter) that took as a parameter a function that could update the key
and value of the node. I then wrote a function in the main to do the specific alteration
I wanted and simply applied the function to the map. Also, things like a decryption
function and a fitness measure calculation function were all done in the main.

5. In the reading on the hill-climb I mentioned that when calculating the fitness measure
there may be n-grams that are not in the list of n-grams, for example QQQ. So when
searching for n-grams you may encounter a failed search, in all likelihood you will. I
suggested using a frequency for these that is around 1/100. I have used values between
1/10 and 1/100 with equal success, so I would keep this value around that range. You
do not want to use 0, that is, skipping the ones that are not found. The reason for
this is that since you are taking the log of the relative frequencies, the values you are
adding to the fitness measure for each n-gram are relatively small negative numbers
(e.g. —15.632435) so a 0 addition would actually be increasing the fitness and hence
plaintexts with a lot of failed searches (i.e ones that are far from English) will have a
larger fitness and the bad key is more likely to be chosen. If on the other hand we add
on a large negative number, this will decrease the fitness, which is what we want, but
may decrease it too far. In this case a single failed search may make it less likely for the
key to be used than one that produces gibberish but has no failed searches. So we want
failed searches to decrease the fitness but not overwhelmingly. For moderately sized

Fall 2023 9

COSC 320 Project #2: Greedy Algorithms

ciphertexts a frequency between 1/10 and 1/100 has been shown to work in empirical
tests.

6. Also from the reading you know that the number of passes should be relatively small
and that you stop when the fitness measure no longer increases. Since this is not a set
number of iterations you do run the risk of an infinite loop of passes. I would put an
upper bound of passes on the program at say 100. For most cases this is more than
sufficient. From above you can see that the program needed only 4 passes to process
a ciphertext with about 2000 characters.

Fall 2023 10

