
COSC 117 Exam #3 Spring 2019

Name:

Write all of your responses on these exam pages.

1 Short Answer/Method Creation (10 Points Each)

1. Write a method that takes in a one-dimensional array of integers as its only parameter and sorts it
using bubble sort.

2. Write a method that takes in a one-dimensional array of integers and an integer target value as its only
two parameters. The method is to do the linear search for the target value in the array. If the target
value is found the method should return the index of the target value and if the element is not found
then −1 should be returned by the method.

1



COSC 117 Exam #3 Spring 2019

3. Write a method that will take in a single integer parameter sz, create an array of integers of size sz,
populate that array with random integers between −100 and 100, and finally return that array.

4. Write a method that takes in as a single parameter an ArrayList of integers and returns the average of
the array elements.

2



COSC 117 Exam #3 Spring 2019

5. Write a method that will take in a single two-dimensional array of integers as a parameter and flip it
vertically. So an input of the array

6 2 3 7 2 6 3
8 8 9 2 6 6 4
3 6 4 3 9 7 8
3 6 1 9 10 4 4
9 8 1 4 3 1 3

will produce an output of the array

9 8 1 4 3 1 3
3 6 1 9 10 4 4
3 6 4 3 9 7 8
8 8 9 2 6 6 4
6 2 3 7 2 6 3

This method should manipulate the array that is input as a parameter and not output anything, that
is, the return type should be void.

3



COSC 117 Exam #3 Spring 2019

6. Write a method that takes in a single parameter of a string, converts the string to all uppercase, removes
all spaces, removes all duplicate letters of the string, and finally returns the new string.

4



COSC 117 Exam #3 Spring 2019

7. Write a method that takes in a two-dimensional array of integers and an integer target value as its only
two parameters. The method is to do a linear search for the target value in the array. If the target value
is found the method should return a one-dimensional array containing the row index in the first cell
and the column index in the second cell. If the element is not found then the returned one-dimensional
array should have −1 in both cells. The method only needs to find the position of one occurrence of
the target, not all of them.

5



COSC 117 Exam #3 Spring 2019

2 Program Trace (15 Points)

For each input show the program output.

1 import java.util.Scanner;
2

3 public class Exam3TraceS19 {
4

5 public static void printArray(int A[], int s) {
6 for (int i = 0; i < s; i++)
7 System.out.print(A[i] + " ");
8 System.out.println();
9 }

10

11 public static void printArray(int A[][], int r,
int c) {

12 for (int i = 0; i < r; i++) {
13 for (int j = 0; j < c; j++)
14 System.out.print(A[i][j] + " ");
15 System.out.println();
16 }
17 }
18

19 public static void justDoIt(int T[],int a,int q) {
20 for (int i = 0; i < a; i++)
21 T[i] = a * i + q;
22 }
23

24 public static void justDoIt(int T[]) {
25 int temp = T[0];
26 for (int i = 1; i < 3; i++)
27 T[i - 1] = T[i];
28 T[2] = temp;
29 }
30

31 public static void main(String[] args) {
32 Scanner kb = new Scanner(System.in);
33 System.out.print("Size: ");
34 int s = kb.nextInt();
35 System.out.print("Offset: ");
36 int u = kb.nextInt();
37

38 int A[] = new int[s];
39 int B[] = new int[s];
40

41 justDoIt(A, s, u);
42 printArray(A, s);
43 printArray(B, s);
44 System.out.println("-----");
45 B = A;
46 A[s / 2] = 10 * s;
47 B[0] = s / 2;
48 printArray(A, s);
49 printArray(B, s);
50 System.out.println("-----");
51 justDoIt(A, s, u);
52

53 int d = s / 3;
54 if (d < s / 3.0)
55 d++;
56

57 int C[][] = new int[d][3];
58 for (int i = 0; i < s; i++)
59 C[i % d][i / d] = A[i];
60

61 printArray(C, d, 3);
62 System.out.println("-----");
63 if (C[1][0] > 0) {
64 printArray(C[1], 3);
65 System.out.println("-----");
66 }
67 int D[] = C[0];
68 printArray(D, 3);
69 justDoIt(D);
70 printArray(D, 3);
71 System.out.println("-----");
72 printArray(C, d, 3);
73 }
74 }

1. Size: 5
Offset: -10

2. Size: 7
Offset: -4

6



COSC 117 Exam #3 Spring 2019

3 Coding (25 Points)

In this exercise you will create a class structure named Student with a constructor and other 6 methods.
The data to be stored in the student are their first ans last names as two strings, their student ID as an
integer, a two-dimensional array of integers that will hold their scores, and an integer that tracks the number
of assignment scores that they have. The two dimensional array is to have 2 rows and 100 columns. Each
column will hold the score and worth of one assignment for the student. So if the student has three assignment
scores, say a 17 out of 20, a 42 out of 50 and a 78 out of 100 then the array would look like the following and
the integer holding the number of scores would have value 3.

17 42 78 0 0 · · ·
20 50 100 0 0 · · ·

Constructor Takes in two strings (first and last name) and an integer ID. Sets the parameter values to the
data values in the class.

addScore Takes two integer values, the first is the score the student earned and the second is the value of
the assignment. The method is to put these into the correct positions in the array of scores.

printScores Takes no parameters and prints out in a nice aligned two-column format the scores and values
in the array.

printNameID Prints out the name of the student in formal form and the ID of the student.

calculatePercentAvergae Calculates the average in percentage form of the student and returns that value
as a double.

calculateLetterGrade Calculates the letter grade of the student and returns a string of that letter grade.
The letter grade is determined on the 90-80-70-60 scale. That is, 90 and above is an A, 80 to 90 is a B,
70 to 80 is a C, 60 to 70 is a D, and below 60 is an F.

printStudentReport Prints out a student report containing the student’s formal name, ID, list of scores,
percentage average to 2 decimal places, and their letter grade.

The following is a main program which uses the Student class along with the output of the program.

1 public class Exam3Code {
2

3 public static void main(String[] args) {
4 Student stu = new Student("John", "Smith", 123456789);
5

6 stu.addScore(89, 100);
7 stu.addScore(7, 10);
8 stu.addScore(16, 20);
9 stu.addScore(72, 100);

10 stu.addScore(9, 10);
11 stu.addScore(5, 10);
12 stu.addScore(19, 20);
13 stu.addScore(171, 200);
14

15 stu.printNameID();
16 stu.printScores();
17 System.out.println(stu.calculatePercentAvergae());
18 System.out.println(stu.calculateLetterGrade());
19

20 System.out.println();
21 System.out.println("----------");
22 System.out.println();
23

24 stu.printStudentReport();
25 }
26 }

Program Run:

Name: Smith, John
Student ID: 123456789
Score Value
89 100
7 10
16 20
72 100
9 10
5 10
19 20
171 200

82.5531914893617
B

----------

Student Progress Report
Name: Smith, John
Student ID: 123456789

Scores
Score Value
89 100
7 10
16 20
72 100
9 10
5 10
19 20
171 200

Current Average: 82.55%
Current Letter Garde: B

7



COSC 117 Exam #3 Spring 2019

8



COSC 117 Exam #3 Spring 2019

9



COSC 117 Exam #3 Spring 2019

10


