
COSC 220 Exam #3

Name:

Write all of your responses on these exam pages. If you need extra space please use the backs of the pages.
The Short Answer questions are worth 10 points each. The Coding exercise is worth 50 points.

1 Short Answer

1. State the precise mathematical definitions of Big-O, Big-Ω, and Big-Θ. Also give the common meaning
of each, specifically, what bound does it indicate?

2. Fill out the time complexity table below.

Algorithm Best Average Worst

Bubble Sort

Insertion Sort

Selection Sort

Quick Sort

Merge Sort

Tree Sort with BST

Linear Search on Array

Binary Search on Sorted Array

Spring 2023 1

COSC 220 Exam #3

3. Write a recursive function that will compute the double factorial. The double factorial is defined as

n!! = n · (n− 2) · (n− 4) · · · 1

and 0!! = 1. For example, 3!! = 3, 4!! = 8, 5!! = 15, 6!! = 48, 7!! = 105,

4. Write a templated recursive binary search function for an array, assume the array is already sorted.

Spring 2023 2

COSC 220 Exam #3

5. Write four functions to be added to the (singularly linked) LinkedList class, the specifications to these
are below. Your implementation should be written as functions that are outside the specification.

void displayListRec();
void displayListRecRev();
void displayListRec(ListNode<T> *t);
void displayListRecRev(ListNode<T> *t);

• The functions displayListRec() and displayListRec(ListNode<T> *t) work together
to print out the list to the console in order.

• The functions displayListRecRev() and displayListRecRev(ListNode<T> *t) work
together to print out the list to the console in reverse order.

• displayListRec() is non-recursive, public, and does not print anything directly to the console.
It simply does the appropriate call to displayListRec(ListNode<T> *t).

• displayListRec(ListNode<T> *t) is recursive, private, and prints the data to the console.

• displayListRecRev() is non-recursive, public, and does not print anything directly to the
console. It simply does the appropriate call to displayListRecRev(ListNode<T> *t).

• displayListRecRev(ListNode<T> *t) is recursive, private, and prints.

With these added to the LinkedList class the following program will produce the following output. The
data of the ListNode is stored in field named value.

int main() {
LinkedList<int> list;
list.appendNode(7);
list.appendNode(2);
list.appendNode(4);
list.appendNode(1);
list.appendNode(9);
list.appendNode(8);
list.displayListRec();
cout << endl;
list.displayListRecRev();
cout << endl;
return 0;

}

Output:

7 2 4 1 9 8
8 9 1 4 2 7

Spring 2023 3

COSC 220 Exam #3

Spring 2023 4

COSC 220 Exam #3

2 Coding Exercise

This exercise is to code portions of a general templated binary search tree. The specification for the class is
below.

template <class T> class BinaryTree {
private:
class TreeNode {

public:
T value;
TreeNode *left;
TreeNode *right;

TreeNode(T nodeValue) {
value = nodeValue;
left = nullptr;
right = nullptr;

}
};

TreeNode *root;

void insert(TreeNode *&, TreeNode *&);
void destroySubTree(TreeNode *);
void deleteNode(T, TreeNode *&);
void makeDeletion(TreeNode *&);
void displayInOrder(TreeNode *) const;
int numberOfNodesRec(TreeNode *);

public:
BinaryTree();
˜BinaryTree();
BinaryTree(const BinaryTree &obj);
const BinaryTree operator=(const BinaryTree &right);

void displayInOrder() const;
void insertNode(T);
bool searchNode(T);
void remove(T);
int numberOfNodes();

};

• Constructor, destructor, copy constructor, and overloaded assignment do their usual jobs.

• destroySubTree removes the subtree starting at the input node.

• displayInOrder and its recursive counterpart prints the tree contents to the console using an in-
order traversal of the tree.

• insertNode and its recursive counterpart inserts the item in the correct place in the binary search
tree.

• searchNode returns true if the item is in the tree and false if not.

• remove invokes the deleteNode and makeDeletion functions to remove the item from the tree.
deleteNode recursively finds the node to delete and makeDeletion does the actual deletion of the
node.

• numberOfNodes and its recursive counterpart counts the total number of nodes in the tree.

• There are, of course, to be no memory leaks.

• If you find the need to add in another function, feel free to do so but you must, of course, write the
implementation of the functions you add.

• No inline code for these implementations.

Spring 2023 5

COSC 220 Exam #3

Your code for the constructor, destructor, and destroySubTree.

Spring 2023 6

COSC 220 Exam #3

Your code for the copy constructor and overloaded assignment operator.

Spring 2023 7

COSC 220 Exam #3

Your code for the displayInOrder and its recursive counterpart.

Spring 2023 8

COSC 220 Exam #3

Your code for the insertNode and its recursive counterpart.

Spring 2023 9

COSC 220 Exam #3

Your code for the searchNode function.

Spring 2023 10

COSC 220 Exam #3

Your code for the remove function and for its support functions deleteNode and makeDeletion.

Spring 2023 11

COSC 220 Exam #3

Your code for the numberOfNodes and its recursive counterpart.

Spring 2023 12

