
COSC 250 Exam #3 Fall 2016

Name:

Write all of your responses on the extra paper provided. Hand in this exam paper along
with your solutions, please place your name on the top of each page. Show all of your work.

1 ASC: A Simple Computer Exercises

Each question is worth 20 points.

1. For each of the following load functions, give the effective address of the memory loca-
tion being addressed and the contents of the accumulator resulting from the command.
Assume that the contents of memory and the index registers are as follows and that
all indirect indexing mode addresses are preindexed. Also, the symbol Z has value C
and Y has value 11, both in hexadecimal. Memory and register contents are also in
hexadecimal.

Address Contents
0 4
1 E
2 3
3 12
4 A
5 2
6 5
7 10
8 C
9 A
A 3
B 5
C 7
D 1
E 0
F 0
10 0
11 AA
12 1D
13 3
14 5
15 C1
16 D
17 8
18 2
19 F
1A 9
1B E

Index Register Contents
1 A
2 7
3 4

(a) LDA Z

Address Accumulator

(b) LDA* Z

Address Accumulator

(c) LDA Y, 2

Address Accumulator

(d) LDA* Z, 1

Address Accumulator

(e) LDA 8, 1

Address Accumulator

(f) LDA* 17

Address Accumulator

(g) LDA* 17, 3

Address Accumulator

1

COSC 250 Exam #3 Fall 2016

2. Trace through the following ASC program with the following inputs and give the
outputs of the program. Assume that the program is named prog.

ORG 0
START RWD

STA Z
LDX Z, 1
RWD
STA Z
LDX Z, 2
LDX =2, 3
LDA X, 2
STA Z
LDA =5

LOOP STA Y
ADD X, 1
WWD
TIX NEXT, 1

NEXT TDX LOOP, 2
LDA Y
WWD
LDA Z
WWD
HLT

X BSC 1A, 2, B, C1, 4, A, 3
Y BSS 1
Z BSS 1

END START

(a) ./prog 1 3

(b) ./prog 2 4

3. Construct the Symbol Table for the ASC program in the previous exercise. Then
assemble the code in both binary and hexadecimal form. The ASC opcode table is
below.

Mn. Op.

HLT 0
LDA 1
STA 2
ADD 3

Mn. Op.

TCA 4
BRU 5
BIP 6
BIN 7

Mn. Op.

RWD 8
WWD 9
SHL A
SHR B

Mn. Op.

LDX C
STX D
TIX E
TDX F

2

COSC 250 Exam #3 Fall 2016

2 NASM Coding

4. (25 points) Write the following program using the NASM assembly language. You may
use the atoi, itoa, iprint, iprintLF, sprint, sprintLF, slen, and quit subroutines that
we constructed in class, remember to add the %include ’functions.asm’ at the
beginning.

Fibonacci Number Program: The Fibonacci sequence starts with two ones and then
every number after that is the sum of the two previous entries in the sequence. So the
sequence is: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, We define Fib(n) to be the nth

Fibonacci number, specifically, Fib(1) = 1, Fib(2) = 1, Fib(3) = 2, Fib(4) = 3, Fib(5)
= 5, Fib(6) = 8, and so on. Write a program in NASM that computes the nth Fibonacci
number. Hard code the value of n into one of the registers so if the programmer would
change that single value the new Fibonacci number would be calculated. This should
be the only line that a programmer should have to change to get the altered result.

5. (25 points) Do one and only one of the following programs. Write the program using
the NASM assembly language. You may use the atoi, itoa, iprint, iprintLF, sprint,
sprintLF, slen, and quit subroutines that we constructed in class, remember to add the
%include ’functions.asm’ at the beginning.

(a) Factorial Program: A simple loop based program to calculate the factorial of a
number. Recall that n! = n · (n − 1) · (n − 1) · · · 2 · 1, if n is greater than 0,
and we define 0! = 1. Hard code the value of n into one of the registers so if
the programmer would change that single value the new factorial value would be
calculated. This should be the only line that a programmer should have to change
to get the altered result.

(b) Factoring Program: A brute-force factoring program that will find the first prime
factor of a number n. Hard code the value of n (the number to be factored) into
one of the registers so that if a programmer would change that single value the
altered factorization would result. This should be the only line that a programmer
should have to change to get the altered result.

(c) Greatest Common Divisor Program: Using the Euclidean Algorithm one can
find the Greatest Common Divisor of two numbers, without factoring them. The
algorithm is fairly simple, first write a = b ·q1+r1 where q1 and r1 are the quotient
and remainder, respectively, of a

b
. Then shift b to the other side of the equation,

shift the first remainder r1 to the position of b and repeat the process. Then
shift and repeat, continue until we get a remainder of 0. When that happens, our
answer is the previous remainder.

a = b · q1 + r1

b = r1 · q2 + r2

r1 = r2 · q3 + r3
...

rt = rt+1 · qt+2 + 0

3

COSC 250 Exam #3 Fall 2016

So gcd(a, b) = rt+1.

Hard code the values of a and b (the numbers to be gcded) into two of the registers.
If a programmer would change those numbers, reassemble and link the program,
then the result would be the GCD of the altered numbers.

4

