
COSC 250 Exam #3 Solutions Fall 2016

1 ASC: A Simple Computer Exercises

Each question is worth 20 points.

1. For each of the following load functions, give the effective address of the memory loca-
tion being addressed and the contents of the accumulator resulting from the command.
Assume that the contents of memory and the index registers are as follows and that
all indirect indexing mode addresses are preindexed. Also, the symbol Z has value C
and Y has value 11, both in hexadecimal. Memory and register contents are also in
hexadecimal.

Address Contents
0 4
1 E
2 3
3 12
4 A
5 2
6 5
7 10
8 C
9 A
A 3
B 5
C 7
D 1
E 0
F 0
10 0
11 AA
12 1D
13 3
14 5
15 C1
16 D
17 8
18 2
19 F
1A 9
1B E

Index Register Contents
1 A
2 7
3 4

(a) LDA Z

Address Accumulator
C 7

(b) LDA* Z

Address Accumulator
7 10

(c) LDA Y, 2

Address Accumulator
18 2

(d) LDA* Z, 1

Address Accumulator
D 1

(e) LDA 8, 1

Address Accumulator
12 1D

(f) LDA* 17

Address Accumulator
8 C

(g) LDA* 17, 3

Address Accumulator
9 A

1

COSC 250 Exam #3 Solutions Fall 2016

2. Trace through the following ASC program with the following inputs and give the
outputs of the program. Assume that the program is named prog.

ORG 0
START RWD

STA Z
LDX Z, 1
RWD
STA Z
LDX Z, 2
LDX =2, 3
LDA X, 2
STA Z
LDA =5

LOOP STA Y
ADD X, 1
WWD
TIX NEXT, 1

NEXT TDX LOOP, 2
LDA Y
WWD
LDA Z
WWD
HLT

X BSC 1A, 2, B, C1, 4, A, 3
Y BSS 1
Z BSS 1

END START

(a) ./prog 1 3

Solution:

7
12
D3
12
C1

(b) ./prog 2 4

Solution:

10
D1
D5
DF
D5
4

2

COSC 250 Exam #3 Solutions Fall 2016

3. Construct the Symbol Table for the ASC program in the previous exercise. Then
assemble the code in both binary and hexadecimal form. The ASC opcode table is
below.

Mn. Op.

HLT 0
LDA 1
STA 2
ADD 3

Mn. Op.

TCA 4
BRU 5
BIP 6
BIN 7

Mn. Op.

RWD 8
WWD 9
SHL A
SHR B

Mn. Op.

LDX C
STX D
TIX E
TDX F

Solution:

Sym. Add.
START 0
LOOP A
NEXT E
X 14
Y 1B
Z 1C
=2 1D
=5 1E

START RWD 1000 0 0 00 0000 0000 8000
STA Z 0010 0 0 00 0001 1100 201C
LDX Z, 1 1100 0 0 01 0001 1100 C11C
RWD 1000 0 0 00 0000 0000 8000
STA Z 0010 0 0 00 0001 1100 201C
LDX Z, 2 1100 0 0 10 0001 1100 C21C
LDX =2, 3 1100 0 0 11 0001 1101 C31D
LDA X, 2 0001 0 0 10 0001 0100 1214
STA Z 0010 0 0 00 0001 1100 201C
LDA =5 0001 0 0 00 0001 1110 101E

LOOP STA Y 0010 0 0 00 0001 1011 201B
ADD X, 1 0011 0 0 01 0001 0100 3114
WWD 1001 0 0 00 0000 0000 9000
TIX NEXT, 1 1110 0 0 01 0000 1110 E10E

NEXT TDX LOOP, 2 1111 0 0 10 0000 1010 F20A
LDA Y 0001 0 0 00 0001 1011 101B
WWD 1001 0 0 00 0000 0000 9000
LDA Z 0001 0 0 00 0001 1100 101C
WWD 1001 0 0 00 0000 0000 9000
HLT 0000 0 0 00 0000 0000 0000

X BSC 0000 0000 0001 1010 001A
BSC 0000 0000 0000 0010 0002
BSC 0000 0000 0000 1011 000B
BSC 0000 0000 1100 0001 00C1
BSC 0000 0000 0000 0100 0004
BSC 0000 0000 0000 1010 000A
BSC 0000 0000 0000 0011 0003

Y BSS 1 --- dddd
Z BSS 1 --- dddd

=2 0000 0000 0000 0010 0002
=5 0000 0000 0000 0101 0005

3

COSC 250 Exam #3 Solutions Fall 2016

2 NASM Coding

4. (25 points) Write the following program using the NASM assembly language. You may
use the atoi, itoa, iprint, iprintLF, sprint, sprintLF, slen, and quit subroutines that
we constructed in class, remember to add the %include ’functions.asm’ at the
beginning.

Fibonacci Number Program: The Fibonacci sequence starts with two ones and then
every number after that is the sum of the two previous entries in the sequence. So the
sequence is: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, We define Fib(n) to be the nth

Fibonacci number, specifically, Fib(1) = 1, Fib(2) = 1, Fib(3) = 2, Fib(4) = 3, Fib(5)
= 5, Fib(6) = 8, and so on. Write a program in NASM that computes the nth Fibonacci
number. Hard code the value of n into one of the registers so if the programmer would
change that single value the new Fibonacci number would be calculated. This should
be the only line that a programmer should have to change to get the altered result.

Solution:
1 ; Calculator (fibonacci)
2

3 %include ’functions.asm’
4

5 SECTION .text
6 global _start
7

8 _start:
9 mov eax, 12 ; store n in eax for calculation.

10 mov ecx, eax ; store in ecx for calculation.
11

12 mov eax, 1 ; Store answer for base cases
13 cmp ecx, 1 ; if ecx is 1 then halt
14 je finish ; jump to finish if ecx is 1
15

16 cmp ecx, 2 ; if ecx is 2 then halt
17 je finish ; jump to finish if ecx is 2
18

19 mov ebx, 1 ; Set fib(2) for calculation.
20 mov eax, 2 ; Set fib(3) for calculation.
21

22 continue:
23 dec ecx ; decrement ecx
24 cmp ecx, 2 ; if ecx is 2 then halt
25 je finish ; jump to finish if ecx is 0
26 mov edx, ebx ; Store ebx in edx
27 mov ebx, eax ; Store eax in ebx
28 add eax, edx ; add edx on to eax
29 jmp continue ; otherwise continue with the next number.
30

31 finish:
32 call iprintLF ; call our integer printing with linefeed function
33 call quit

5. (25 points) Do one and only one of the following programs. Write the program using
the NASM assembly language. You may use the atoi, itoa, iprint, iprintLF, sprint,
sprintLF, slen, and quit subroutines that we constructed in class, remember to add the
%include ’functions.asm’ at the beginning.

(a) Factorial Program: A simple loop based program to calculate the factorial of a
number. Recall that n! = n · (n − 1) · (n − 1) · · · 2 · 1, if n is greater than 0,

4

COSC 250 Exam #3 Solutions Fall 2016

and we define 0! = 1. Hard code the value of n into one of the registers so if
the programmer would change that single value the new factorial value would be
calculated. This should be the only line that a programmer should have to change
to get the altered result.

Solution:

1 ; Calculator (factorial)
2

3 %include ’functions.asm’
4

5 SECTION .data
6 msg1 db ’! = ’ ; a message string to correctly output result
7

8 SECTION .text
9 global _start

10

11 _start:
12 mov eax, 1 ; move 1 into eax
13 mov ecx, 10 ; move n into ecx
14 mov ebx, ecx ; Store n for printing later.
15

16 continue:
17 mul ecx ; multiply eax by ecx
18 dec ecx ; decrement ecx
19 cmp ecx, 0 ; if ecx is 0 then halt
20 jz finish ; jump to finish if ecx is 0
21 jmp continue ; otherwise continue with the next number.
22

23 finish:
24 mov ecx, eax ; store the result of n! in ecx
25 mov eax, ebx ; load n into eax for printing.
26 call iprint ; call our integer printing with linefeed function
27 mov eax, msg1 ; move our message string into eax
28 call sprint ; call our string print function
29 mov eax, ecx ; move our remainder into eax
30 call iprintLF ; call our integer printing with linefeed function
31

32 call quit

(b) Factoring Program: A brute-force factoring program that will find the first prime
factor of a number n. Hard code the value of n (the number to be factored) into
one of the registers so that if a programmer would change that single value the
altered factorization would result. This should be the only line that a programmer
should have to change to get the altered result.

Solution:

1 ; Calculator (factor)
2

3 %include ’functions.asm’
4

5 SECTION .data
6 msg1 db ’Factor: ’ ; a message string to correctly output result
7

8 SECTION .text
9 global _start

10

11 _start:
12 mov eax, 7429 ; move our number into eax
13 mov ecx, eax ; save the number in ecx
14 mov ebx, 2 ; move 2 into ebx
15 mov edx, 0 ; move 0 into edx
16

17 continue:

5

COSC 250 Exam #3 Solutions Fall 2016

18 div ebx ; divide eax by ebx
19 cmp edx, 0 ; check if the remaincder is 0
20 jz finish ; if so jump to the end
21

22 inc ebx ; increment ebx
23 mov eax, ecx ; reset eax
24 mov edx, 0 ; clear out edx
25

26 jmp continue ; jump to continue to test the next number
27

28 finish:
29 mov eax, msg1 ; move our message string into eax
30 call sprint ; call our string print function
31 mov eax, ebx ; move our remainder into eax
32 call iprintLF ; call our integer printing with linefeed function
33

34 call quit

(c) Greatest Common Divisor Program: Using the Euclidean Algorithm one can
find the Greatest Common Divisor of two numbers, without factoring them. The
algorithm is fairly simple, first write a = b ·q1+r1 where q1 and r1 are the quotient
and remainder, respectively, of a

b
. Then shift b to the other side of the equation,

shift the first remainder r1 to the position of b and repeat the process. Then
shift and repeat, continue until we get a remainder of 0. When that happens, our
answer is the previous remainder.

a = b · q1 + r1

b = r1 · q2 + r2

r1 = r2 · q3 + r3

r2 = r3 · q4 + r4
...

rt = rt+1 · qt+2 + 0

So gcd(a, b) = rt+1.

Hard code the values of a and b (the numbers to be gcded) into two of the registers.
If a programmer would change those numbers, reassemble and link the program,
then the result would be the GCD of the altered numbers.

Solution:

1 ; Calculator (gcd)
2

3 %include ’functions.asm’
4

5 SECTION .data
6 msg1 db ’gcd = ’ ; a message string to correctly output result
7

8 SECTION .text
9 global _start

10

11 _start:
12

13 mov eax, 391 ; move our first number into eax
14 mov ebx, 850 ; move our second number into ebx
15

16 continue:
17 div ebx ; divide eax by ebx

6

COSC 250 Exam #3 Solutions Fall 2016

18 cmp edx, 0 ; check if the remainder is 0, if so GCD was last remainder
19 je finish ; jump to the end and print result
20

21 mov eax, ebx ; move the last divisor (ebx) to eax
22 mov ebx, edx ; move the remainder to the divisor (ebx)
23 mov edx, 0 ; set the memory contents of edx to 0
24

25 jmp continue ; go to the next step in the Euclidean Algorithm
26

27 finish:
28 mov eax, msg1 ; move our message string into eax
29 call sprint ; call our string print function
30 mov eax, ebx ; move our last remainder into eax
31 call iprintLF ; call our integer printing with linefeed function
32

33 call quit

7

