Name: .

Write your responses on the extra paper provided. Hand in this exam paper along with your solutions, please place your name on the top of each page. Show all of your work.

1 Short Answer

Answer all of the following questions, each is worth 10 points.

- 1. Draw a diagram for the von Neumann model of a uniprocessor computer.
- 2. State Moore's Law and the modified version of Moore's Law.
- 3. Convert the hexadecimal number A67FD1 to both binary and octal.
- 4. Compute A67FD1 + B12AC and A67FD1 B12AC, give your answer in hexadecimal.
- 5. Find the 2's complement of 0111010011000000, the most significant bit is the sign bit.
- 6. Using just NAND gates, construct the circuits for the AND, OR, and NOT gates.
- 7. Construct the truth tale for both the half adder and the full adder. Also, give their logical expressions.
- 8. Given the following truth table, write the logical expension for the table in both canonical SOP and POS forms. Then using the SOP form, construct the circuit for this table.

A	В	C	P
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

- 9. Take the truth table from the previous exercise, construct the K-Map for this table, give the reduced logical expression, and draw the minimized circuit.
- 10. Draw the circuit diagram, in the gate form, for a clocked SR flip-flop.
- 11. Using clocked JK flip-flops, construct a 4-bit counter.
- 12. Using clocked D flip-flops, construct a 4-bit register.

13. For the following sequential circuit, give the next-state, output, and transition tables. Also draw the state diagram for the circuit. The flip-flop in the circuit is a D flip-flop.

14. Give the output of the following NASM program, named final, given the input of

./final 1 2 3 4 5 6 7 8 9 10

The subroutines atoi, itoa, iprint, iprintLF, sprint, sprintLF, slen, and quit are from the %include 'functions.asm' at the beginning, and are those we went over in class.

1	%include 'f	unctions.asm'	42	call	iprin	ntLF	83	jmp	loop
2			43				84		
3	SECTION .da	ta	44	mov	eax,	[n]	85	done:	
4	msgl db 'Co	ontents: ', Oh	45	mov	ecx,	2	86	call	writearray
5	msg2 db ′′	, Oh	46	mov	edx,	0	87		
6			47	div	ecx		88	finish:	
7	SECTION .bs	S	48	mov	ecx,	eax	89	call	quit
8	n resd 1		49	mov	esi,	0	90		
9	m resd 1		50	mov	ebx,	A	91	writearray:	
10	A resd 100		51	mov	edx,	A	92	push	eax
11			52				93	push	ebx
12	SECTION .te	xt	53	mov	eax,	[n]	94	push	ecx
13	global _st	art	54	mov	edx,	1	95	push	edx
14			55	sub	eax,	edx	96		
15	_start:		56	mov	edx,	4	97	mov	ecx, [n]
16	pop	ecx	57	mul	edx		98	mov	edx, A
17	cmp	ecx, 1	58	add	eax,	A	99	mov	eax, msgl
18	je	finish	59	mov	edx,	eax	100	call	sprint
19	dec	ecx	60				101		
20	mov	[n], ecx	61	loop:			102	.writeloop:	
21			62	cmp	esi,	ecx	103	cmp	ecx, 0
22	pop	eax	63	je	done		104	je	.return
23	mov	edx, A	64	call	write	earray	105	mov	eax, [edx]
24			65				106	call	iprint
25	readloop:		66	mov	eax,	[ebx]	107	mov	eax, msg2
26	cmp	ecx, 0	67	mov	edi,	[edx]	108	call	sprint
27	je	DoSomething	68	mov	[edx]	, eax	109		
28	pop	eax	69	mov	[ebx]	, edi	110	add	edx, 4
29	call	atoi	70				111	dec	ecx
30	mov	[edx], eax	71	add	ebx,	4	112	jmp	.writeloop
31	add	edx, 4	72	mov	eax,	edx	113		
32			73	mov	edi,	16	114	.return:	
33	dec	ecx	74	add	eax,	edi	115	mov	eax, msg2
34	jmp	readloop	75	mov	edi,	[m]	116	call	sprintLF
35			76	mov	edx,	0	117		
36	DoSomething	:	77	div	edi		118	pop	edx
37	mov	eax, [n]	78	mov	eax,	A	119	pop	ecx
38	mov	edx, 4	79	add	eax,	edx	120	pop	ebx
39	mul	edx	80	mov	edx,	eax	121	pop	eax
40	mov	[m], eax	81				122		
41			82	inc	esi		123	ret	

- 15. For each of the following, state the name of the type of addressing used in the command.
 - (a) LDA Z
 - (b) LDA* Z, 3
 - (c) LDA Z, 1
 - (d) LDA \star Z
- 16. For each of the following load functions, give the effective address of the memory location being addressed and the contents of the accumulator resulting from the command. Assume that the contents of memory and the index registers are as follows and that all indirect indexing mode addresses are preindexed. Also, the symbol Z has value C and Y has value 11, both in hexadecimal. Memory and register contents are also in hexadecimal.

Address	Contents
0	4
1	Е
2	3
$ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ A \\ B \\ C \\ D \\ E \\ F \\ 10 \\ \end{array} $	$\begin{array}{c} E \\ 3 \\ 12 \\ A \\ 2 \\ 5 \\ 10 \\ C \\ A \\ 3 \\ 5 \\ 7 \\ 1 \\ 0 \\ 0 \\ 0 \\ \end{array}$
4	А
5	2
6	5
7	10
8	С
9	А
А	3
В	5
С	7
D	1
Е	0
F	0
10	0
11	AA
12	1D
11 12 13 14	3
14	5
15 16	C1
16	D
17	8
18	2
19	$ \begin{array}{c} 0 \\ AA \\ 1D \\ 3 \\ 5 \\ C1 \\ D \\ 8 \\ 2 \\ F \\ 9 \\ E \end{array} $
1A	9
1B	E

Index Register	Contents
1	А
2	7
3	4

(a) LDA Y

Address	Accumulator

(b) LDA* Z

Address	Accumulator

(c) LDA* Y, 2

Address	Accumulator

(d) LDA* Z, 3

Address	Accumulator

(e) LDA Z, 1

Address	Accumulator

2 Circuit Analysis

Do one and only one of the following exercises. This question is worth 50 points.

17. Do the following for the circuit below.

- (a) Construct the truth table for the circuit.
- (b) Write the circuit's logical function in canonical SOP form.
- (c) Write the circuit in minterm form.
- (d) Write the circuit in maxterm form.
- (e) Write the K-Map for the circuit, show the groupings you would use, and then construct the minimized logical circuit function in SOP form.
- (f) Using the K-Map work, write the circuit diagram of the minimized circuit.
- 18. For the following circuit, the top flip-flop is a T flip-flop and the bottom flip-flop is a JK flip-flop.

- (a) Create the transition tables for the two flip-flops.
- (b) Create the transition table.
- (c) Create the next state table.
- (d) Create the output table.
- (e) Create the next state/output table.
- (f) Create the state diagram.

Flip-Flop Characteristic Tables

Q(t)	SR	Q(t+1)
0	00	0
0	01	0
0	10	1
0	11	
1	00	1
1	01	0
1	10	1
1	11	

Q(t)	JK	Q(t+1)
0	00	0
0	01	0
0	10	1
0	11	1
1	00	1
1	01	0
1	10	1
1	11	0

Q(t)	D	Q(t+1)
0	0	0
0	1	1
1	0	0
1	1	1

Q(t)	T	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

Flip-Flop Excitation Tables

Q(t)	Q(t+1)	SR	D	JK	T
0	0	0d	0	0d	0
0	1	10	1	1d	1
1	0	01	0	d1	1
1	1	d0	1	d0	0