1. (10 Points) Convert $(3673)_{10}$ to bases, r = 2, r = 5, and r = 16. Solution:

 $(3673)_{10} = (111001011001)_2 = (104143)_5 = (E59)_{16}$

2. (10 Points) Convert (36.7)₁₀ to bases, r = 2, r = 3, and r = 16.
Solution:

$$(36.7)_{10} = (100100.10110)_2 = (1100.2002)_3 = (24.B3)_{16}$$

3. (5 Points) Convert the binary number 11100110.01001 to octal and hexadecimal. Solution:

$$(11100110.01001)_2 = (346.22)_8 = (E6.48)_{16}$$

4. (5 Points) Convert the hexadecimal number C23A.4E to binary and octal.

Solution:

$$(C23A.4E)_{16} = (1100001000111010.0100111)_2 = (141072.234)_8$$

5. (10 Points) Take the two binary numbers a = 110010011 and b = 1001000111 and calculate a + b, b - a, and $a \cdot b$, using binary arithmetic.

Solution:

$$a + b = 1111011010$$

 $b - a = 10110100$
 $a \cdot b = 111001010111000101$

6. (10 Points) Take the two hexadecimal numbers a = 7A34 and b = BAD and calculate a + b, and a - b, using hexadecimal arithmetic.

Solution:

$$\begin{array}{rcl} a+b &=& 85E1\\ a-b &=& 6E87 \end{array}$$

7. (5 Points) Find the 1's and 2's complement of (114)₁₀, using byte storage with one sign bit.
Solution: (114)₁₀ = (1110010)₂, so the 1's complement, using byte storage and a single sign bit, is

$$(-114)_{10} = 10001101$$

and the 2's complement is

$$(-114)_{10} = 10001110$$

8. (5 Points) Convert $(61)_{10}$ to binary and then using the 2's complement of $(114)_{10}$ and addition, calculate 61 - 114 in binary form.

Solution:

$$(61)_{10} = 00111101$$

 $(61 - 114)_{10} = 11001011 = (-53)_{10}$

9. (50 Points) Do the following for the circuit below.

(a) Construct the truth table for the circuit. Solution:

\mathbf{A}	в	\mathbf{C}	\mathbf{X}
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- (b) Write the circuit's logical function in canonical SOP form. Solution: X = A'B'C' + A'B'C + AB'C' + ABC'
- (c) Write the circuit's logical function in canonical POS form. Solution: X = (A + B' + C)(A + B' + C')(A' + B + C')(A' + B' + C')
- (d) Write the circuit in minterm form. Solution: $X = \Sigma m(0, 1, 4, 6)$
- (e) Write the circuit in maxterm form. Solution: $X = \Pi M(2, 3, 5, 7)$
- (f) Write the K-Map for the circuit, show the groupings you would use, and then construct the minimized logical circuit function in both SOP form and POS form. Solution:

	A B				
C	00	01	11	10	
0	1		1	1	
1	1				

Use two groups, column 00, and the 110/100 cells. Equation (1) is SOP and equation (2) is POS.

$$X = A'B' + AC' \tag{1}$$

$$X = (A + B')(A' + C')$$
(2)

(g) Using the K-Map work, write the circuit diagram of the minimized circuit. Solution:

(h) Do the Quine-McCluskey procedure on the original circuit, show all steps in the derivation. Construct the minimized logical circuit function in SOP form.
 Solution:

<u>000</u>	00-	$(0,1) \\ (0,4) \\ (4,6)$	PI_1		0	1	4	6
001	-00	(0,4)	PI_2	PI_1	×	\otimes		
<u>100</u>	1-0	(4,6)	PI_3	PI_2	×		×	
110				PI_3			×	\otimes

So PI_1 and PI_3 are essential and we get all of the minterms with those two, giving X = A'B' + AC'.