
COSC 320 Exam #1 — Solutions

1. (10 Points) State the precise mathematical definitions for O(g(n)), Ω(g(n)), and Θ(g(n)).

Solution:

f(n) is O(g(n)) if there exist positive numbers c and N such that f(n) ≤ cg(n) for all n ≥ N .

f(n) is Ω(g(n)) if there exist positive numbers c and N such that f(n) ≥ cg(n) for all n ≥ N .

f(n) is Θ(g(n)) if there exist positive numbers c1, c2, and N such that c1g(n) ≤ f(n) ≤ c2g(n) for all
n ≥ N .

2. (10 Points) Prove that f(n) = 2
√

lg(n) is O(na) for any positive number a.

Solution:

We need to find numbers c and N such that 2
√

lg(n) ≤ cna for all n ≥ N and any positive number a.
Following the below series of inequalities,

2
√

lg(n) ≤ cna

lg
(
2
√

lg(n)
)

≤ lg (cna)√
lg(n) ≤ lg(c) + a lg(n) let c = 1√
lg(n) ≤ a lg(n)

1

a
≤

√
lg(n)

1

a2
≤ lg(n)

21/a
2

≤ n

So we can let c = 1 and N = 21/a
2

.

3. (10 Points) Find an exact closed form formula for the number of times the inner loop body is executed
and state the computational complexity of the loop.

(a) for (int cnt = 0, i = 1; i <= n; i *= 2)
for (j = 1; j <= n; j++)

cnt++;

Solution: If we let t be the number of iterations of the outside loop then the outside loop is done
as long as 2t ≤ n, hence t ≤ lg(n) and thus t = ⌊lg(n)⌋. The number of iterations of the outside
loop is one more then this since the first iteration is when i = 1 = 20. So the total number of
iterations of the outside loop is ⌊lg(n)⌋+ 1. The inside loop is done n times for each iteration of
the outside loop, hence the total number of times the inner loop body is done is n(⌊lg(n)⌋ + 1).
Since n(⌊lg(n)⌋+ 1) = n⌊lg(n)⌋+ n ≤ 2n⌊lg(n)⌋ ≤ 2n lg(n) the complexity is O(n lg(n)).

(b) for (int cnt = 0, i = 1; i <= n; i *= 2)
for (j = 1; j <= i; j++)

cnt++;

Solution: The outside loop here is the same as the previous exercise and the last iteration of the
loop is when i = 2⌊lg(n)⌋. The inside loop is done i times on each iteration of the outside i loop.
So the number of times the inside loop body is done is,

1 + 2 + 4 + · · ·+ 2⌊lg(n)⌋ =

⌊lg(n)⌋∑
i=0

2i = 2⌊lg(n)⌋+1 − 1

For the complexity note that 2⌊lg(n)⌋+1 − 1 < 2⌊lg(n)⌋+1 = 2 · 2⌊lg(n)⌋ ≤ 2 · 2lg(n) = 2n hence the
complexity is O(n).

Fall 2023 1



COSC 320 Exam #1 — Solutions

4. (10 Points) Draw the following tree after

(a) A delete by merging of 10. Use the successor node.

(b) A delete by copy of 10. Use the predecessor node.

10

5

1

2

7

20

15

11

13

12 14

42

25 50

45

Solution:

Delete by Merge

50
45

42
25

20
15

14
13

12
11

7
5

2
1

Delete by Copy

50
45

42
25

20
15

14
13

12
11

7
5

2
1

5. (10 Points) Implement the displayPreOrder recursive function for this class.

Solution:

template<class T>
void BinaryTree<T>::displayPreOrder(TreeNode *nodePtr) const {

if (nodePtr) {
cout << nodePtr->value << endl;
displayPreOrder(nodePtr->left);
displayPreOrder(nodePtr->right);

}
}

Fall 2023 2



COSC 320 Exam #1 — Solutions

6. (10 Points) Write both the specification and implementation of an iterative preorder display function.

Solution:

void iterativePreorder();

template<class T>
void BinaryTree<T>::iterativePreorder() {

deque<TreeNode*> stack;

TreeNode *nodePtr = root;
if (nodePtr) {

stack.push_back(nodePtr);
while (!stack.empty()) {

nodePtr = stack.back();
stack.pop_back();
cout << nodePtr->value << endl;
if (nodePtr->right)

stack.push_back(nodePtr->right);
if (nodePtr->left)

stack.push_back(nodePtr->left);
}

}
}

7. (10 Points) Write both the specification and implementation of a recursive function to count the
number of leaves in a binary tree. Include a non-recursive function that initiates the recursive version
that could be called from the main.

Solution:

int numLeaves();
int numLeavesrec(TreeNode*);

template<class T>
int BinaryTree<T>::numLeaves() {

return numLeavesrec(root);
}

template<class T>
int BinaryTree<T>::numLeavesrec(TreeNode *t) {

if (!t)
return 0;

else if (!t->left && !t->right)
return 1;

else
return numLeavesrec(t->left) + numLeavesrec(t->right);

}

Fall 2023 3



COSC 320 Exam #1 — Solutions

8. (10 Points) Write both the specification and implementation of an iterative function to count the
number of leaves in a binary tree.

Solution: You can use the iterative preorder code from the previous exercise and simply change the
visit function to a leaf counter. Another approach would be to use the slightly simpler breath first
traversal of the tree with a leaf counter for the visit function.

int numLeaveIter();

template<class T>
int BinaryTree<T>::numLeaveIter() {

int count = 0;
deque<TreeNode*> queue;
TreeNode *t = root;

if (t) {
queue.push_back(t);
while (!queue.empty()) {

t = queue.back();
queue.pop_back();
if (!t->left && !t->right)

count++;
if (t->left)

queue.push_back(t->left);
if (t->right)

queue.push_back(t->right);
}

}
return count;

}

9. (10 Points) Write both the specification and implementation of a function that will load the values
of a tree into a vector so that the resulting vector is sorted. If you write this recursively include a
non-recursive function that initiates the recursive version that could be called from the main.

Solution:

void loadVector(vector<T>&);
void loadVectorRec(TreeNode*, vector<T>&);

template<class T>
void BinaryTree<T>::loadVector(vector<T> &v) {

loadVectorRec(root, v);
}

template<class T>
void BinaryTree<T>::loadVectorRec(TreeNode *t, vector<T> &v) {

if (t) {
loadVectorRec(t->left, v);
v.push_back(t->value);
loadVectorRec(t->right, v);

}
}

Fall 2023 4



COSC 320 Exam #1 — Solutions

10. (10 Points) Write both the specification and implementation of a function that will create a complete
binary tree with each node holding the level it is at, root level will be 1, it’s children 2, and so on.
The function should take in a single parameter that specifies the height of the final complete tree. You
may assume that the tree is empty before calling this function. If you write this recursively include a
non-recursive function that initiates the recursive version that could be called from the main.

Solution:

void buildCompleteTree(int);
void buildCompleteTreeRec(TreeNode*&, int, int);

template<class T>
void BinaryTree<T>::buildCompleteTree(int ht) {

buildCompleteTreeRec(root, 1, ht);
}

template<class T>
void BinaryTree<T>::buildCompleteTreeRec(TreeNode *&t, int h, int max) {

if (h > max)
return;

TreeNode *newNode = new TreeNode;
newNode->value = h;
t = newNode;
buildCompleteTreeRec(t->left, h + 1, max);
buildCompleteTreeRec(t->right, h + 1, max);

}

Fall 2023 5


