
COSC 320 Exam #3

Name:

Write all of your responses on these exam pages. If you need extra space please use the backs of the pages.

1 Theory

1. (5 Points) Draw the representation of this following graph as an adjacency list, as if it were a linked
list of linked lists.

a b c

d e f

g h

Fall 2023 1



COSC 320 Exam #3

2. (5 Points) Draw the representation of this following graph as an adjacency matrix. Assume the row
and column designations for the vertices are in alphabetical order.

a b c

d e f

g h

Fall 2023 2



COSC 320 Exam #3

3. (5 Points) Create the spanning tree of the following graph using a Depth First Search. As usual,
process the nodes and edges in alphabetical order.

a b c

d e f

g h

Fall 2023 3



COSC 320 Exam #3

4. (5 Points) Create the spanning tree of the following graph using a Breadth First Search. As usual,
process the nodes and edges in alphabetical order.

a b c

d e f

g h

Fall 2023 4



COSC 320 Exam #3

5. (10 Points) Go through all the steps of Dijkstra’s Algorithm to determine the shortest path from vertex
a to all other vertices. Create a chart of the steps as we did in class and is represented in the text.

a b c

d e f

g h

5
2

7

6

9

4

3

7

4

6

2

6

8

3

7

2

Fall 2023 5



COSC 320 Exam #3

6. (10 Points) Go through all the steps of Ford’s Algorithm to determine the shortest path from vertex
a to all other vertices. Create a chart of the steps as we did in class and is represented in the text. As
usual, process the nodes and edges in alphabetical order.

a b c

d e f

g h

5
2

7

6

9

4

3

7

4

6

2

6

8

3

7

2

Fall 2023 6



COSC 320 Exam #3

7. (10 Points) Go through all the steps of Kruskal’s Algorithm to determine the minimal spanning tree
of the following graph.

a b c

d e f

g h

5
2

7

6

9

4

3

7

4

6

2

6

8

3

7

2

Fall 2023 7



COSC 320 Exam #3

2 Coding

1. (25 Points) Code any two sorts from the following list.

(a) Merge Sort

(b) Quick Sort

(c) Comb Sort

(d) Shell Sort

(e) Radix Sort for non-negative integer data.

(f) Count Sort for positive integer data.

(g) Bucket Sort for floating point data in the
range [0, 1).

Fall 2023 8



COSC 320 Exam #3

Fall 2023 9



COSC 320 Exam #3

2. (25 Points) Given the following code framework, code any two of the following. All implementations
are to be templated.

(a) Depth first search of the given graph. This will print out a list of edges to the console in order
of the edge traversal for this algorithm. The graph is stored as a ListOfLists object in adjacency
list form (not an adjacency matrix).

void depthFirstSearch(ListOfLists<T> G)

(b) Breadth first search of the given graph. This will print out a list of edges to the console in order
of the edge traversal for this algorithm. The graph is stored as a ListOfLists object in adjacency
list form (not an adjacency matrix).

void breadthFirstSearch(ListOfLists<T> G)

(c) Dijkstra’s algorithm to find the shortest path. This will return a vector of weighted nodes that
will store the node name and the minimal distance from the start node to the node itself. The
graph is stored as a list (vector) of weighted edge objects. The parameter start is the initial vertex
to start from.

vector<wnode<T>> DijkstraAlgorithm(vector<wedge<T>> G, T start)

(d) Ford’s algorithm to find the shortest path. This will return a vector of weighted nodes that will
store the node name and the minimal distance from the start node to the node itself. The graph
is stored as a list (vector) of weighted edge objects. The parameter start is the initial vertex to
start from.

vector<wnode<T>> FordAlgorithm(vector<wedge<T>> G, T start)

(e) Kruskal’s algorithm to find the minimal spanning tree. This will return a vector of weighted edges
that will store the edge list for the construction of the minimal spanning tree. The graph is stored
as a list (vector) of weighted edge objects.

vector<wedge<T>> KruskalAlgorithm(const vector<wedge<T>> &G)

template<class T>
class edge {
public:

T f, t;

edge(T from, T to) {
f = from;
t = to;

}
};

template<class T>
class wnode {
public:

T name;
double weight;

wnode(T t, double w = 0) {
name = t;
weight = w;

}

friend ostream& operator <<(ostream &strm, const wnode &obj) {
strm << obj.name << " : " << obj.weight;
return strm;

}

};

template<class T>

Fall 2023 10



COSC 320 Exam #3

class wedge {
public:

T from, to;
double weight;

wedge(T f, T t, double w = 0) {
from = f;
to = t;
weight = w;

}

bool operator<(const wedge &rhs) {
return weight < rhs.weight;

}

bool operator>(const wedge &rhs) {
return weight > rhs.weight;

}

bool operator==(const wedge &rhs) {
return (weight == rhs.weight) && (from == rhs.from) &&
(to == rhs.to);

}

friend ostream& operator <<(ostream &strm, const wedge &obj) {
strm << obj.from << " -> " << obj.to << " : " << obj.weight;
return strm;

}
};

You may also assume that you have the ListOfLists structure we used in class, specification is
below.

template<class T>
class ListOfLists {
protected:

vector<vector<T>> list;

public:
ListOfLists(int rows = 0, int cols = 0);
virtual ˜ListOfLists();

int size();
void addRow();
void addRows(int rows = 1, int cols = 0);
void push_back(vector<T>);
vector<T>& operator[](const int&);

};

You may also assume that you have the following functions at your disposal without creating them.

• int findVertexPos(ListOfLists<T> G, T v) returns the position of the vertex v in the
ListOfLists structure for graph G.

• int getWnodePos(const vector<wnode<T>> &nodes, T node) returns the position of
the weighted node node in the list of weighted nodes nodes.

• int findMinWnodePos(const vector<wnode<T>> &nodes) returns the position of the
minimum weighted node in the list of weighted nodes nodes.

• bool detectCycles(ListOfLists<T> G) that will return true if there is a cycle in the
graph and false otherwise.

Fall 2023 11



COSC 320 Exam #3

Fall 2023 12



COSC 320 Exam #3

Fall 2023 13


