
COSC 320 Final Exam — Solutions

1 Complexity

1. (10 Points) State the precise mathematical definitions for O(g(n)), Ω(g(n)), and Θ(g(n)).

Solution:

f(n) is O(g(n)) if there exist positive numbers c and N such that 0 ≤ f(n) ≤ cg(n) for all n ≥ N .

f(n) is Ω(g(n)) if there exist positive numbers c and N such that f(n) ≥ cg(n) ≥ 0 for all n ≥ N .

f(n) is Θ(g(n)) if there exist positive numbers c1, c2, and N such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for
all n ≥ N .

2. (10 Points) Using the definition of O(g(n)), prove that 2n3 − n2 + 4n+ 7 is O(n3).

Solution: Need to find constants c, n0 > 0 such that 2n3 − n2 + 4n+ 7 ≤ n3 for all n ≥ n0. In other
words, 2− 1

n + 4 1
n2 + 7 1

n3 ≤ c. Since 1
n is decreasing we can choose c = 14 and n0 = 1. Then we have

2− 1
n + 4 1

n2 + 7 1
n3 ≤ 2 + 1

n + 4 1
n2 + 7 1

n3 ≤ 14 = c.

3. (10 Points) Using the definition of O(g(n)), prove that 2n is O(n!).

Solution: Need to find constants c, n0 > 0 such that 2n ≤ cn! for all n ≥ n0.

2n = 2 · 2 · 2 · 2 · · · 2 ≤ 2 · 2 · 3 · 4 · · ·n = 2 · 1 · 2 · 3 · 4 · · ·n = 2n!

So we can let c = 2 and n0 = 1.
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4. (20 Points) Complexity Analysis with the Master Theorem:

(a) Use the Master Theorem to find the complexity of a function that takes an array of size n and
does two recursive calls. The first recursive call uses the first quarter of the array and the second
call uses the last quarter of the array. The other work done in the function is a single loop that
multiplies every third entry by 2. Simplify all logarithms.

Solution: In this case a = 2, b = 4, and f(n) = n/3.

• Is there an ϵ > 0 with n/3 = O(nlog4(2)−ϵ) = O(n1/2−ϵ)? No, since 1/2− ϵ < 1.

• Is there a k ≥ 0 with n/3 = Θ(nlog4(2) lgk(n)) = Θ(n1/2 lgk(n))? No, any positive power of n
will overtake any power of a logarithm.

• Is there an ϵ > 0 with n/3 = Ω(nlog4(2)+ϵ) = Ω(n1/2+ϵ)? Yes, let ϵ = 1/4. Also, af(n/b) =
2((n/4)/3) = n/6, so if we let c = 0.9 < 1, we have cf(n) = 0.9 · n/3 = 0.3n > n/6. So the
regularity condition is satisfied and the complexity of this function is Θ(n).

(b) For the merge sort, what are the values of a, b, and f(n)? Use these and the Master Theorem to
derive the complexity of the merge sort. Simplify all logarithms.

Solution: For the merge sort, a = 2, b = 2, and f(n) = n.

• Is there an ϵ > 0 with n = O(nlog2(2)−ϵ) = O(n1−ϵ)? No, since 1− ϵ < 1.

• Is there a k ≥ 0 with n = Θ(nlog2(2) lgk(n)) = Θ(n lgk(n))? Yes, let k = 0. Hence the
complexity is Θ(nlog2(2) lgk+1(n)) = Θ(n lg(n)).
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5. Short Answer: (25 Points)

(a) What are the criteria for a Red-Black tree?

Solution:

i. Every node is either red or black.

ii. The root is black.

iii. Every leaf (NIL) is black.

iv. If a node is red, then both its children are black.

v. For each node, all simple paths from the node to descendant leaves contain the same number
of black nodes.

(b) What are the criteria for an AVL tree?

Solution: An AVL tree (originally called an admissible tree) is one in which the height of the
left and right subtrees of every node differ by at most one.

(c) What are the height bounds for a Red-Black tree?

Solution: lg(n+ 1) ≤ h ≤ 2 lg(n+ 1)

(d) What are the height bounds for an AVL tree, assuming all nodes have counts of 1?

Solution: lg(n+ 1) ≤ h ≤ 1.44 lg(n+ 2)− 0.328

(e) What is the complexity of node insertion into a Red-Black tree?

Solution: O(lg(n))

(f) What is the complexity of the deletion of a node from a Red-Black tree?

Solution: O(lg(n))

(g) What is the complexity of the depth-first search/traversal?

Solution: O(|V |+ |E|)
(h) What is the complexity of the breadth-first search/traversal?

Solution: O(|V |+ |E|)
(i) What is the complexity of Dijkstra’s algorithm for finding the shortest path from one vertex to

all the other vertices in a graph?

Solution: O(|V |2)
(j) What is the complexity of Ford’s algorithm for finding the shortest path from one vertex to all

the other vertices in a graph?

Solution: O(|V ||E|)
(k) What is the complexity of Kruskal’s algorithm for finding a minimal spanning tree for a graph?

Solution: O(|E| lg(|V |))
(l) What is the complexity of Dijkstra’s algorithm for finding a minimal spanning tree for a graph?

Solution: O(|E||V |)
(m) What is the complexity of the Ford-Fulkerson algorithm for finding the maximum flow through a

network?

Solution: O(|V ||E|2)
(n) What is the complexity of the Quick Sort in the best and worst cases?

Solution: Best is O(n lg(n)) and worst is O(n2).

(o) What is the complexity of the Heap Sort in the best and worst cases?

Solution: Both are O(n lg(n))

(p) What is the complexity of the Merge Sort in the best and worst cases?

Solution: Both are O(n lg(n))

(q) Which sorts, that we discussed in class and lab, run in linear time?

Solution: Count, Radix, and Bucket.
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2 Algorithms

1. (20 Points) The following exercises deal with the following AVL tree.

(a) Starting with the original tree, draw the AVL tree after 48 has been inserted.

Solution:

99
81

74
50

49
48

42
35

23
17

16

(b) Starting with the original tree, draw the AVL tree after 33 has been inserted.

Solution:

99
81

74
50

49
42

35
33

23
17

16
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(c) Starting with the original tree, draw the AVL tree after 16 has been removed.

Solution:

99
81

74
50

49
42

35
23

17

(d) Starting with the original tree, draw the AVL tree after the insertion of 37 and the deletion of 17,
in that order.

Solution:

99
81

74
50

49
42

37
35

23
16

Spring 2024 5



COSC 320 Final Exam — Solutions

2. (15 Points) Given the following weighted graph, use Kruskal’s algorithm to find the minimum spanning
tree of the graph. Display the final resulting minimum spanning tree. Edges with the same weights
are to be processed alphabetically.

Solution:
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3. (15 Points) Given the following directed weighted graph, use Dijkstra’s algorithm to find the shortest
path to all vertices from the starting vertex a . Display each iteration, active vertex, and weight label
in chart form as was done in the text and in class.

Solution:

a 0
b 23
c 4
d 18
e 3
f 14
g 18
h 14
i 2
j 4
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4. (5 Points) The following array will be used as a hash table with open addressing and a linear probe.
The hash function will be h(x) = x % sz where sz is the size of the array (10 in this case).

Insert the following values into the hash table in this order: 37, 42, 22, 51, 73, 66, 25, 11.

Solution:

51

42

22

73

25

66

37

11

5. (5 Points) The following array will be used as a hash table with open addressing and a quadratic probe.
The hash function will be h(x) = x % sz where sz is the size of the array (10 in this case).

Insert the following values into the hash table in this order: 33, 74, 23, 17, 82, 53, 99, 10.

Solution:

99

82

23

33

74

10

17

53
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6. (5 Points) The following array will be used as a hash table with open addressing and double hashing
for the probe. The hash function will be h(x) = x % sz where sz is the size of the array (10 in this
case). The probe hash function is hp(x) = (x/100) % sz where sz is the size of the array (10 in this
case).

Insert the following values into the hash table in this order: 115, 273, 516, 908, 418, 312, 798.

Solution:

312

418

273

115

516

908

798
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3 Coding

1. (15 Points) Write either the Merge Sort or the Quick Sort for a templated array, do only one of these.

Solution:

template <class T>
void merge(T A[], T Temp[], int startA, int startB, int end) {
int aptr = startA, bptr = startB, i = startA;

while (aptr < startB && bptr <= end)
if (A[aptr] < A[bptr])
Temp[i++] = A[aptr++];

else
Temp[i++] = A[bptr++];

while (aptr < startB)
Temp[i++] = A[aptr++];

while (bptr <= end)
Temp[i++] = A[bptr++];

for (i = startA; i <= end; i++)
A[i] = Temp[i];

}

template <class T> void mergeSort(T A[], T Temp[], int start, int end) {
if (start < end) {

int mid = (start + end) / 2;
mergeSort(A, Temp, start, mid);
mergeSort(A, Temp, mid + 1, end);
merge(A, Temp, start, mid + 1, end);

}
}

template <class T> void mergeSort(T A[], int size) {
T *Temp = new T[size];
mergeSort(A, Temp, 0, size - 1);
delete[] Temp;

}

////////////////////////////////////////////////////////////////

template <class T> void quickSort(T A[], int left, int right) {
int i = left, j = right, mid = (left + right) / 2;
T pivot = A[mid];

while (i <= j) {
while (A[i] < pivot)

i++;

while (A[j] > pivot)
j--;

if (i <= j) {
T tmp = A[i];
A[i] = A[j];
A[j] = tmp; i++; j--;

}
}

if (left < j)
quickSort(A, left, j);

if (i < right)
quickSort(A, i, right);

}

template <class T> void quickSort(T A[], int size) {
quickSort(A, 0, size - 1);

}
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2. (15 Points) Write the insert and delete by merge functions for a templated (unbalanced) binary search
tree. The delete by merge should merge the subtree from the immediate successor of the deleted node.
The following is the class specification you will be working in. Create implementations for all the
functions except for the destroySubTree function.

Solution:

template <class T>
void BinaryTree<T>::insert(TreeNode *&nodePtr, TreeNode *&newNode) {

if (nodePtr == nullptr)
nodePtr = newNode;

else if (newNode->value < nodePtr->value)
insert(nodePtr->left, newNode);

else
insert(nodePtr->right, newNode);

}

template <class T> void BinaryTree<T>::insertNode(T item) {
TreeNode *newNode = nullptr;
newNode = new TreeNode;
newNode->value = item;
newNode->left = newNode->right = nullptr;
insert(root, newNode);

}

///////////////////////////////

template <class T> void BinaryTree<T>::remove(T item) {
deleteNode(item, root);

}

template <class T> void BinaryTree<T>::deleteNode(T item, TreeNode *&nodePtr) {
if (item < nodePtr->value)
deleteNode(item, nodePtr->left);

else if (item > nodePtr->value)
deleteNode(item, nodePtr->right);

else
makeDeletion(nodePtr);

}

template <class T> void BinaryTree<T>::makeDeletion(TreeNode *&nodePtr) {
TreeNode *tempNodePtr = nullptr;

if (nodePtr == nullptr)
cout << "Cannot delete empty node.\n";

else if (nodePtr->right == nullptr) {
tempNodePtr = nodePtr;
nodePtr = nodePtr->left;
delete tempNodePtr;

} else if (nodePtr->left == nullptr) {
tempNodePtr = nodePtr;
nodePtr = nodePtr->right;
delete tempNodePtr;

}
else {
tempNodePtr = nodePtr->right;
while (tempNodePtr->left)
tempNodePtr = tempNodePtr->left;

tempNodePtr->left = nodePtr->left;
tempNodePtr = nodePtr;
nodePtr = nodePtr->right;
delete tempNodePtr;

}
}
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3. (15 Points) Write the three binary tree traversal functions, inorder, preorder, and postorder. These
are to all to include a function pointer parameter that will apply the function to each element of the
tree. These traversal functions should fit into the same framework as the given specification in the
previous exercise.

Also write a call to to these functions, as if in the main, that will print the value in the node to the
console screen, this parameter function pointer should be done as a lambda expression.

Solution:

protected:
void InOrderRec(Node *, void (*fct)(T &)) const;
void PreOrderRec(Node *, void (*fct)(T &)) const;
void PostOrderRec(Node *, void (*fct)(T &)) const;

public:
void InOrder(void (*fct)(T &)) const { InOrderRec(root, fct); }
void PreOrder(void (*fct)(T &)) const { PreOrderRec(root, fct); }
void PostOrder(void (*fct)(T &)) const { PostOrderRec(root, fct); }

template <class T>
void BinaryTree<T>::InOrderRec(TreeNode *nodePtr, void (*fct)(T &)) const {
if (nodePtr) {
InOrderRec(nodePtr->left, fct);
fct(nodePtr->value);
InOrderRec(nodePtr->right, fct);

}
}

template <class T>
void BinaryTree<T>::PreOrderRec(TreeNode *nodePtr, void (*fct)(T &)) const {

if (nodePtr) {
fct(nodePtr->value);
PreOrderRec(nodePtr->left, fct);
PreOrderRec(nodePtr->right, fct);

}
}

template <class T>
void BinaryTree<T>::PostOrderRec(TreeNode *nodePtr, void (*fct)(T &)) const {

if (nodePtr) {
PostOrderRec(nodePtr->left, fct);
PostOrderRec(nodePtr->right, fct);
fct(nodePtr->value);

}
}

////////////////////////////////////////

tree.PreOrder([](int &a) { cout << a << " "; });
tree.InOrder([](int &a) { cout << a << " "; });
tree.PostOrder([](int &a) { cout << a << " "; });
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4. (15 Points) Write either the depth-first or breadth-first search for the templated graph, do only one
of these. The functions should be written as if in the main program. Below is the specification to the
Graph class that these functions are to work with. You may use the the functionality of this class, any
structure from the STL and any functions from the algorithm library. Outside of that, you need to
write the full code. The output can simply be a printout of the list of edges to the console screen.

Solution:

template <class T> void depthFirstSearch(Graph<T> &G) {
vector<T> vlist = G.getVertexList();
vector<int> num(vlist.size());
vector<pair<T, T>> Edges;
int count = 1;

while (find(num.begin(), num.end(), 0) < num.end()) {
int pos = find(num.begin(), num.end(), 0) - num.begin();
DFS(G, num, vlist, pos, count, Edges);

}
for (pair<T, T> e : Edges)
cout << e.first << " - " << e.second << endl;

}

template <class T>
void DFS(Graph<T> &G, vector<int> &num, vector<T> &vlist, int pos, int &count,

vector<pair<T, T>> &Edges) {
vector<T> Adj = G.getAdjacentList(vlist[pos]);
num[pos] = count++;

for (size_t i = 0; i < Adj.size(); i++) {
T vert = Adj[i];
size_t vPos = find(vlist.begin(), vlist.end(), vert) - vlist.begin();
if (vPos < vlist.size() && num[vPos] == 0) {
Edges.push_back({vlist[pos], vert});
DFS(G, num, vlist, vPos, count, Edges);

}
}

}

////////////////////////////////////////

template <class T> void breadthFirstSearch(Graph<T> &G) {
vector<T> vlist = G.getVertexList();
vector<int> num(vlist.size());
vector<pair<T, T>> Edges;
int count = 1;
deque<T> queue;

while (find(num.begin(), num.end(), 0) < num.end()) {
size_t pos = find(num.begin(), num.end(), 0) - num.begin();
num[pos] = count++;
queue.push_back(vlist[pos]);
while (!queue.empty()) {

T vert = queue.front();
queue.pop_front();
vector<T> Adj = G.getAdjacentList(vert);
for (size_t i = 0; i < Adj.size(); i++) {
size_t AdjvPos =

find(vlist.begin(), vlist.end(), Adj[i]) - vlist.begin();
if (num[AdjvPos] == 0) {
num[AdjvPos] = count++;
queue.push_back(Adj[i]);
Edges.push_back({vert, Adj[i]});

}
}

}
}
for (pair<T, T> e : Edges)

cout << e.first << " - " << e.second << endl;
}
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