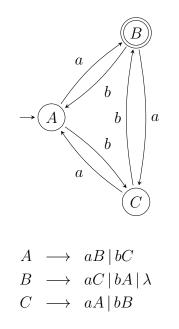
1. (10 Points) Give a regular grammar and DFA for the language,

 $L = \{ w \mid (n_a(w) - n_b(w)) \mod 3 = 1 \}$

Solution:



- 2. (15 Points Each) For any two of the following three languages, make a conjecture whether or not it is regular. Then prove your conjecture.
 - (a) $L = \{a^n b^p \mid |n p| = 5\}$

Solution: By way of contradiction, assume that L is regular and let m be the positive integer guaranteed by the pumping lemma. Let $w = a^{m+5}b^m$, since |w| = 2m + 5 > m we can write w = xyz with $|y| \ge 1$ and $|xy| \le m$. So $y = a^k$ for some $1 \le k \le m$. If we pump in one copy of y then $w_2 = a^{m+5+k}b^m$ and |n-p| = |m+5+k-m| = k+5 > 5, hence $w_2 \notin L$, which contradicts our assumption that L was regular.

- (b) $L = \{vwv \mid v, w \in \{a, b\}^* \text{ and } |v| = 3\}$ Solution: $L = L((aaa + aab + aba + abb + baa + bab + bba + bbb)(a + b)^*(aaa + aab + aba + abb + baa + bab + bba + bbb))$
- (c) $L = \{a^n \mid n = k^3 \text{ for some integer } k\}$

Solution: By way of contradiction, assume that L is regular and let m be the positive integer guaranteed by the pumping lemma. Let $w = a^{m^3}$, since $|w| = m^3 > m$ we can write w = xyz with $|y| \ge 1$ and $|xy| \le m$. So $y = a^k$ for some $1 \le k \le m$. If we pump in one copy of y then $w_2 = a^{m^3+k}$. The value of $m^3 + k$ cannot be a perfect cube, since $m^3 + k > m^3$ the first possible perfect cube larger than m^3 is $(m+1)^3 = m^3 + 3m^2 + 3m + 1$. For $m^3 + k = m^3 + 3m^2 + 3m + 1$, $k = 3m^2 + 3m + 1 > m$, so $w \notin L$, which contradicts our assumption that L was regular.

- 3. (15 Points Each) For any two of the following three languages, find context free grammars for them.
 - (a) $L = \{a^n b^p c^t \mid p = 2n + 3t\}$ Solution:

$$\begin{array}{rccc} S & \longrightarrow & AB \\ A & \longrightarrow & aAbb \,|\, \lambda \\ B & \longrightarrow & bbbBc \,|\, \lambda \end{array}$$

(b) $L = \{a^n b^p c^t \mid t > n + p\}$ Solution:

$$\begin{array}{rccc} S & \longrightarrow & ACc \\ A & \longrightarrow & aAc \,|\, B \\ B & \longrightarrow & bBc \,|\, \lambda \\ B & \longrightarrow & Cc \,|\, \lambda \end{array}$$

(c) $L = \{a^n b^p \mid p \le n \le 4p\}$ Solution:

 $S \longrightarrow aSb \mid aaSb \mid aaaSb \mid aaaaSb \mid \lambda$

4. (10 Points) Show that the following grammar is ambiguous.

$$S \longrightarrow abAB$$

$$A \longrightarrow bAB | b | \lambda$$

$$B \longrightarrow BAa | A | a | \lambda$$

Solution: There are many words that will produce two different parse trees, for example w = ab, w = aba, and w = abb

$$S \Rightarrow abAB \Rightarrow abB \Rightarrow ab$$

and

$$S \Rightarrow abAB \Rightarrow abB \Rightarrow abA \Rightarrow ab$$

or

$$S \Rightarrow abAB \Rightarrow abB \Rightarrow aba$$

and

$$S \Rightarrow abAB \Rightarrow abB \Rightarrow abBAa \Rightarrow abAa \Rightarrow aba$$

or

$$S \Rightarrow abAB \Rightarrow abbB \Rightarrow abb$$

and

$$S \Rightarrow abAB \Rightarrow abbABB \Rightarrow abbBB \Rightarrow abbB \Rightarrow abb$$

5. (30 Points) Consider the following grammar, G. In each conversion step below, follow the conversion or removal algorithm discussed in class.

$$S \longrightarrow abAB$$

$$A \longrightarrow BC | b | \lambda$$

$$B \longrightarrow BAa | A | a | \lambda$$

$$C \longrightarrow Ab$$

(a) Remove all λ -productions. Solution: $V_N = \{A, B\}$

$$S \longrightarrow abAB | abA | abB | ab$$

$$A \longrightarrow BC | C | b$$

$$B \longrightarrow BAa | Ba | Aa | A | a$$

$$C \longrightarrow Ab | b$$

(b) Remove all unit-productions from your result in 5a. Solution: The unit production dependency graph is $B \to A \to C$ so to

$$\begin{array}{rccc} S & \longrightarrow & abAB \mid abA \mid abB \mid ab\\ A & \longrightarrow & BC \mid b\\ B & \longrightarrow & BAa \mid Ba \mid Aa \mid a\\ C & \longrightarrow & Ab \mid b \end{array}$$

we add

$$\begin{array}{rcl} A & \longrightarrow & Ab \,|\, b \\ B & \longrightarrow & BC \,|\, b \\ B & \longrightarrow & Ab \,|\, b \end{array}$$

removing duplicates,

$$S \longrightarrow abAB | abA | abB | ab$$

$$A \longrightarrow BC | Ab | b$$

$$B \longrightarrow BAa | Ba | Aa | Ab | BC | a | b$$

$$C \longrightarrow Ab | b$$

(c) Remove all useless productions from your result in 5b.

Solution: All productions are useful, each variable has productions to terminal strings and the dependency graph from S reaches all other variables.

(d) Convert the grammar into Chomsky Normal Form from your result in 5c.Solution: First convert the terminals that are needed,

$$S \longrightarrow B_{a}B_{b}AB | B_{a}B_{b}A | B_{a}B_{b}B | B_{a}B_{b}$$

$$A \longrightarrow BC | AB_{b} | b$$

$$B \longrightarrow BAB_{a} | BB_{a} | AB_{a} | AB_{b} | BC | a | b$$

$$C \longrightarrow AB_{b} | b$$

$$B_{a} \longrightarrow a$$

$$B_{b} \longrightarrow b$$

Now combine variables to finish,

$$S \longrightarrow D_{2}B | D_{1}A | D_{1}B | B_{a}B_{b}$$

$$D_{1} \longrightarrow B_{a}B_{b}$$

$$D_{2} \longrightarrow D_{1}A$$

$$A \longrightarrow BC | AB_{b} | b$$

$$B \longrightarrow D_{3}B_{a} | BB_{a} | AB_{a} | AB_{b} | BC | a | b$$

$$D_{3} \longrightarrow BA$$

$$C \longrightarrow AB_{b} | b$$

$$B_{a} \longrightarrow a$$

$$B_{b} \longrightarrow b$$