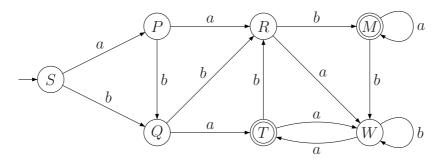
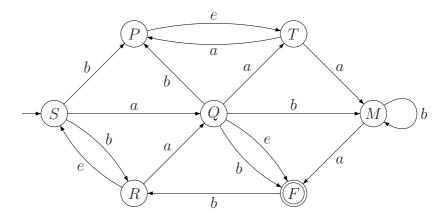
Exam #1 Key

1. (20 Points) Consider the following DFA, A.

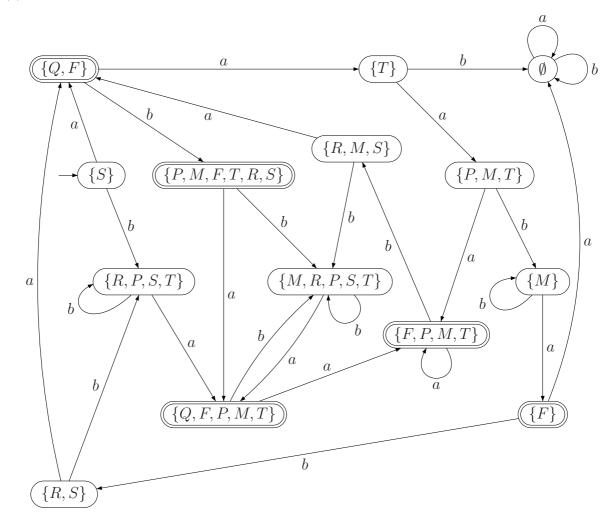


- (a) Determine if the automaton accepts the following words. Display the sequence of states for each word.
 - i. baabbba S Q T W W W W T (Accepted)
 - ii. *aaaaa* S P R W T W (Not Accepted)
 - iii. *aabaabb* S P R M M M W W (Not Accepted)
- (b) Is $L(bbaa(baba)^*) \subset L(A)$? Why or why not? Yes, bbaa lands in T and the sequence baba from T lands back in T.
- (c) Is $\{b^n a^m \mid n, m > 0 \text{ and } n \text{ and } m \text{ are even}\} \subset L(A)$? Why or why not? No, bbbbaa is not accepted.
- 2. (25 Points) Consider the following NFA, A.

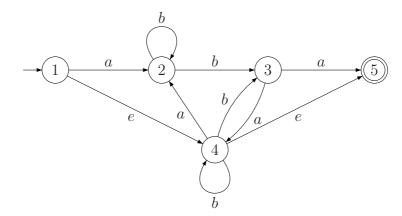


- (a) Determine if the automaton accepts the following words. If it does, display the sequence of states that drive the word to an acceptable state.
 - i. *aababb* Not Accepted
 - ii. babba Accepted S R Q F R Q F
 - iii. baba Accepted S R Q M F
 - iv. aaaaa Accepted S Q T P T M F
- (b) Is $\{baaa(ba)^n \mid n > 0\} \subset L(A)$? Why or why not? Yes, baaa through S P T P T M F lands in F, then ba through R Q F lands back in F.

(c) Convert this NFA to a DFA.

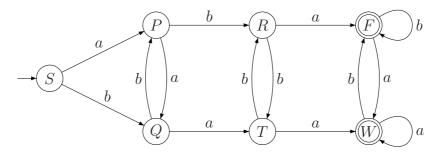


3. (20 Points) Convert the following NFA to a regular expression,

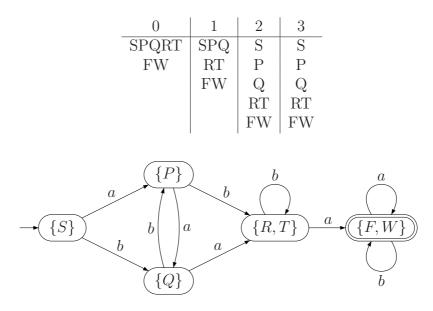


Solution: $ab^*ba \cup (e \cup ab^*ba)(b \cup (b \cup ab^*b)a)^*(e \cup (b \cup ab^*b)a)$.

4. (20 Points) Minimize the number of states for the the following DFA,



Solution: The equivalence class chart and the converted automaton are



5. (25 Points) Prove that the language $L = \{a^t b^n \mid n > 0, \text{ and either } t = n \text{ or } t = 2n\}$ is not regular. Make sure you verify all statements completely.

Solution: Assume that L is a regular and let n be the value from the pumping lemma. Let $w = a^{2n}b^n$, then w = xyz with $|xy| \le n$ and y non-empty. Thus, $xy = a^k$ for some $1 \le k \le n$ and so $y = a^p$ for some $1 \le p \le n$. But $xy^2z = a^{2n+p}b^n \notin L$, since $2n+p \ne 2n$ and $2n+p \ne n$, which contradicts L being regular.