Spring 2012

Exam #2 Key

Math 362

- 1. Grammars and Parsing: (25 Points) Consider the context-free grammar G with $\Sigma = \{a, b\}$ and rules
 - (1) $S \longrightarrow AB$
 - $(2) \quad S \longrightarrow BA$
 - $(3) \quad A \longrightarrow aAb$
 - $(4) \quad B \longrightarrow bBa$
 - $(5) \quad B \longrightarrow e$
 - (6) $A \longrightarrow e$
 - (a) Construct a left-most derivation for the word *aaabbbba*. Put the rule number over the arrow at each step.

Solution: $S \xrightarrow{(1)} AB \xrightarrow{(3)} aAbB \xrightarrow{(3)} aaAbbB \xrightarrow{(3)} aaaAbbbB \xrightarrow{(6)} aaabbbBa \xrightarrow{(6)} aaabbbbBa \xrightarrow{(4)} aaabbbbbaa$

(b) Construct the parse tree for your derivation of *aaabbbba*. Solution:

(c) Is the language L(G) ambiguous? If so, prove it. Solution: Yes, e has two different parse trees.

(d) Is L(G) regular? If so write L(G) as a regular expression and if not describe L(G) in words.

Solution: No, L(G) is not regular, $L(G) = \{w \mid w = a^n b^{n+m} a^m\} \cup \{w \mid w = b^n a^{n+m} b^m\}$

2. **Push-Down Automata and Determinism:** (25 Points) Consider the following PDA, A. A has starting state s, accepts by empty stack, $\Sigma = \{a, b, c\}$ and $\Gamma = \{a, b, d\}$

- (1) ((s, e, e), (q, d))
- (2) ((q, a, e), (q, b))
- (3) ((q, b, e), (q, a))
- (4) ((q, c, e), (t, e))
- (5) ((t, a, a), (t, e))
- (6) ((t, b, b), (t, e))
- $\begin{array}{ll} (7) & ((t,e,d),(r,e)) \\ (8) & ((r,a,e),(r,e)) \end{array}$
- (9) ((r, b, e), (r, e))
- (a) Use a transition/state/input/stack table (as done in class) to test the strings *aabcabbabab* and *aabcaab*.

Solution: *aabcabbabab*, is accepted,

Transition	State	Input	Stack	
_	s	aabcabbabab	e	
1	q	aabcabbabab	d	
2	q	abcabbabab	bd	
2	q	b cabbabab	bbd	
3	q	cabbabab	abbd	
4	t	abbabab	abbd	
5	t	bbabab	bbd	
6	t	babab	bd	
6	t	abab	d	
7	r	abab	e	
8	r	bab	e	
9	r	ab	e	
8	r	b	e	
9	r	e	e	

and aabcaab, is not accepted,

Transition	State	Input	Stack
—	s	aabcaab	e
1	q	aabcaab	d
2	q	abcaab	bd
2	q	bcaab	bbd
3	q	caab	abbd
4	t	aab	abbd
5	t	ab	bbd

(b) Describe L(A).

Solution:

 $L(A) = \{wcw'u \mid u \in \Sigma^* \text{ and } w' \text{ is the reverse of } w \text{ with } a$'s and b's interchanged}

(c) Is the automaton deterministic? Why or why not?

Solution: Yes, the automaton is deterministic. There are no transitions of the form ((s, e, e), (q, e)) and there are no compatible transitions.

- 3. True & False: (20 Points) Mark each of the following as being either true or false.
 - (a) True Any language that can be represented as the concatenation of a context-free language and a regular language can be accepted by a push-down automaton.
 - (b) False The intersection of two context-free languages is context-free.
 - (c) True The Kleene star of a context-free language is context-free.
 - (d) False The union of a context-free language with a regular language is regular.
 - (e) True The concatenation of a context-free language and a regular language is context-free.
 - (f) True The complement of a deterministic context-free language is deterministic context-free.
 - (g) False The complement of a context-free language can be represented as a finite union of context-free languages.
 - (h) False In order for a language to be non-context-free the alphabet of that language must contain at least 3 distinct characters.
 - (i) True The complement of a regular language is deterministic context-free.
 - (j) True The intersection of a context-free language and a regular language is context-free.
- 4. Context-Free Languages: (20 Points) Show that the language $L = \{a^k b^{2k} c^{3k} \mid k = 0, 1, 2, ...\}$ is not context-free.

Solution: By way of contradiction assume that L is context-free. Then by the context-free pumping lemma we know that there exists a fixed positive integer n such that any word $w \in L$, with length $|w| \ge n$, can be written as the concatenation w = uvxyz with vy not empty, $|vxy| \le n$ and $uv^ixy^iz \in L$ for each $i \ge 0$. Let us choose the word $w = a^n b^{2n} c^{3n}$ where n is the positive integer guaranteed by the pumping lemma for language L. Since vy is not empty and $|vxy| \le n$ we know that either $vy = a^j$, $vy = a^jb^r$, $vy = b^j$, $vy = b^jc^r$ or $vy = c^j$ where $0 < j, r \le n$. We have the following cases,

- (a) If $vy = a^j$ then by the pumping lemma $uv^2xy^2z = a^{n+j}b^{2n}c^{3n} \in L$ which is absurd since 2(n+j) > 2n.
- (b) If $vy = a^j b^r$ then by the pumping lemma $uv^2 xy^2 z = a^{n+j} b^{2n+r} c^{3n} \in L$ which is absurd since 3(n+j) > 3n.
- (c) If $vy = b^j$ then by the pumping lemma $uv^2xy^2z = a^nb^{2n+j}c^{3n} \in L$ which is absurd since 2n+j > 2n.
- (d) If $vy = b^j c^r$ then by the pumping lemma $uv^2 xy^2 z = a^n b^{2n+j} c^{3n+r} \in L$ which is absurd since 2n + j > 2n.
- (e) If $vy = c^j$ then by the pumping lemma $uv^2xy^2z = a^nb^{2n}c^{3n+j} \in L$ which is absurd since 3n+j > 3n.

Hence, the language L is not context-free.

- 5. Chomsky Normal Form: (20 Points) Convert the following grammar to Chomsky Normal Form.
 - $(1) \quad S \longrightarrow AB$
 - (2) $S \longrightarrow BA$
 - $(3) \quad A \longrightarrow aAb$
 - $(4) \quad B \longrightarrow bBa$
 - $(5) \quad B \longrightarrow e$
 - $(6) \quad A \longrightarrow e$

Solution: In the first algorithm we have $E = \{A, B, S\}$ so we add in

- $S \longrightarrow A$
- $S \longrightarrow B$
- $A \longrightarrow ab$
- $B \longrightarrow ba$

and remove 5 and 6. In the second algorithm we have $NT(A) = \{A\}, NT(B) = \{B\}$, and $NT(S) = \{S, A, B\}$. So we add in

- $\begin{array}{c} S \longrightarrow aAb\\ S \longrightarrow bBa\\ S \longrightarrow ab \end{array}$
- $S \longrightarrow ab$ $S \longrightarrow ba$

and remove $S \longrightarrow A$ and $S \longrightarrow B$. In the final algorithm we keep 1 and 2 from the original list and replace the rest. Our final list of rules is

 $\begin{array}{l} S \longrightarrow AB \\ S \longrightarrow BA \\ A \longrightarrow X_a X_{Ab} \\ X_{Ab} \longrightarrow AX_b \\ X_a \longrightarrow a \\ X_b \longrightarrow b \\ B \longrightarrow X_b X_{Ba} \\ X_{Ba} \longrightarrow BX_a \\ A \longrightarrow X_a X_b \\ B \longrightarrow X_b X_a \\ S \longrightarrow X_a X_{Ab} \\ S \longrightarrow X_b X_{Ba} \\ S \longrightarrow X_a X_b \\ S \longrightarrow X_b X_a \end{array}$