Name:

Write all of your responses on the extra exam paper provided. Turn in all work and this exam paper.

- 1. Short Answer: (5 Points Each): Answer all of the following.
 - (a) Define countably infinite.
 - (b) Define a partial Turing computable function.
 - (c) Define a decidable language.
 - (d) Define a Turing enumerable language.
 - (e) State the Church-Turing thesis.
- 2. **Determinism:** (25 Points) Show that the language $L = \{wcw^R \mid w \in \{a, b\}^*\}$ is deterministic context-free.
- 3. Turing Machines: (25 Points Each)
 - (a) Write a complete set of transitions for a Turing Machine that semidecides the language $L = \{wcw^R \mid w \in \{a, b\}^*\}.$
 - (b) Using the primitives R, L, R_{\sqcup} , L_{\sqcup} , R_{\Box} , L_{\Box} , R_{\triangleright} , L_{\triangleright} , $R_{\bar{\wp}}$, $L_{\bar{\wp}}$, R_0 , L_0 , R_1 , L_1 , $R_{\bar{0}}$, $L_{\bar{0}}$, $R_{\bar{1}}$, $L_{\bar{1}}$, R_a , L_a , $R_{\bar{a}}$, $L_{\bar{a}}$, R_b , L_b , $R_{\bar{b}}$, $L_{\bar{b}}$, Shl, Shr, A (add one), and S (subtract one) construct a Turing machine (in diagram form) that takes a word $w \in \{a, b\}^*$ and outputs the number of a's in binary form. For example, an input of $\triangleright \underline{b}bbabbaaba$ produces $\triangleright \underline{1}00$. The Turing machine A (add one) will add one to a number string given that the read/write head is on the space after the number and it returns the read/write head to the space after the number before it halts.

The Turing machine S (subtract one) will subtract one from a number string given that the read/write head is on the space after the number and it returns the read/write head to the space after the number before it halts.

4. Infinity: (10 Points): Prove that the cardinality of the power set of a set A, $\mathcal{P}(A)$, is strictly greater than the cardinality of A.