Spring 2012

Exam #3 Key

1. Short Answer: (5 Points Each): Answer all of the following.

- (a) Define countably infinite. A set A is countably infinite if it can be put into a one-to-one correspondence with a subset of the natural numbers.
- (b) Define a partial Turing computable function. This is a function f such that there exists a Turing machine M with M(w) = f(w) if $w \in Dom(f)$ and $M(w) \uparrow$ if $w \notin Dom(f)$.
- (c) Define a decidable language. This is a language L such that there exists a Turing machine with M(w) = 1 if $w \in L$ and M(w) = 0 if $w \notin L$.
- (d) Define a Turing enumerable language. This is the same as a semi-decidable language. That is, there exists a Turing machine with M(w) = 1 if $w \in L$ and $M(w) \uparrow$ if $w \notin L$.
- (e) State the Church-Turing thesis. The Church-Turing thesis states that every computer algorithm can be implemented as a Turing machine.
- 2. Determinism: (25 Points) Show that the language $L = \{wcw^R \mid w \in \{a, b\}^*\}$ is deterministic context-free.

Solution: Using f as the favorable state we have the following transitions.

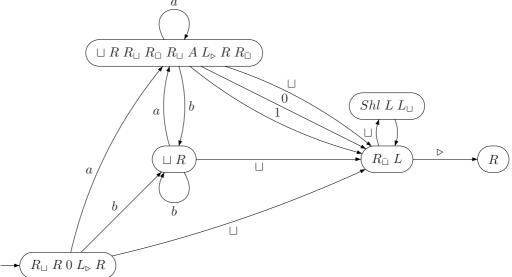
- $(1) \quad ((s,a,e),(s,a))$
- $(2) \quad ((s, b, e), (s, b))$
- $(3) \quad ((s, c, e), (q, e))$
- $(4) \quad ((q, a, a), (q, e))$
- (5) ((q, b, b), (q, e))
- (6) ((q, \$, e), (f, e))
- 3. Turing Machines: (25 Points Each)
 - (a) Write a complete set of transitions for a Turing Machine that semidecides the language $L = \{wcw^R \mid w \in \{a, b\}^*\}$.

Solution: Let h be the only halting state.

(b) Using the primitives R, L, R_□, L_□, R_□, L_□, R_▷, L_▷, R_▷, L_◦, R₀, L₀, R₁, L₁, R₀, L₀, R₁, L₁, R_a, L_a, R_ā, L_ā, R_b, L_b, R_b, L_b, R_b, L_b, Shl, Shr, A (add one), and S (subtract one) construct a Turing machine (in diagram form) that takes a word w ∈ {a, b}* and outputs the number of a's in binary form. For example, an input of ▷<u>bbbabbaaba</u> produces ▷<u>1</u>00.

The Turing machine A (add one) will add one to a number string given that the read/write head is on the space after the number and it returns the read/write head to the space after the number before it halts. The Turing machine S (subtract one) will subtract one from a number string given that the read/write head is on the space after the number and it returns the read/write head to the space after the number before it halts.

Solution:



4. Infinity: (10 Points): Prove that the cardinality of the power set of a set A, $\mathcal{P}(A)$, is strictly greater than the cardinality of A.

Solution: Since there is an injection $g : A \to \mathcal{P}(A)$ defined by $g(a) = \{a\}$ we have $|A| \leq |\mathcal{P}(A)|$. By way of contradiction assume that $|A| = |\mathcal{P}(A)|$, then there exists a bijection $f : A \to \mathcal{P}(A)$. Consider the set $A' = \{a \in A \mid a \notin f(a)\}$. Since $A' \in \mathcal{P}(A)$ there exists $a' \in A$ with f(a') = A'. Now either $a' \in A'$ or $a' \notin A'$. If $a' \in A'$ then by the definition of A', $a' \notin f(a') = A'$, a contradiction. If $a' \notin A'$ then again by the definition of A', $a' \in f(a') = A'$, a contradiction. Thus no bijection f exists and $|A| < |\mathcal{P}(A)|$.