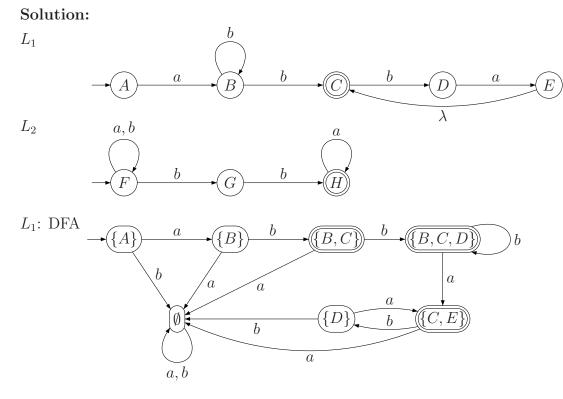
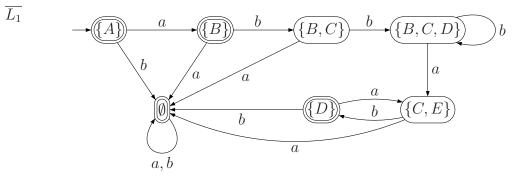
Spring 2014

Exam #2 Key

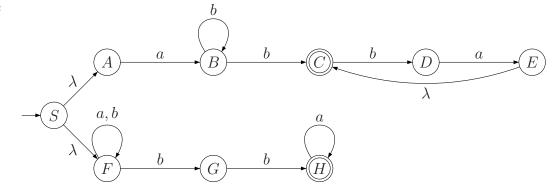
COSC 362

1. (20 Points) Let $L_1 = L(ab^*b(ba)^*)$ and $L_2 = L((a+b)^*bba^*)$, construct NFAs for each of the following languages, L_1 , L_2 , $\overline{L_1}$, and $L_1 \cup L_2$.

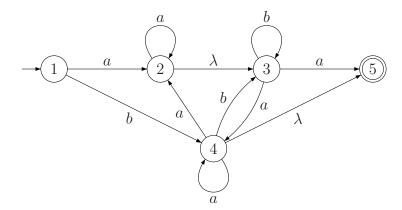




 $L_1 \cup L_2$

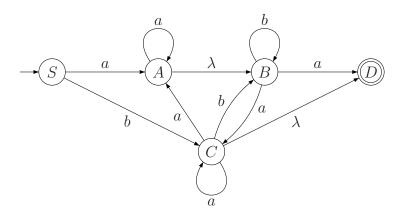


2. (20 Points) Convert the following NFA to a regular expression.



Solution: $aa^*b^*a + (b + aa^*b^*a)(a + (b + aa^*)b^*a)(\lambda + (b + aa^*)b^*a)$

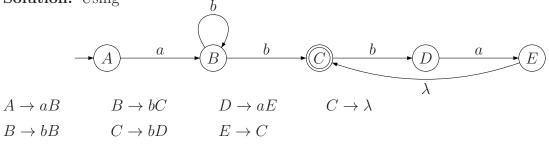
3. (10 Points) Construct a right linear grammar for the following NFA.



Solution:

$S \to aA$	$A \to aA$	$B \rightarrow bB$	$B \rightarrow aD$	$C \to D$	$C \to aA$
$S \rightarrow bC$	$A \to B$	$B \to aC$	$C \rightarrow aC$	$C \rightarrow bB$	$D ightarrow \lambda$

4. (10 Points) Construct a regular grammar for the language $L(ab^*b(ba)^*)$. Solution: Using



- 5. (10 Points Each) For each of the following languages, determine if it is regular or not regular, justify your answer with a proof.
 - (a) $L_1 = \{a^n b^q a^k \mid n = q \text{ or } q \neq k\}$

Solution: L_1 is not regular.

Assume that L_1 is regular and let m be the value from the pumping lemma. Let $w = a^m b^m a^m$, then since $|w| = 3m \ge m$ we can write w = xyz with $|xy| \le m$ and y nonempty. Thus, $xy = a^k$ for some $1 \le k \le m$ and so $y = a^p$ for some $1 \le p \le m$. But $xy^2z = a^{m+p}b^m a^m \notin L_1$, since $n = m + p \ne m = q$ and q = m = k, which contradicts L_1 being regular.

(b) $L_2 = \{a^n \mid n = 2^k \text{ for some } k \ge 0\}$

Solution: L_2 is not regular.

Assume that L_2 is regular and let m be the value from the pumping lemma. Let $w = a^{2^m}$, then since $|w| = 2^m \ge m$ we can write w = xyz with $|xy| \le m$ and y non-empty. Thus, $xy = a^k$ for some $1 \le k \le m$ and so $y = a^p$ for some $1 \le p \le m$. But $xy^2z = a^{2^m+p} \notin L_2$, since $p \le m < 2^m$ we have $2^m + p < 2^m + 2^m = 2 \cdot 2^m = 2^{m+1}$, which is the next power of 2, this contradicts L_2 being regular.

- (c) $L_3 = \{a^n b^q \mid n+q \ge 2\}$ Solution: L_3 is regular since $L_3 = L(aaa^*b^* + aa^*bb^* + a^*bbb^*)$
- (d) $L_4 = \{a^n b^q c^k \mid n+k \leq 7 \text{ and } n < q < k\}$ Solution: L_4 is regular since L_4 is finite and all finite languages are regular.

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$

(e) $L_5 = \{ w \in (a+b)^* | n_a(w) = 2n_b(w) \}$

Solution: L_5 is not regular.

Assume that L_5 is regular and let m be the value from the pumping lemma. Let $w = a^{2m}b^m$, then since $|w| = 3m \ge m$ we can write w = xyz with $|xy| \le m$ and y nonempty. Thus, $xy = a^k$ for some $1 \le k \le m$ and so $y = a^p$ for some $1 \le p \le m$. But $xy^2z = a^{2m+p}b^m \notin L_5$, since p > 0 we have 2m + p > 2m, this contradicts L_5 being regular.