1. (10 points) Use induction to prove that for all $n \ge 1$,

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Solution: When n = 1 we have

$$\sum_{i=1}^{1} i^2 = 1 = \frac{1(1+1)(2+1)}{6}$$

Assume that the statement is true for all $k \leq n$ and prove the statement for the case of n + 1,

$$\begin{split} \sum_{i=1}^{n+1} i^2 &= \sum_{i=1}^n i^2 + (n+1)^2 \\ &= \frac{n(n+1)(2n+1)}{6} + (n+1)^2 \\ &= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6} \\ &= \frac{(n+1)(n(2n+1) + 6(n+1))}{6} \\ &= \frac{(n+1)(n+2)(2n+3)}{6} \\ &= \frac{(n+1)(n+2)(2(n+1)+1)}{6} \\ &= \frac{(n+1)(n+2)(2(n+1)+1)}{6} \end{split}$$

- 2. (25 Points) Answer each of the following questions on languages and grammars. For this exercise, $\Sigma = \{a, b\}$.
 - (a) Find a grammar that generates the language of all palindromes, that is,

$$L = \{ w \in \Sigma^* \mid w = w^R \}$$

Solution:

$$\begin{array}{rcccc} S & \to & aSa \\ S & \to & bSb \\ S & \to & a \\ S & \to & b \\ S & \to & \lambda \end{array}$$

(b) Find a grammar that generates the language,

$$L = \{a^n b^m \mid n \ge 0 \text{ and } m \ge 0\}$$

Solution:

$$\begin{array}{rccc} S & \to & AB \\ A & \to & aA \\ B & \to & bB \\ A & \to & \lambda \\ B & \to & \lambda \end{array}$$

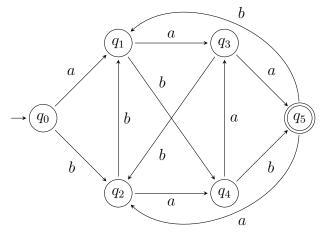
(c) Find a grammar that generates the union of the above two languages, specifically,

$$L = \{ w \in \Sigma^* \mid w = w^R \} \cup \{ a^n b^m \mid n \ge 0 \text{ and } m \ge 0 \}$$

Solution:

S	\rightarrow	S_1	S	\rightarrow	S_2
S_1	\rightarrow	aS_1a	S_2	\rightarrow	AB
S_1	\rightarrow	bS_1b	A	\rightarrow	aA
S_1	\rightarrow	a	B	\rightarrow	bB
S_1	\rightarrow	b	A	\rightarrow	λ
S_1	\rightarrow	λ	B	\rightarrow	λ

3. (20 Points) Consider the following DFA, M



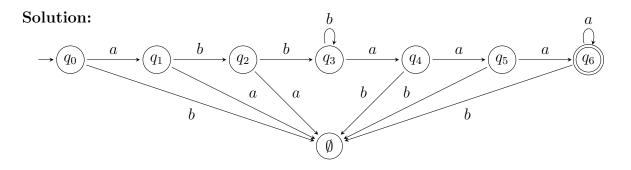
(a) Determine if the automaton accepts the following words. Display the sequence of states for each word.

i. abbaba
Solution: abbaba — q₀, q₁, q₄, q₅, q₂, q₁, q₃, Not Accepted
ii. bbbbbbb
Solution: bbbbbbb — q₀, q₂, q₁, q₄, q₅, q₁, q₄, q₅, Accepted
iii. ababab
Solution: ababab — q₀, q₁, q₄, q₃, q₂, q₄, q₅, Accepted
iv. bbbabbb
Solution: bbbabbb — q₀, q₂, q₁, q₄, q₃, q₂, q₁, q₄, Not Accepted
(b) If aⁿ ∈ L(M) then what are all of the possible values of n.

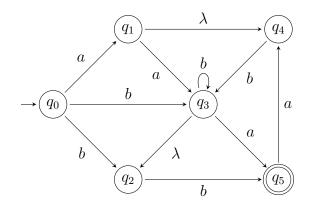
Solution: n = 3 + 4k where $k \ge 1$.

- (c) If $b^n \in L(M)$ then what are all of the possible values of n. Solution: n = 4 + 3k where $k \ge 1$.
- 4. (10 Points) Construct a DFA, with $\Sigma = \{a, b\}$, that accepts the language

$$L = \{ab^n a^m \mid n \ge 2 \text{ and } m \ge 3\}$$



5. (25 Points) Consider the following NFA, M



- (a) Determine if the automaton accepts the following words. Display the sequence of states for each accepted word and if the word is not accepted, give a short explanation of why.
 - i. abbaba
 Solution: abbaba q₀, q₁, q₄, q₃, q₂, q₅, q₄, q₃, q₅, Accepted
 ii. bbbbbbb

Solution: $bbbbbbb - q_0, q_3, q_3, q_3, q_3, q_3, q_3, q_2, q_5$, Accepted

iii. ababab

Solution: ababab — Not Accepted: The aba path ends on q_5 and where there is no way to read a b.

iv. bbbabbb

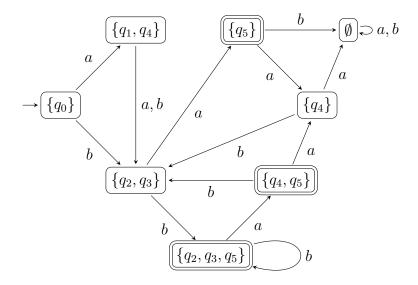
Solution: $bbbabbb - q_0, q_3, q_3, q_2, q_5, q_4, q_3, q_3, q_2, q_5$, Accepted

(b) If $a^n \in L(M)$ then what are all of the possible values of n.

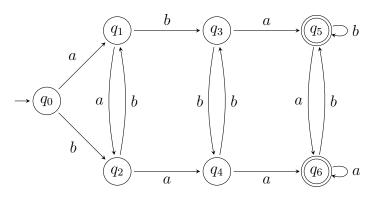
Solution: n = 3

- (c) If $b^n \in L(M)$ then what are all of the possible values of n. Solution: $n \ge 2$
- (d) Convert the NFA to a DFA

Solution:



6. (20 Points) Minimize the number of states of the following DFA, and display the minimal state automaton. Make sure you show all steps in the conversion algorithm.



Solution: The distinguishable state chart is below,

Hence the equivalence classes, and thus the new nodes are, $\{q_0\}$, $\{q_1\}$, $\{q_2\}$, $\{q_3, q_4\}$, $\{q_5, q_6\}$. So the equivalent automaton with minimal states is,

