- 1. (5 points Each) Find regular expressions for the following languages, $\Sigma = \{a, b\}$.
 - (a) $L = \{a^m b^n w \mid w \in \Sigma^*, m \ge 4, n \le 3\}$ Solution: $aaaaa^*(\lambda + b + bb + bbb)(a + b)^*$
 - (b) $L = \{vwv \mid w \in \Sigma^*, |v| = 3\}$ Solution: $aaa(a + b)^*aaa + aab(a + b)^*aab + aba(a + b)^*aba + baa(a + b)^*baa + abb(a + b)^*abb + bab(a + b)^*bba + bbb(a + b)^*bba + bbb(a + b)^*bbb$
 - (c) $L = \{w \mid n_a(w) \mod 3 = 1\}$ Solution: $b^*a(b^*ab^*ab^*ab^*)^*b^*$
 - (d) $L = \{w \mid w \in \Sigma^*, w \text{ contains exactly one pair of consecutive } a's\}$ Solution: $b^*(abb^*)^*aa(bb^*a)^*b^*$
- 2. (10 points Each) Prove the following,
 - (a) Given a set of n regular languages $\{L_1, L_2, L_3, \ldots, L_n\}$, show that the union of these is a regular language, that is, show that $L = L_1 \cup L_2 \cup L_3 \cup \cdots \cup L_n$ is regular.

Solution: Using induction, if n = 2, we know that the union of two regular languages is regular, so $L = L_1 \cup L_2$ is regular. Assume that the theorem holds for a set of k regular languages and we will show the k + 1 case. Let

- $L = L_1 \cup L_2 \cup L_3 \cup \dots \cup L_k \cup L_{k+1}$ $= (L_1 \cup L_2 \cup L_3 \cup \dots \cup L_k) \cup L_{k+1}$
 - $= M \cup L_{k+1}$ (*M* is regular by the inductive hypothesis.)

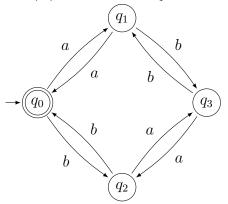
So L is the union of two regular languages and is hence regular.

(b) Given two regular languages L_1 and L_2 show that the reversal difference, R, is regular. The reversal difference is defined to be

$$R = \{ w \in \Sigma^* \mid w \in L_1 \text{ and } w^R \notin L_2 \}$$

Solution: $R = L_1 \cap \overline{L_2^R}$, since the reversal and complement of a regular language is regular and the intersection of two regular languages is regular, R is regular.

3. (20 points) The following finite automaton is one possible automaton for the language $L = \{w \in \{a, b\}^* \mid n_a(w) \text{ and } n_b(w) \text{ are both even.}\}.$



(a) Using the algorithm discussed in class, convert this automaton to a regular grammar.

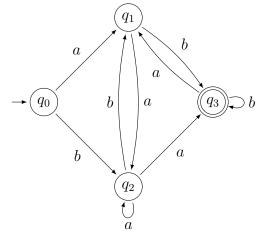
Solution: We will take the starting symbol as q_0 .

q_0	\rightarrow	aq_1	q_2	\rightarrow	aq_3
q_0	\rightarrow	bq_2	q_2	\rightarrow	bq_0
q_1	\rightarrow	aq_0	q_3	\rightarrow	aq_2
q_1	\rightarrow	bq_3	q_3	\rightarrow	bq_1
			q_0	\rightarrow	λ

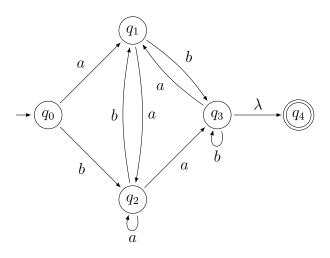
(b) Use the grammar to derive the word *aababa*. Solution:

 $q_0 \rightarrow aq_1 \rightarrow aaq_0 \rightarrow aabq_2 \rightarrow aabaq_3 \rightarrow aababq_1 \rightarrow aababaq_0 \rightarrow aababa$

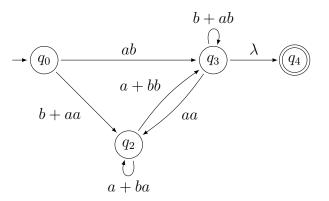
4. (20 points) Consider the following automaton. Using the algorithm discussed in class, convert this automaton to a regular expression. Show all of your steps in the conversion process.



Solution: $(ab + (b + aa)(a + ba)^*(a + bb))(b + ab + aa(a + ba)^*(a + bb))^*$ Step 1: Convert



Step 2: Remove q_1



$$\rightarrow \underbrace{q_0} \underbrace{ab + (b + aa)(a + ba)^*(a + bb)}_{b + ab + aa(a + ba)^*(a + bb)} \underbrace{q_3}_{b + ab + aa(a + ba)^*(a + bb)}$$

Step 4: Remove q_3 to obtain the expression

 $(ab + (b + aa)(a + ba)^{*}(a + bb))(b + ab + aa(a + ba)^{*}(a + bb))^{*}$

- 5. (10 Points Each) For each of the following languages, determine if it is regular or not regular, justify your answers.
 - (a) $L = \{a^n b^q a^k \mid n = q \text{ or } k \neq q\}$

Solution: L is not regular.

Assume that L is regular, then there exists a number m > 0 such that for any word $w \in L$ with $|w| \ge m$, we can write w = xyz with $|xy| \le m$, $|y| \ge 1$, and $xy^i z \in L$ for all $i = 0, 1, 2, 3, \ldots$. Let $w = a^m b^m a^m$, since $w \in L$ and $|w| = 3m \ge m$ we can write w = xyz with the above restrictions. Hence, $y = a^k$ for some $1 \le k \le m$, and $xy^2z = a^{m+k}b^m a^m \notin L$ since $n \ne q$ and k = q. This contradiction proves that L is not regular.

(b) $L = \{a^n b^k \mid n < 2k\}$

Solution: L is not regular.

Assume that L is regular, then there exists a number m > 0 such that for any word $w \in L$ with $|w| \ge m$, we can write w = xyz with $|xy| \le m$, $|y| \ge 1$, and $xy^i z \in L$ for all $i = 0, 1, 2, 3, \ldots$ Let $w = a^{2m-1}b^m$, since $w \in L$ and $|w| = 3m - 1 \ge m$ we can write w = xyz with the above restrictions. Hence, $y = a^k$ for some $1 \le k \le m$, and $xy^2z = a^{2m-1+k}b^m \notin L$ since $2m - 1 + k \ge 2m - 1 + 1 = 2m$. This contradiction proves that L is not regular.

6. (10 Points) Prove or disprove the following statement: If L_1 and L_2 are nonregular languages, then $L_1 \cup L_2$ is also a nonregular language.

Solution: False: Let L_1 be any nonregular language and let $L_2 = \overline{L_1}$. L_2 is not regular, since if it was then $\overline{L_2} = \overline{L_1} = L_1$ would be regular, which is contrary to our assumption. So both L_1 and L_2 are nonregular languages, but $L_1 \cup L_2 = \Sigma^* = (a+b)^*$ is regular.